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Data mining approaches can uncover underlying patterns in chemical and

pharmacological property space decisive for drug discovery and development. Two of the

most common approaches are visualization and machine learning methods. Visualization

methods use dimensionality reduction techniques in order to reduce multi-dimension

data into 2D or 3D representations with a minimal loss of information. Machine learning

attempts to find correlations between specific activities or classifications for a set of

compounds and their features by means of recurring mathematical models. Both models

take advantage of the different and deep relationships that can exist between features

of compounds, and helpfully provide classification of compounds based on such

features or in case of visualization methods uncover underlying patterns in the feature

space. Drug-likeness has been studied from several viewpoints, but here we provide

the first implementation in chemoinformatics of the t-Distributed Stochastic Neighbor

Embedding (t-SNE) method for the visualization and the representation of chemical

space, and the use of different machine learning methods separately and together to

form a new ensemble learning method called AL Boost. The models obtained from

AL Boost synergistically combine decision tree, random forests (RF), support vector

machine (SVM), artificial neural network (ANN), k nearest neighbors (kNN), and logistic

regression models. In this work, we show that together they form a predictive model

that not only improves the predictive force but also decreases bias. This resulted in a

corrected classification rate of over 0.81, as well as higher sensitivity and specificity

rates for the models. In addition, separation and good models were also achieved for

disease categories such as antineoplastic compounds and nervous system diseases,

among others. Such models can be used to guide decision on the feature landscape of

compounds and their likeness to either drugs or other characteristics, such as specific

or multiple disease-category(ies) or organ(s) of action of a molecule.

Keywords: machine-learning, drug, data-mining, logistic, organ, drug design, multi-target

INTRODUCTION

An important task in drug design is to guide the synthesis, purchase, and testing of compounds
based on their predicted properties. Proper prediction of properties can save time and resources,
but also generate compounds not available beforehand. There are several methods to compare a real
or virtual compound to known collection of compounds, from topological similarity, fingerprints,
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molecular features, among others (Ivanenkov et al., 2009; Akella
and DeCaprio, 2010; García-Sosa et al., 2010, 2012a,b; Dhanda
et al., 2013).

Machine learning allows observing hidden patterns in data,
and modifying algorithms in order to better discern the patterns
and improve robustness (Schneider, 2017; Gómez-Bombarelli
et al., 2018). This includes several layers of data (deepness) and
optimization of a function in order to better adopt the features of
the (chemical) data (Schneider, 2017; Gómez-Bombarelli et al.,
2018). Feedback loops can improve the learning process. The
use of artificial intelligence and machine learning can enable the
automated design of compounds according to several properties
to be optimized (Schneider, 2017; Gómez-Bombarelli et al.,
2018).

Visualization of high dimensional data is an important
problem inmany different domains and especially in drug design.
Visualization of chemical data and a good representation of the
chemical space are useful in many chemoinformatics and drug
design applications including the selection of compounds for
synthesis, the selection of compounds for biological evaluation,
and the selection of subsets for the design of information-
rich compound libraries (Ivanenkov et al., 2009; Akella and
DeCaprio, 2010). The main problem of visualization of high
dimensional data concerns the data representation in 2D or 3D
with minimal loss of information. The dimensionality reduction
aim is to preserve as much of the significant structure of the
high-dimensional data as possible in the low-dimensional map.

The traditional approach for dimensionality reduction is
principal component analysis (PCA) (Jolliffe, 2002), which
assumes linear correlation between the dimensions and
therefore, cannot adequately handle complex nonlinear data.
In the last decade, a number of nonlinear techniques for
dimensionality reduction have been proposed and implemented
in chemoinformatics, such as self-organized map (SOM) (Zupan
and Gasteiger, 1999) and generative topographic map (GTM)
(Kireeva et al., 2012), to name but a few. In contrast to traditional
linear techniques, nonlinear techniques have the ability to
deal with complex nonlinear data, which is pervasive in drug
design.

An important factor to consider in machine learning and
artificial intelligence, as with any modeling work, is to properly
account for the underlying data. The initial and sequential
datasets must be well curated, to guarantee that the features and
numbers are not biased and that they represent an important
classification, optimization, or design task (Schneider, 2017).

Drug design requires an extremely high degree of selectivity.
This implies a specific profile of interaction of a compound
(or several compounds) with several targets, such as is the
case seen in clinic-approved kinase inhibitors, while at the
same time avoiding off- or anti-targets that may be responsible
for side-effects (Campillos et al., 2008). Disease or organ
classification is also important given that the same targets can
be present in different tissues and therapeutic compounds need
to have an efficient concentration at a specific place for effective
action in an organism. These challenges have been approached
using probability density functions (García-Sosa et al., 2012a),
multivariate logistic regressions (García-Sosa et al., 2012b), PCA

(García-Sosa et al., 2012c), and Bayesian naïve classifiers (García-
Sosa and Maran, 2013), among others.

In the present work, the t-Distributed Stochastic Neighbor
Embedding (t-SNE) method for the visualization and the
representation of chemical space is implemented for the first
time, and the use of different machine learning methods from
decision tree, random forests (RF), support vector machine
(SVM), artificial neural network (ANN), k-nearest neighbors (k-
NN), and logistic regression models, separately and together,
to form a new ensemble learning method called AL Boost
for separation of drugs and nondrugs. Good models can
also be achieved for disease categories such as antineoplastic
compounds, cardiovascular system drugs, and nervous system
diseases.

METHODS

Data Set
The full data set contains 762 compounds; compounds were
classified into two classes: drug (366 compounds) and non-
drug (396 compounds). The compounds were obtained from
previous work (García-Sosa et al., 2010, 2012b), where the
DrugBank (Wishart et al., 2006) was used to ascertain approved-
drug status. Curation included that structure files were checked
for consistency (chemical structure corresponds to chemical
name) and cleaned, such as removing salts, counterions, etc.
All compounds and features are provided in Table S1 on the
Supporting Information.

Properties Calculation
Thirty five molecular properties were chosen and calculated for
each compound, using ChemAxon1 and XLogP (Wang et al.,
2000) software, the same properties as in previous publications
(see more details on the selection of properties in García-Sosa
et al., 2012b; García-Sosa and Maran, 2013).

These physicochemical features were: the binding free energy
to their target, 1Gbind; logP; exact mass; Number of Carbons
(NoC); Wiener index; molecular surface area (MSA); polar
surface area (PSA); apolar surface area (apolarSA); hydrogen
bond donor count; hydrogen bond acceptor count; rotatable
bond count; atom count; hydrogen count; number of heavy
atoms (NHA); molecular polarizability; aliphatic ring count;
aromatic ring count; aromatic atom count; Balaban index;
Harary index; bond count; hyperWiener index; Platt index;
Randic index; ring count; Szeged index; Wiener polarity;
and the ligand efficiencies (Kuntz et al., 1999) 1Gbind_NHA;
1Gbind_MW; 1Gbind_PSA; 1Gbind_MSA; 1Gbind_apolarSA;
1Gbind_Wiener; 1Gbind_P; 1Gbind_NoC. Free energies of
binding were calculated using inhibition or dissociation
constants from the SCORPIO (Ababou and Ladbury, 2007),
KiBank (Zhang et al., 2004), and PDBbind (Wang et al., 2004)
databases. Non-drugs had their nonexistence as drugs verified in
the DrugBank (Wishart et al., 2006). Together, they composed
a balanced set of drugs and nondrugs, which is important in
order not to bias or skew the feature patterns toward one group

1(v4.8.1, M., In; 2007)
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of compounds against the other. Important features of the sets
are that their distribution of binding energies and the number
of compounds is similar for both drugs and non-drugs, and
that the drugs include all administration routes, not only oral.
This introduces a challenge to distinguish drugs from active,
non-therapeutic compounds (non-drugs) because the differences
between drugs and non-drugs are not judged by their binding
energy (i.e., not only potency determines drug likeness), since
other features then become more important to distinguish these
groups of compounds.

In order to make a comparison to previous studies, no
properties selection has been done, although to initially evaluate
these properties, an information gain procedure has been
implemented. Briefly, the information gain (Mitchell, 1997) of a
property reflects the “degree of purity” of the partition obtained
by splitting the parent data set using this property. The degree
of purity is determined according to Shannon’s entropy measure.
This method has been widely used in chemoinformatics and
bioinformatics and in a recent comparative study it was found
to be highly effective for properties selection prior to model
generation (Liu, 2004; Saeys et al., 2007). The information
gain results indicated information gain (greater than 0) for 30
properties and no information gain (equal to zero) for five
properties namely: hydrogen count; Platt index; ring count;
Balaban index, and 1Gbind_NoC.

Themodels and visualization use normalization of the features
as a standard procedure.

Data Mining Workflow
The data mining procedure is derived using a workflow
consisting of two main stages as follows: (1) Data visualization
using the t-SNE method; (2) Classification models, which starts
by dividing the data into training and test sets, followed by
model generation with seven classification methods and model
validation.

Data Visualization
The t-Distributed Stochastic Neighbor Embedding (t-
SNE) (Maaten and Hinton, 2008) method is a non-linear
dimensionality reduction algorithm that is especially designed
for embedding high-dimensional data into a space of 2D
or 3D. The t-SNE is capable of capturing much of the local
information of the high-dimensional data, while also revealing
global information such as clusters in the low dimensional
representation. The basic idea of t-SNE is that similar objects are
modeled by nearby points and dissimilar objects are modeled
by distant points in the low dimensional embedding. The t-SNE
algorithm consists of three main stages:

(1) Collection of the pairwise Euclidean distances between all
high dimensional objects and convert them into conditional
probabilities and then into joint probabilities, where similar
objects get high probability and dissimilar ones get small
probability

(2) Creation of an initial set of low-dimensional objects
(3) Iteratively update the low-dimensional objects to minimize

a fitness function (the Kullback-Leibler (KL) divergence,

i.e., how one probability distribution diverges from a
second expected probability distribution) between a
Gaussian distribution in the high-dimensional space and a t
distribution in the low-dimensional space.

In order to evaluate the ability of the low dimensional
representation to preserve the high-dimensional data and
structure, we used the trust measure (Venna and Kaski, 2006).
The trust measure defines the millieu of compounds, so that the
neighborhood in the low dimensional representation is similar to
the high dimension, and is given by Equation (1):

Trust =
1

n
∗
1

k

n
∑

i = 1

k
∑

j = 1

δj(si,j, xi ) (1)

where n represents the number of compounds, k the number of
nearest neighbors, si,j represents neighbor j for compound i in the
low dimension representation, and xi is the vector of compound
i neighbors in the high dimension. δj is defined to be 1 if si,j is
found in xi or 0 if not.

In this work, the neighborhood is defined as the 10 nearest
neighbors, and we used the t-SNE algorithm as implemented in
the MATLAB version R2017b.

Classification Models-Selection of Training
Set and Test Set
In order to validate the classification model, compounds were
divided into a training set (80%, 610 compounds), and a test
set (20%, 152 compounds). Similar proportions (20%) of drug
(73 compounds) and non-drug (79 compounds) compounds
were selected for the test sets by applying independent
selection procedures of a representativeness function (Yosipof
and Senderowitz, 2014) to the two activity categories. Briefly,
this method uses a simulated annealing optimization to
select a subset of objects (e.g., compounds) which best
represents the parent database from which it was selected.
The models were built on the training set by using 10-fold
cross-validation and seven methods and then tested on the
test set.

Classification Methods
Six different algorithms, namely, decision tree, random forests
(RF), support vector machine (SVM), artificial neural network
(ANN), k-nearest neighbors (k-NN) and logistic regression
(LR), and one newly boosting method named AL Boost,
were used to build the classification models. In each case,
a classification model was built using the training set and
subsequently used to predict the activities (drug status) of
the test set compounds for validation. The six models were
generated with algorithms implemented in the WEKA version
3.9.1 (Hall et al., 2009) software using default parameters unless
otherwise noted and the newly boosting method was self-
coded.

The decision tree algorithm (Quinlan, 1986) operates by
iteratively splitting a dataset characterized by activity data
and features into smaller subsets. At each step, all features
are considered in the search for one that, upon splitting
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a parent node, would produce the most uniform (activity-
wise) child nodes. This procedure is repeated until no more
splits are warranted, since either all compounds within all
(terminal) nodes have identical activities, or since the gain in
uniformity upon additional splits is not statistically significant.
In the present study, we used the J4.8, a C4 variant
algorithm.

Random forests (RF) (Breiman, 2001), as developed in 2001,
with Breiman introducing the principle of random forests as
an extension to the decision tree algorithm. In RF, multiple
trees (rather than a single tree) are generated using randomly
selected feature sets. Activity predictions are made by all trees
and combined using a majority vote rule. In the present study,
the number of trees was set to the default value of 100.

Support vectormachine (SVM) (Vapnik, 1995) is an algorithm
which has proven useful for noisy data. Under this paradigm,
models are built by identifying a rigid decision hyperplane which
leads to the greatest possible margins between activity classes.
Nonlinear data could be handled by transposing the original
feature space to higher dimensionalities using kernels. In this
study, we have chosen to use the polynomial kernel function.

Artificial neural network (ANN) (Hassoun, 1995) is a
non-linear classification method inspired by the behavior of
biological networks of neurons. Within this approach, objects
(i.e., compounds) are represented by vectors containing their
features. Each feature is passed to one of the input neurons to
which a weight is assigned. Based on these weights, input is
passed to the output layer over a number of (optional) hidden
layers. The output layer combines these signals to produce a
result (e.g., activity or class prediction). Initially, weights are set to
random values. As the network is repeatedly presented with input
data, these weights are adjusted so that the total output of the
network approximates the observed endpoint values associated
with the compounds. In the present study we used multilayer
perceptrons (MLP) with 19 hidden layers and 19 nodes.

k-Nearest Neighbor (k-NN) (Mitchell, 1997) is a lazy learning
classification method, which assigns new compounds to the
most common class of known compounds in their immediate
neighborhood. Closest neighbors are identified by calculating
Euclidian distances in a pre-defined feature space. In this present
study, we used k= 5 neighbors.

The logistic regression (LR) (Mitchell, 1997) is a type of
regression analysis where the dependent variable is binary (or
binomial). The model is simply a non-linear transformation of
the linear regression. The result is an equation which includes the
impact of each variable on the odds ratio of the observed event of
interest.

AL Boost: is a new chemoinformatics ensemble learning
classification method which combines all the models obtained
in this work (i.e., J4.8, RF, SVM, ANN, k-NN, and LR) together
into one predictivemodel in order to improve the predictive force
and decrease the bias. This method takes the predictions of each
classification (learners) and combines them using a weighted
majority voting function to determine the prediction of each
compound. Each learner is assigned a weight according to its
corrected classification rate error, given that poor learners get
lower weights. For each compound, two functions are calculated

as follows:

f (active) =
n

∑

i = 1

1

wi
∗δi (2)

f (inactive) =
n

∑

i = 1

1

wi
∗δi (3)

where i are the learner methods, wi is the corrected classification
rate error (CCR error, Equation 4) of learner i, and δi is 1 if the
learner is predicted as active class (e.g., drug), or 0 if predicted as
inactive class (e.g., non-drug), for Equation (2).

For Equation (3), δi is 1 if the learner is predicted as inactive
class (e.g., non-drug) or 0 if it is predicted as active class (e.g.,
drug).

The majority vote between Equations (2) and (3) determines
the prediction for the compound.

The last classification method detailed in this paper is
Naïve Bayesian classifiers. This method was used in a previous
publication (García-Sosa and Maran, 2013), thus it was not used
for model building in this study, rather for comparison to the
results obtained in García-Sosa and Maran (García-Sosa and
Maran, 2013). The Naïve Bayesian classifiers use the distributions
of features for different classes, and construct Gaussians for
describing these distributions with characteristics being themean
and standard deviation. The probabilities (P) of a compoundwith
certain features belonging to either class are computed, and that
compound is assigned to the class for which the highest P is
obtained.

Classification Models-Prediction Statistics
In all cases, classification predictions were evaluated using
the corrected classification rate (CCR, also called “balanced
accuracy”), accuracy, Matthews correlation coefficient (MCC),
sensitivity, specificity, and the variance between the sensitivity
and the specificity (Equations 5–10), where sensitivity is the
percentage of truly active (e.g., drug) compounds being predicted
from the model (Equation 8), and specificity is the percentage of
truly inactive (e.g., non-drug) compounds being predicted from
the model (Equation 9).

CCR error = 1−
1

2

(

TN

NN
+

TP

NP

)

(4)

CCR =
1

2

(

TN

NN
+

TP

NP

)

(5)

Accuracy =
TN + TP

NN + NP
(6)

MCC =
TNTP − FNFP√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(7)

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)
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Variance =
1

2
∗(Sensitivity− µ)2 +

1

2
∗(Specificity− µ)2

(10)

where TN and TP represent the number of true negative (e.g.,
non-drug) and true positive (e.g., drug) predictions, respectively.
NN and NP represent the total number of the two activity classes,
and FN and FP represent the number of false negative and false
positive predictions, respectively. µ represents the mean of the
sensitivity and specificity.

Disease Categories
Further in the analysis of the drug/non-drug database, the drugs
in the data set were characterized into their different anatomic
therapeutical classifications, also called disease or organ category
(DC). Here the comparison was not drugs vs. non-drugs, but
drugs of one DC against another DC. In this work, we focus
on the three largest DCs, namely cardiovascular, anti-neoplastic,
and nervous systems. These three groups were evaluated against
each other preforming three sub data sets Cardiovascular drugs
vs. Anti-neoplastic agents, Cardiovascular drugs vs. Nervous
system, and Anti-neoplastic agents vs. Nervous system. The same
data mining workflow as before was applied. The number of
compounds and the number of training and test sets (similar
procedure and proportions as in the drug/non-drug database) for
each DC are presented in Table 1.

RESULTS AND DISCUSSION

The properties of the compounds include widely used metrics
such as size, weight, polarity, as well as topological indices,
and ligand efficiencies. An important consideration for the
data set construction was the curation of binding free energies
of similar magnitude between drugs and non-drugs (bioactive
compounds). Ligand efficiencies can normalize the binding
energy of a compound according to other properties of a
compound, such as size, lipophilicity, etc., and have a pragmatic
use in developing series of compounds in order to improve or
maintain binding strength while also improving their profile in
other dimensions.

The first step of the datamining workflow is data visualization;
the resulting 35 dimensional data of the drug/non-drug database
was reduced into a 3D representation using t-SNE. The resulting
trust measure of the low dimensional embedding was found to
be 63%. A comparison to the common dimension reduction
technique PCA, found that for a 3D representation using PCA,
a trust measure of only 42% was obtained. This result indicates a
good preservation of the structure and of the local information of
the high dimensional data in the low embedding for the t-SNE.

TABLE 1 | The number of compounds, training, and test sets for the three

different disease/organ category.

Disease/organ category Compounds Training set Test set

Cardiovascular drugs 56 44 12

Anti-neoplastic agents 20 16 4

Nervous system 111 89 22

The distribution and the chemical space of the drug/non-drug
compounds in the resulting t-SNE 3D space are presented in
Figure 1.

From Figure 1, it can be broadly seen that drug compounds
occupy mostly the central area (shown in the black square in
Figure 1) of the plot in this perspective plane, and non-drugs are
among the edges. The second step of the data mining workflow
is the building and validation of the classification models. In
order to build the classification models, we used six different
classification methods, as well as the boosting method (AL
Boost), the results obtained are shown in Table 2.

These results show that the separation between classes is good,
and comparable to those found in other studies (García-Sosa and
Maran, 2013). The AL Boost method performed as well as the
best of the individual methods. The overall performances of the
different models for the training set were evaluated by the CCR
and are between 0.67 and 0.76. The best classification models
based on this criterion are the AL Boost, the RF, and the LR
(with CCR = 0.76) followed by the ANN (CCR = 0.75), SVM
and k-NN (with CCR= 0.73), while the decision tree (with CCR
= 0.67) lags behind. The overall performances of the different
models for the test set largely mirror the results from the training
set. However, some methods performed better, and the AL Boost
method gave a good CCR of 0.81, while random forest had
the highest CCR value of 0.82. On average, the CCR of the six
other methods is 0.73 and 0.77 for the training set and test set,
respectively, which is lower than the CCR results for AL Boost,
but not statistically significant.

In order to evaluate the new AL Boost method, the variance
between the specificity and the sensitivity was calculated as well.
The variance represents the model balance between the two
classes or the bias of the model toward one class. Lower variance
values represent low bias and balanced models while higher
variance values represent high bias and unbalanced models.
The results for the training set and test set for the AL Boost
method represent very similar results of specificity and sensitivity
(training set 0.76 and 0.77 and test set 0.80 and 0.81 for the
specificity and sensitivity, respectively). These results show a low
bias and a well-balanced model with a variance of 0.01%2 and
0.22%2 for the training and test set, respectively, while on average,
the variance of the six othermethods is 0.93%2 and 7.22%2 for the
training and test set, respectively. In addition, comparing the AL
Boost to our previous publication (García-Sosa andMaran, 2013)
using the naïve Bayesian method shows that the accuracy of AL
Boost (0.81) is higher on the test set than the Bayesian classifier
(0.70).

To evaluate the features used in this research, Table 3

represents the most frequent features selected by the classifiers
for the final model. In this case, the most frequent features are
those that were both selected by the decision tree model and
by the logistic regression models, while the other methods used
all the features or combination of them for the final model.
A comparison to previous publications reveals that there is
common ground: the features of Acceptor Count, Donor Count,
PSA, LogP, 1Gbind_MSA, and Balaban Index were found to be
features that separated drug and nondrug in REF (García-Sosa
and Maran, 2013) and in REF (García-Sosa et al., 2012b). In
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addition, the Balaban Index was found to have an information
gain of zero in the initial evaluation of the features (see Methods
section), but here it was selected as one of the features that
can separate drug and nondrug. Furthermore, it is interesting

to note that most of the properties that correspond to the ones
in Lipinski’s rule of five (Lipinski et al., 2001) were found to
have the ability to split the data set into drugs and non-drugs
classes.

FIGURE 1 | (A) 3D representation of the Drug/Non-drug feature space using the t-SNE algorithm for dimension reduction. (B) A zoom into the drug area from the

black square in (A).

TABLE 2 | Drug/non-drug classification results.

Training set Test set

Model Specificity Sensitivity CCR Accuracy Variance MCC Specificity Sensitivity CCR Accuracy Variance MCC

J4.8 0.67 0.67 0.67 0.67 0.01 0.35 0.72 0.81 0.75 0.76 18.90 0.52

RF 0.76 0.76 0.76 0.76 0.00 0.52 0.80 0.86 0.82 0.82 10.21 0.65

k-NN 0.73 0.73 0.73 0.73 0.06 0.46 0.75 0.78 0.76 0.76 1.34 0.53

SVM 0.73 0.74 0.73 0.73 0.25 0.47 0.74 0.73 0.74 0.74 0.17 0.47

ANN 0.77 0.72 0.75 0.75 5.25 0.50 0.81 0.81 0.81 0.81 0.12 0.62

LR 0.76 0.76 0.76 0.76 0.01 0.52 0.77 0.70 0.74 0.74 12.58 0.48

AL Boost 0.76 0.77 0.76 0.76 0.01 0.53 0.80 0.81 0.81 0.81 0.22 0.62

Naïve Bayesian* 0.74 0.89 – 0.82 – 0.64 0.50 0.92 – 0.70 – 0.46

*Naïve Bayesian results were taken from García-Sosa and Maran (2013).
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Having separated drugs and non-drugs, the next step
was to consider separation of drugs into their different
disease or organ category (DC). First, we visualize the
feature space using t-SNE for each sub dataset. The resulting
3D representation of Anti-Neoplastic-Nervous system, Anti-
Neoplastic-Cardiovascular, and Cardiovascular-Nervous system
can be seen in Figures 2–4, respectively. The trust measure
results can be seen inTable 4; these results clearly show the ability
of the t-SNE methods to preserve the high-dimensional data and
structure, with a trust between 70 and 74% for the three datasets.
As before, a comparison to PCA was done, and again the t-SNE
trust results were found to overcome the PCA. Although the
trust results were found to be higher for the t-SNE than the PCA
for each data set, no statistically significant difference was found
between them.

Figure 2 presents the Anti-Neoplastic-Nervous system 3D
representation. In this 3D representation a clear separation
between the two DCs can be seen, with nervous system drugs
in the center, and cancer drugs mostly on the edges, or not as
well defined as nervous system. If one considers their place or
target of action, nervous system drugs require locating in the

TABLE 3 | Most frequent model selected features.

Features

Acceptor count 1Gbind 1Gbind_PSA

Donor count Rotatable bond count 1Gbind_MSA

PSA Hydrogen count 1Gbind_P

LogP Aliphatic ring count Number of carbons

Aromatic ring count Balaban index

brain and CNS, which requires the passing of specific membranes
such as the blood-brain barrier that imposes a feature profile
in the compounds. Two Anti-Neoplastic compounds (Figure 2,
two blue dots in the black square, DR109.mol2, DR211.mol2) are
markedly different from the rest of the Anti-neoplastic bulk. They
correspond to compounds fluorouracil (5-FU), an atypically
small compound – one ring –, and to pentostatin, also a small,
polar compound; both of them acting as nucleoside analogs.

Cardiovascular drugs were also majorly separated from cancer
drugs (Figure 3), located mostly in the center as opposed to
mostly on the edges for cancer drugs. Cancer affects all organs,
so these system drugs tend to be not very located, which is also
a major problem with cancer treatment, as side-effects are very
common.

This separation between groups was not the case for the
Cardiovascular vs. Nervous system drug plots, since both groups
are very similar, perhaps only a cluster of cardiovascular drugs
can be seen on the middle right.

Having visualized the data, the next step is to build
classification models using the six classification methods and the
ensemble learning AL Boost. The results for the Anti-Neoplastic
vs. Nervous system, Anti-neoplastic vs. Cardiovascular, and
Cardiovascular vs. Nervous System are presented in Tables 5–7,
respectively.

The results in Table 5 for the anti-Neoplastic vs. Nervous
system classification models show good results for the training
set with CCR ≥ 0.65, as well as for the test set with CCR ≥
0.85. The ensemble learning model AL Boost provided a CCR
of 0.74 and 0.88 on the training and test set, respectively, with
the lowest variance of 1.93%2 and 4.73%2 on the training and
test set, respectively. The accuracy for the AL Boost method was
high, 0.91 for the training set, and 0.96 for the test set. These

FIGURE 2 | 3D representation of the Anti-Neoplastic-Nervous system feature space using the t-SNE algorithm for dimension reduction. Two Anti-Neoplastic

compounds (two blue dots in the black square) are markedly different from the rest of the Anti-neoplastic bulk. They correspond to compounds fluorouracil (5-FU), an

atypically small compound – one ring –, and to pentostatin, also a small, polar compound; both of them acting as nucleoside analogs.
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FIGURE 3 | 3D representation of the Anti-Neoplastic-Cardiovascular feature space using the t-SNE algorithm for dimension reduction.

FIGURE 4 | 3D representation of the Cardiovascular-Nervous System feature space using the t-SNE algorithm for dimension reduction.

values are better when compared to those obtained previously
using naïve Bayesian classifiers for the same data sets, 0.88
for training set, and 0.90 for the test set (García-Sosa and
Maran, 2013). The sensitivity for the AL Boost method was
much higher than using Bayesian classifiers, of 0.89 and 1.00
for training and test set for the former, vs. 0.50 and 0.60,
respectively, for the latter. The values obtained for specificity are
comparable for both methods, 0.97 and 0.96% for training and

test sets for Bayesians, vs. 0.92 and 0.86, respectively, for AL
Boost.

For the differences between cardiovascular drugs and cancer
drugs (Table 6), good results were obtained for the AL Boost with
CCR of 0.76 and 0.88 for the training set and test set, respectively,
while on average, the CCR of the six other methods is 0.65 and
0.83 for the training set and test set, respectively. In addition, the
accuracy for AL Boost is comparable for training set and higher
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for test set, with 0.85 and 0.94, respectively, vs. 0.88 and 0.90,
respectively, for the Bayesian classifiers in previous work (García-
Sosa and Maran, 2013). The sensitivity for the AL Boost method
was comparable to Bayesian classifiers, with 0.82 and 1.00 for
training and test set for the former, vs. 0.83 and 1.00, respectively,
for the latter. The values for specificity aremuch higher for the AL
Boost method than for Bayesians, with 0.27 and 0.43 for training
and test sets for Bayesians, vs. 0.86 and 0.92, respectively, for AL
Boost.

Another advantage of the AL Boost method, is that it could
find a good distinction between cardiovascular and nervous
system drugs with CCR of 0.68 and 0.72 for the training set and
test set, respectively (shown in Table 7), which was not the case

TABLE 4 | The trust results for the low-dimensional embedding (3D

representation) using t-SNE and PCA.

System t-SNE (%) PCA (%)

Anti-neoplastic vs. nervous 72 66

Anti-neoplastic vs. cardiovascular 74 72

Cardiovascular vs. nervous 70 62

with naïve Bayesian classifiers, the latter being based on simple
relationships between descriptors.

Summary of the classification results for the four databases

presented here (drug/nondrug, anti-neoplastic vs. nervous
system drugs, anti-neoplastic vs. cardiovascular drugs and

cardiovascular drugs vs. nervous system drugs): a total of 24

results obtained for the individual classificationmodels (e.g., J4.8,
RF, k-NN, SVM, ANN, and LR) with an average CCR of 0.69

and 0.80 for the training set and test set, respectively. While the

average CCR results for the four models of the AL Boost are
0.74 and 0.82 for the training set and test set, respectively. An
independent sample t-test was performed among the individual
CCR models results and the AL Boost CCR results which found

no statically significant difference for the training set and not

for the test set results. In summary, the average results for
the AL Boost were found to overcome the average results for

the individual classification models but weren’t found to be
significantly higher.

This research has several possible limitations including the
data set, the classificationmethod, and the visualizationmethods.
One limitation is the number of compounds per disease
category/organ classification. It would be good to have larger
datasets for some disease groups, but we used the drugs that are

TABLE 5 | Classification results of anti-neoplastic vs. nervous system drugs, where specificity represents the nervous system and sensitivity represents the anti-neoplastic.

Training set Test set

Model Specificity Sensitivity CCR Accuracy Variance MCC Specificity Sensitivity CCR Accuracy Variance MCC

J4.8 0.90 0.64 0.70 0.88 179.41 0.46 1.00 0.67 0.95 0.92 277.78 0.78

RF 0.93 0.82 0.77 0.91 28.81 0.63 0.96 1.00 0.88 0.96 4.73 0.85

k-NN 0.89 0.83 0.65 0.89 7.72 0.47 0.95 0.75 0.85 0.92 104.60 0.70

SVM 0.92 1.00 0.75 0.92 17.00 0.68 0.95 0.75 0.85 0.92 104.60 0.70

ANN 0.93 0.71 0.79 0.90 120.76 0.61 0.96 1.00 0.88 0.96 4.73 0.85

LR 0.92 0.89 0.74 0.91 1.93 0.63 0.96 1.00 0.88 0.96 4.73 0.85

AL Boost 0.92 0.89 0.74 0.91 1.93 0.63 0.96 1.00 0.88 0.96 4.73 0.85

Naïve Bayesian* – – – 0.88 – 0.57 – – – 0.90 – 0.62

*Naïve Bayesian results were taken from García-Sosa and Maran (2013)

TABLE 6 | Classification results of anti-neoplastic vs. cardiovascular drugs, where specificity represents the cardiovascular drugs and sensitivity represents the

anti-neoplastic.

Training set Test set

Model Specificity Sensitivity CCR Accuracy Variance MCC Specificity Sensitivity CCR Accuracy Variance MCC

J4.8 0.81 0.54 0.65 0.75 182.32 0.32 0.92 1.00 0.88 0.94 14.79 0.83

RF 0.83 0.62 0.69 0.78 114.92 0.41 0.92 1.00 0.88 0.94 14.79 0.83

k-NN 0.78 0.80 0.61 0.78 0.83 0.36 0.92 1.00 0.88 0.94 14.79 0.83

SVM 0.78 0.80 0.61 0.78 0.83 0.36 0.86 1.00 0.75 0.88 51.02 0.65

ANN 0.84 0.60 0.71 0.78 149.38 0.44 0.92 1.00 0.88 0.94 14.79 0.83

LR 0.80 0.55 0.63 0.75 156.83 0.30 0.86 1.00 0.75 0.88 51.02 0.65

AL Boost 0.86 0.82 0.76 0.85 3.79 0.59 0.92 1.00 0.88 0.94 14.79 0.83

Naïve Bayesian* – – – 0.79 – 0.40 – – – 0.79 – 0.55

*Naïve Bayesian results were taken from García-Sosa and Maran (2013).
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TABLE 7 | Classification results of cardiovascular drugs vs. nervous system drugs, where specificity represents the nervous system and sensitivity represents the

cardiovascular drugs.

Training set Test set

Model Specificity Sensitivity CCR Accuracy Variance MCC Specificity Sensitivity CCR Accuracy Variance MCC

J4.8 0.76 0.55 0.64 0.70 105.33 0.30 0.74 0.55 0.64 0.68 93.78 0.28

RF 0.78 0.72 0.69 0.77 7.48 0.44 0.83 0.80 0.79 0.82 2.78 0.60

k-NN 0.71 0.57 0.59 0.69 51.02 0.22 0.70 0.57 0.60 0.68 43.74 0.23

SVM 0.77 0.82 0.68 0.77 6.87 0.46 0.75 0.83 0.69 0.76 17.36 0.47

ANN 0.78 0.56 0.67 0.71 120.60 0.33 0.83 0.73 0.77 0.79 24.41 0.54

LR 0.76 0.63 0.66 0.73 47.18 0.35 0.76 0.67 0.68 0.74 21.78 0.39

AL boost 0.77 0.73 0.68 0.76 3.17 0.42 0.79 0.70 0.72 0.76 21.01 0.47

available. New drugs are definitely needed in several categories,
including cardiovascular, nervous system, and antineoplastic
agents. Other limitations include the features selected by the
models. Some of the classification methods employ all of the
features in the data set, as well as combinations of different
features in the final step. This makes the extraction of individual
features harder.

A possible limitation for the t-SNE algorithm is the lack of
an explicit mapping function. This limitation does not allow
one to place any new data on an already existing map. In that
case, a new map must be rebuilt from scratch and therefore, this
method cannot be used as a supervised learning method (e.g.,
classification) for prediction.

CONCLUSIONS

To the best of our knowledge, this is the first example of the
usage of t-SNE for the visualization and representation of the
chemical space and the use of differentmachine learningmethods
separately and together to form a new ensemble learning method
called AL Boost. Clear and good separations were obtained
with the dimension reduction and machine learning approaches
to distinguish drugs and non-drugs, as well as three major
classes of drug compounds. The ability to use such tools for the
identification of interesting trends, opens up new opportunities
for understanding the factors affecting drugs performances and
for designing new drugs. Considerations such as drug likeness
and drug target, organ, and/or system class are thus made

possible, providing another route for designing specificity into
ligands and drugs. Clearly, this research should be conducted in

close collaboration with experts in the medicinal/pharmaceutical
chemistry field to both provide a chemistry-based explanation to
the observed trends, as well as to capitalize on the results. We
expect that the tools and methods implemented in this work will
further be used in medicinal chemistry and drug design research.
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