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Today computational chemistry is a consolidated tool in drug lead discovery endeavors.

Due to methodological developments and to the enormous advance in computer

hardware, methods based on quantum mechanics (QM) have gained great attention in

the last 10 years, and calculations on biomacromolecules are becoming increasingly

explored, aiming to provide better accuracy in the description of protein-ligand

interactions and the prediction of binding affinities. In principle, the QM formulation

includes all contributions to the energy, accounting for terms usually missing in molecular

mechanics force-fields, such as electronic polarization effects, metal coordination, and

covalent binding; moreover, QM methods are systematically improvable, and provide

a greater degree of transferability. In this mini-review we present recent applications of

explicit QM-basedmethods in small-molecule docking and scoring, and in the calculation

of binding free-energy in protein-ligand systems. Although the routine use of QM-based

approaches in an industrial drug lead discovery setting remains a formidable challenging

task, it is likely they will increasingly become active players within the drug discovery

pipeline.

Keywords: quantum mechanics, semi-empirical methods, structure-based drug design, molecular docking, drug

lead optimization, binding free energy, molecular dynamics

INTRODUCTION

The drug discovery process relied for many years on the experimental high-throughput screening
of large chemical libraries to identify and optimize new drug lead compounds. In spite of efforts to
improve its efficiency, this remained an expensive and time consuming process (Phatak et al., 2009).
The availability of 3D structures of protein-ligand (PL) complexes has guided lead optimization
for many years, paving the way to a more rational approach. Later on, theoretical developments,
coupled with better computational algorithms and faster computing resources, allowed the routine
use of in silico methods to model PL interaction, estimate binding affinity, and screen chemical
libraries using structure-based approaches. Today, computational chemistry is a well-established
and valuable tool in the drug discovery process (Cavasotto and Orry, 2007; Jorgensen, 2009).
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The central quantity in PL association is the binding free
energy (1Gbinding), a property of enormous relevance in the
pharmaceutical industry, and no effort is too great to accurately
estimate it in a computationally efficient way. Reliable prediction
of receptor-small-molecule affinities in the early-stages of the
drug discovery pipeline would be instrumental to rationally
design new, more potent, and safer drugs, saving precious effort,
time and cost. The accurate calculation of1G depends on several
factors: (i) the energy model of the system; (ii) the accounting for
protein flexibility; (iii) the presence of water molecules within the
binding site and the solvationmodel. The last two challenges have
been thoroughly addressed in recent reviews [(Cavasotto, 2011,
2012b; Spyrakis et al., 2011), and (Spyrakis and Cavasotto, 2015),
respectively]. The last 20 years have seen a remarkable advance
in theoretical and algorithmic developments for the calculation
of binding affinities (Gohlke and Klebe, 2002; Gilson and Zhou,
2007; Mobley and Gilson, 2017), ranging from fast estimates, to
be used in high-throughput docking and scoring (Cross et al.,
2009; Cavasotto, 2012a), to much slower—yet more accurate—
calculations using free energy perturbation or thermodynamic
integration (Mobley and Klimovich, 2012; Hansen and Van
Gunsteren, 2014), well-suited to guide chemical synthesis for
hit-to-lead optimization. Most of these applications have been
rooted inmolecularmechanics (MM) force-fields (FF), but recent
years have seen the development and application of quantum
mechanical (QM) methods to biomacromolecular systems in the
context of drug lead discovery and design. The recent blind
challenges for ligand-pose and binding affinity predictions ran by
the Drug Design Data Resource (D3R) in 2015 (Gathiaka et al.,
2016) and 2016 (Gaieb et al., 2018) highlight the critical relevance
of method development and benchmarking in pose prediction
and affinity ranking of bound ligands.

It should be highlighted that the QM formulation accounts
for all contributions to the energy (including effects missing
in FFs, such as electronic polarization, charge transfer, halogen
bonding, and covalent-bond formation), and thus is, in principle,
theoretically exact; moreover, it offers the advantage of being
general across the chemical space, avoiding system-dependent
parameterizations, so that all elements and interactions can
be considered on equal footing. In fact, QM has been
present since the early days of computer-aided drug design
(cf. the pioneering work of W.G. Richards on quantum
pharmacology; Richards, 1977), and it is routinely used to
derive FF parameters [such as torsional potentials from high
level ab initio data and partial atomic charges by fitting
to electrostatic surface potentials (ESP) (Mucs and Bryce,
2013)], in QSAR methods (De Benedetti and Fanelli, 2014),
to study reaction mechanisms (Blomberg et al., 2014), and
small-molecule strain (Forti et al., 2012; Juárez-Jiménez et al.,
2015).

The goal of this short mini-review is to highlight the
growing importance of quantum chemistry (QC) in the study
of PL interaction, and present the latest applications of
explicit QM calculations to structure-based drug design in
the context of lead identification and optimization [for a
survey on the development rather than application of QM
methods for ligand-binding affinity calculations the reader is

referred to an excellent recent review (Ryde and Söderhjelm,
2016); the review by Korth also offers a comprehensive
coverage on the development of semiempirical QM and density
functional theory (DFT) methods augmented by hydrogen-
bonding and dispersion corrections (Yilmazer and Korth,
2016)].

QUANTUM CHEMICAL APPROACHES IN

PROTEIN-LIGAND DOCKING

In silico molecular docking has been widely used to determine
the binding mode (pose) of small-molecules to a binding site.
However, the true potential of this technique is revealed when
used in a high-throughput fashion to screen up to millions of
molecules, aiming to generate a sub-library rich in potential
binders, thus imposing a structural filter on a given chemical
library to prioritize compounds for synthesis. In high-throughput
docking (HTD), where usually the protein is considered rigid or
with very few degrees of freedom, two stages could be identified:
(i) the prediction of the binding modes of molecules within
the binding site (docking stage); (ii) the calculation of a score
which attempts to predict the likelihood that a molecule will
actually bind to the target. Although docking accuracy depends
on the program used, the number of ligand poses with RMSD
< 2 Å compared to the native structure can reach up to
80% of the studied cases (Warren et al., 2006; Wang et al.,
2016). In some docking programs the binding pose is assessed
by searching the global energy minimum (“docking energy”)
within the potential energy surface (PES) of the protein-molecule
system. Other energetic contributions should be accounted for
(such as the free energy of the unbound molecule, the entropy
change, and desolvation effects) in order to assign a “docking
score” to molecules of a chemical library; scoring functions are
classified as force-field-based, empirical, and knowledge-based
(Kitchen et al., 2004). It should be highlighted that the docking
energy discriminates among poses of the same molecule, while
the docking score is aimed at discriminating among different
molecules of the set [usually docking scores are calculated on the
best pose (of few best poses) of each molecule]. In many docking
programs, however, the docking score is used for both purposes.

In the last 10 years there have been continuous efforts to
enhance scoring functions by incorporating some type of QM-
based calculations, especially deriving system-specific charges,
such as the QM-polarized ligand docking approach (Cho et al.,
2005). Some degree of improvement was observed using these
tailored energy functions in terms of pose prediction. However,
these advances will not be addressed here, and the reader is
referred to a sound review covering these issues (Mucs and Bryce,
2013).

There are fewer works describing PL interactions with explicit
calculations at the QM level. One should highlight the pioneering
work of Raha and Merz (Raha and Merz, 2004, 2005), who
introduced QMScore, a semiempirical QM (SQM) scoring
function based on the Austin Model 1 (AM1) Hamiltonian
(Dewar et al., 1985), complemented with a FF dispersion
term and a Poisson-Boltzmann implicit solvent model, and
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calculated using the linear-scaling divide and conquer method
(Dixon and Merz, 1996). QMScore was able to discriminate
native and decoy poses and captured essential binding affinity
trends in a set of 165 PL complexes; a series of QM/MM
scoring functions were also studied to discriminate native
from decoy poses in six HIV-1 proteases (Fong et al., 2009),
showing in some of them improvements over MM empirical
potentials.

Very recently, the SQM/COSMO energy filter was introduced,
aimed at discriminating native from decoy ligand docking poses
(Pecina et al., 2016). The SQM/COSMO filter is a simplified
version of a general binding free energy function (Raha andMerz,
2005; Lepšík et al., 2013),

1Gbinding = 1Eint + 11Gsolv + 1Gconf − T1S (1)

(where 1Eint is the gas-phase interaction energy, 11Gsolv the
solvation energy change upon complex formation, 1Gconf the
change of conformational free energy, and –T1S the entropy
change upon binding). In this new filter, only the first two
dominant terms in Equation (1) are conserved, thus avoiding
expensive SQM optimizations. 1Eint is calculated at the PM6
level (Stewart, 2007) with the D3H4X correction for dispersion,
hydrogen- and halogen bonding interactions (Rezáč and Hobza,
2011, 2012), and the implicit solvent model COSMO (Klamt and
Schüürmann, 1993) is used to calculate the 11Gconf term (this
filter was named PM6-D3H4X). It was shown that calculations
in a small subsystem (the ligand and neighboring amino acids)
do not deteriorate results compared to the whole system, with
a clear benefit in terms of computational speed. The ability of
this filter to discriminate binding-like poses from decoy poses
was evaluated in four challenging systems [acetyl cholinesterase
(AChE), TNF-α converting enzyme (TACE), aldose reductase
(AR), and HIV-1 protease (HIV PR)], and compared to
seven well-known empirical scoring functions and a physics-
based AMBER/GB. It was shown that the SQM/COSMO filter
performed best by two metrics: the number of false-positive
solutions, and the maximum ligand RMSD of all poses within a
given range of a normalized score. The worst performance was on
the TACE metalloprotein, containing a Zn2+. . . S− interaction.
As for the computational requirements, this filter is ∼100 times
slower than the traditional scoring functions, ∼10 times slower
than the AMBER/GB scoring scheme, but∼100 times faster than
the standard SQM filter calculated using the full Equation (1). In
a follow up contribution (Pecina et al., 2017), the SQM/COSMO
filter was evaluated in the same four systems (AChE, TACE,
AR, HIV PR) using the self-consistent charge density functional
tight-binding (SCC-DFTB) (Elstner et al., 2001), complemented
with the D3H4 corrections for dispersion and hydrogen-bond
interactions (Rezáč and Hobza, 2012). This improved filter
(named DFTB3-D3H4) retained its excellent performance in
AChE, AR and HIV PR, and clearly improved the results on
the TACE system at a reasonably higher computational price. To
further validate the two variants of SQM filters, diverse 17 PL
complexes were studied using the PM6-D3H4X and the DFTB3-
D3H4X (extended in this case to account for halogen bonding),
and compared to four standard docking programs (Ajani et al.,

2017). The QM-based energy functions clearly outperformed
the standard scoring functions in terms of the number of false
positives.

Using MD simulations and QC energy evaluations, Burton
and co-workers evaluated the preferred docking (binding)
mode of the natural salpichrolide A and a synthetic analog
with an aromatic D ring within the estrogen receptor α

(ERα) binding site (Alvarez et al., 2015). The MM/QM-
COSMO (Anisimov and Cavasotto, 2011; Anisimov et al.,
2011) method with the PM6 Hamiltonian was used for the
energy calculations. The MD simulations coupled with energy
evaluations corresponding to different ligand-binding modes
support the preferred inverted orientation of the steroids
in the ERα binding site, in which the aromatic ring D
occupies a similar position to the corresponding A ring of
estradiol.

G protein-coupled receptors (GPCRs) present a challenging
case for docking due to their solvent-exposed and polar binding
sites (Cavasotto and Palomba, 2015). A new docking protocol
was recently presented where a QM/MM + implicit solvation
model was used to rescore docked ligand poses (Kim and
Cho, 2016). The gas energy was calculated at a QM/MM level,
considering the ligand and neighboring residues within 5 Å
as the QM region, and the solvation energy was calculated
using a Poisson-Boltzmann (PB) approach with partial charges
derived from ESP fitting. Evaluating their protocol on 40
GPCR complexes including representatives of classes A, B,
and F, the authors obtained an average RMSD of 0.78 Å,
and a success rate of 40/40 for ligands with RMSD < 2
Å.

Chaskar et al. (2014) developed an on-the-fly QM/MM
approach combining the EADock DSS docking algorithm
(Grosdidier et al., 2007) with calculations based on the
SCC-DFTB model and the CHARMM FF (Brooks et al.,
2009), and evaluated it on a dataset of high-quality x-ray
structures of zinc metalloproteins. Their method significantly
improved the success rate compared to classical docking
programs for orthosteric ligands in terms of ligand pose
RMSD. Recently, a similar approach (Chaskar et al., 2017),
but coupled with the Attracting Cavities docking algorithm
(Zoete et al., 2016), was applied on three different sets:
(i) the Astex Diverse data set of 85 common non-covalent
drug/target complexes; (ii) a zinc metalloprotein data set of
281 complexes: (iii) a heme protein data set of 72 complexes,
where ligand/protein interactions are dominated by covalent
ligand/iron binding. On the first set the performance was
similar to the standard scoring functions, but on the other two,
QM/MM showed an improved performance, especially in the
third set.

CALCULATION OF LIGAND BINDING FREE

ENERGY USING QUANTUM

MECHANICS-BASED METHODS

The binding process of five classical AChE inhibitors was
analyzed using free energy perturbation (FEP) and QM/MM
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MD simulations (Nascimento et al., 2017). The QM calculations
were performed at the AM1 level. The 1Gbinding was obtained
as the sum of two terms, introducing two parameters into
the electrostatic and van der Waals QM/MM interaction terms
in the total energy (Swiderek et al., 2014). The correlation
between the experimental and calculated values was in very
good agreement (R2 value of 0.96 for 100 ps simulation time).
Moreover, there was a qualitative agreement of the order of
inhibition between theoretical and experimental values. The use
of QM to describe these ligands was of great importance due to
their polar nature and the high aromaticity of the enzyme binding
site.

In order to analyze the efficiency of different approaches
to calculate 1Gbinding at the QM/MM level employing MD
simulations, Ryde and Olsson have recently compared the
results of the calculation of the binding of nine small
carboxylate ligands to the octa-acid deep cavity host (Olsson
and Ryde, 2017), via reference-potential FEP calculations
(Rod and Ryde, 2005) and full QM/MM FEP simulations.
The ligand was described using a SQM PM6 Hamiltonian
augmented by the DH+ empirical dispersion and hydrogen-
bond corrections (Korth, 2010). The results showed that
the reference-potential approach is approximately three times
more effective than the direct approach, and the convergence
of the MM→QM/MM perturbations is improved by the
addition of QM/MM MD simulations for a number of
coupling parameter values between the MM and QM/MM
energies.

Grimme and co-workers presented a full QM approach to
evaluate absolute ligand binding free energies as the sum of
three terms: the interaction energy, the solvation contribution,
and the entropic term (Ehrlich et al., 2017). Calculations were
performed on a reduced system consisting of the ligand and
neighboring binding site atoms (∼1,000 atoms in total). For
the interaction energy, two methods were used: the minimal
basis Hartree-Fock HF-3c (Sure and Grimme, 2013) which
includes a D3 dispersion correction (Grimme et al., 2010),
and the composite hybrid PBEh-3c DFT lower computational
cost method (Grimme et al., 2015); entropic contributions
were calculated using a semiempirical DFTB3-D3 hessian (Gaus
et al., 2011; Brandenburg and Grimme, 2014); the solvation
contribution was calculated with the COSMO-RS method
(Klamt, 1995, 2011). Two molecular systems were studied: the
activated serine protease factor X (FXa) with 25 ligands and
the non-receptor tyrosine-protein kinase 2 (TYK2) with 16
ligands. The mean absolute deviation (MAD) of the 1Gbinding

using the HF-3c level was 2.8 and 2.7 kcal/mol, with a Pearson
correlation coefficient 0.47 and 0.51, respectively; while a MAD
of 2.1 kcal/mol was obtained on the FXa system using the
PBEh-3c method, with a Pearson coefficient of 0.53. Although
the results are clearly encouraging from a QC standpoint,
this approach cannot be yet used in an industrial setting,
and errors stemming from the structural optimization level,
conformational sampling and the solvation contribution need
further development.

Frush et al. performed a QM/MM-based evaluation of
1Gbinding on four diverse protein targets of pharmaceutical

relevance: beta-secretase 1 (BACE1), TYK2, heat shock
protein 90 α (HSP90), and protein kinase R (PKR)-like
endoplasmic reticulum kinase (PERK), using 22, 16, 70, and
32 ligands, respectively (Frush et al., 2017). Binding affinities
were calculated using the linear interaction energy (LIE)
protocol (Aqvist et al., 1994), with α and β LIE coefficients
similar to those reported elsewhere (Su et al., 2007), but
modified to fit the experimental affinities of the TYK2
set. Ensemble averages were calculated through QM/MM
calculations on MD trajectories, describing the ligand at the
SQM level using the AM1 Hamiltonian, and the rest of the
system using MM. On each of the four systems, the obtained
MAE was 0.86, 0.42, 0.86, and 1.11 kcal/mol, respectively,
and a correlation of 0.73, 0.71, 0.60, and 0.86, respectively.
The authors concluded that their methodology reached a
reasonable balance between accuracy and computational
cost.

In the context of the D3R grand challenge blind test
competition (Gathiaka et al., 2016), Ryde and co-workers
evaluated four different approaches for predicting the
binding affinities of three sets of ligands of the HSP90
protein (Misini Ignjatovic et al., 2016): (i) induced-fit
docking (Sherman et al., 2006) followed by calculations
with three energy functions; (ii) MM/GBSA calculations
on minimized docked structures; (iii) optimization of
docked structures with QM/MM calculations followed
by QM-based energy evaluation of a subset of ∼1,000
atoms using continuous solvent; (iv) calculations of relative
binding affinities using free-energy simulations. Although
the results were somehow poor, the authors were able to
identify the sources of error: in one case the ligand could
displace water molecules (this could be found only after the
experimental data was released), and for other two, ligands
might exhibit alternative binding modes that those in the
crystal, or conformational changes of the system might
be critical.

CONCLUSIONS AND PERSPECTIVE

In this short review we presented the most recent applications
of QM-based methods to molecular docking and ligand
binding free energy prediction in the context of drug lead
discovery, focusing on cases where QM is explicitly used
to calculate at least some of the free energy contributions.
The last 10 years have seen a remarkable interest in the
development and application of QM-based methods in the
field of drug discovery. This was triggered by the interest
in modeling biomolecular systems in a more accurate way,
and allowed by the unprecedented growth of computational
power. QM methods are theoretically exact, capturing the
underlying physics of the system and accounting for all
contributions to the energy; thus, missing effects in FFs
(such as electronic polarization, covalent-bond formation, and
coupling among terms) are de facto accounted for in QM
formulations, which are thus systematically improvable; being
generally valid across the chemical space, they offer greater
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freedom to deal with non-standard molecules, avoiding the FF
parameterizations.

Overall, the results obtained using QM approaches are
very encouraging, but still different sources of error should
be addressed in order to improve accuracy and predictability
of these methods: (i) they are still system-dependent; thus,
further validation and benchmarking are needed; (ii) in
spite of the progress in computational speed, most QM
applications to drug discovery cannot still be used in industrial
settings, highlighting the need for optimized codes, especially
those using GPUs; (iii) conformational sampling and protein
flexibility: due to computing time, in most approaches aimed
for high-throughput use, only local energy minimization is
performed, or even no minimization at all; this should
be integrated with the possibility of system cutout, and
optimal combinations of these thoroughly validated; (iv)
solvation contribution, especially in charges systems; (v) entropic
considerations, usually omitted in many of this type of
calculations. In spite of these limitations, it is clear that
reliable QM methods for biomolecular systems would be a

tremendous step forward toward predictive binding free energy
calculations.
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