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In this study we describe a [15N] stable isotopic labeling study of amino acids in

Spirodela polyrhiza (common duckweed) grown under three different light and carbon

input conditions which represent unique potential metabolic modes. Plants were

grown with a light cycle, either with supplemental sucrose (mixotrophic) or without

supplemental sucrose (photoautotrophic) and in the dark with supplemental sucrose

(heterotrophic). Labeling patterns, pool sizes (both metabolically active and inactive),

and kinetics/turnover rates were estimated for 17 of the proteinogenic amino acids.

Estimation of these parameters followed several overall trends. First, most amino acids

showed plateaus in labeling patterns of <100% [15N]-labeling, indicating the possibility

of a large proportion of amino acids residing in metabolically inactive metabolite pools.

Second, total pool sizes appear largest in the dark (heterotrophic) condition, whereas

active pool sizes appeared to be largest in the light with sucrose (mixotrophic) growth

condition. In contrast turnover measurements based on pool size were highest overall

in the light with sucrose experiment, with the exception of leucine/isoleucine, lysine, and

arginine, which all showed higher turnover in the dark. K-means clustering analysis also

revealed more rapid turnover in the light treatments with many amino acids clustering in

lower-turnover groups. Emerging insights from other research were also supported, such

as the prevalence of alternate pathways for serine metabolism in non-photosynthetic

cells. These data provide extensive novel information on amino acid pool size and kinetics

in S. polyrhiza and can serve as groundwork for future metabolic studies.

Keywords: stable isotope, nitrogen, Spirodela polyrhiza, duckweed, autotrophic, heterotrophic, mixotrophic,

amino acids

INTRODUCTION

Primary metabolism in plants is responsible for providing the cell with fixed carbon, energy,
reduced cofactors for cellular reactions, and all the building blocks for secondary metabolism
and production of biomass. This portion of metabolism, including glycolysis, the citric acid
cycle, the pentose phosphate pathway, amino acid metabolism, and fatty acid synthesis are
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relatively conserved across species (Peregrín-Alvarez et al., 2009).
Amino acid metabolism is a unique portion of metabolism
as it bridges carbon and nitrogen metabolism and amino
acids are important intermediates in many metabolic processes.
Alanine interacts with glycolysis and the citric acid cycle
via pyruvate (Schulze-Siebert et al., 1984). Asparagine and
its derivatives link through oxaloacetate (Lea and Fowden,
1975). Serine connects through photorespiration and feeds
into one-carbon/folate metabolism (Ros et al., 2014). Arginine
plays a key role in nitrogen storage and in the urea cycle
(Witte, 2011). The aromatic amino acids feed into portions of
secondary metabolism, namely phenylpropanoid metabolism,
and lignin biosynthesis and tryptophan, specifically, provides a
substrate for auxin biosynthesis (Maeda and Dudareva, 2012;
Figure 1).

One of the most fascinating qualities of central metabolism
in the context of plants is that they have the ability to run
primary metabolism as both autotrophs and heterotrophs. The
most basic examples of this are the differences between shoot
(metabolic source) and root (metabolic sink) tissue (Ho, 1988;
Sonnewald and Fernie, 2018) and the shifts in metabolism that
occur with diurnal cycles when photosynthesis cannot occur
(Geiger and Servaites, 1994). These changes have the potential
to reveal how plants manage their resources such as fixed
carbon from CO2 in the air, and nitrogen, minerals, and water
from the soil. Understanding these plant resource allocation
practices can have a potentially large impact on food and plant
production (Sonnewald and Fernie, 2018) as the end products of
central metabolism are the main components of biomass: starch,
lipids/fats, and proteins are also the main nutrients people seek in
food. The ability to manipulate these core metabolites/nutrients
may carry more weight than before as consumer demands
and federal regulations of food products are beginning to shift
toward healthier macronutrient profiles including improved lipid
profiles (Unnevehr and Jagmanaite, 2008).

Light and dark effects on amino acid pools have been
well established for a number of years due to many studies
carried out in the 1960s through the 1980s (Singh, 1998). These
studies have assessed amino acid pool sizes in the context of
whole plants over the day-night cycle. Each of these studies
has shown strong variation in amino acid pool sizes between
day and night. The general trend, however, showed that free
amino acid pool sizes tended to be lower during the dark
night hours (Noguchi and Tamaki, 1962; Bauer et al., 1977).
This contrasts with studies of chlorophyll synthesis mutants
in barley and corn which exhibit accumulation of almost all
of the free amino acids (Maclachlan and Zalik, 1963; Shortess
and Amby, 1979). Additional studies in Zostera marina root
tissue indicated key amino acids, such as glutamate/glutamine
and alanine having lower pool sizes in the dark (Pregnall et al.,
1987). More recent studies on the transcriptional regulation
of key enzymes involved in amino acid biosynthesis support
these earlier light/dark amino acid studies (reviewed in Coruzzi,
2003).

Metabolic models are curated maps representing how the
chemical reactions ofmetabolism are connected. Resent advances
in using annotated genomes to build these networks in a

number of plant species includingArabidopsis thaliana (Poolman
et al., 2009; de Oliveira Dal’Molin et al., 2010a; Arnold and
Nikoloski, 2014), corn (de Oliveira Dal’Molin et al., 2010b),
and developing Brassica napus embryos (Schwender et al., 2003)
have ignited an expansion in the field of metabolic flux and
network analysis which seeks to estimate the quantitative flow
of matter through metabolic reactions. Many of these advances
have been in the realm of stoichiometric methods, such as
flux balance analysis and they have been possible because of
the emerging high-quality metabolic models (Sweetlove and
Ratcliffe, 2011). These methods have been used to elucidate costs
associated with amino acid biosynthesis under different nitrogen
and metabolic growth conditions (Arnold et al., 2015), resource
allocation during seed filling (Schwender et al., 2006), and overall
metabolic patterns in central metabolism (Szecowka et al., 2013).
However, these studies have had the advantage of having been
conducted with species that have well-developed genomes as
well as genome-scale metabolic models. In contrast, there are
many organisms that do not have these well-developed system
models.

The species of interest for this study is the common duckweed
(Spirodela polyrhiza), a small aquatic angiosperm and a member
of the family Lemnaceae which contains five genera: Landolita,
Lemna, Spirodela, Wolffia, and Wolffiella. The Lemnaceae are
monocotyledonous plants that reproduce primarily through
asexual budding (Appendroth et al., 2013). They are also among
the fastest growing angiosperms and are capable of doubling
biomass in 16–24 h depending on the conditions (Peng et al.,
2007). Additionally, they are able to accumulate high starch
content of up to 75% of the dry weight (Reid and Bieleski,
1970; Xu et al., 2012b) and high-protein content. This ability
to accumulate a large percentage of biomass as starch has led
to some commercial interest in duckweed species as biofuel
feedstock and it has been shown that it is possible to increase this
starch content under nutrient stresses (Reid and Bieleski, 1970;
Cui and Cheng, 2015) and also under certain light regimens (Yin
et al., 2015). Duckweed species also grow readily on wastewater.
A particular example of growth of three isolates on swine lagoon
water (Bergmann et al., 2000; Cheng et al., 2002; Xu et al.,
2011) highlights the possibility of mixing duckweed production
into existing agricultural pipelines. Additional commercial
interests for duckweeds include bioremediation (Oron, 1994)
and recombinant protein production (Xu et al., 2012a). Because
of the utility of duckweed for many uses it is going to
be increasingly important to have an understanding of the
full extent of metabolism, including metabolic rates/fluxes,
static pool sizes, and information on how these respond to
different growth and metabolic conditions such as differing light
treatments.

In this study, we present a metabolic [15N]-labeling study of
S. polyrhiza grown under three metabolic growth conditions:
growth in light cycle on medium with supplemental sucrose
(mixotrophic condition), growth in light cycle on medium
without supplemental sucrose (photoautotrophic condition),
growth in dark on medium with supplemental sucrose
(heterotrophic condition). This growth set-up allows us to
accomplish several objectives. First, our aim was to profile
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FIGURE 1 | A simple schematic of central metabolism in the context of carbon flow showing the points where the metabolism of various amino acids intersect.

nitrogen metabolism and flow through amino acids and
[15N]-labeling patterns over time to determine differences
in the metabolic patterns between growth conditions.
The second, aim was to estimate pool size and turnover
information for amino acids in each condition and identify
changes between growth conditions. The third aim was to
determine if broad patterns in nitrogen flow exist between
growth treatments that can be captured through clustering
analysis. S. polyrhiza and other duckweeds have a history of
use in stable isotopic labeling studies (Rhodes et al., 1981;
Baldi et al., 1991; Rapparini et al., 1999) and can readily
incorporate label from liquid growth medium. The [15N]-
labeling study of S. polyrhiza facilitated the ability to measure
amino acid pool sizes, turnover numbers, and adjusted pool
sizes and to compare between experimental conditions.
Here we lay the groundwork for further in-depth metabolic
studies as well as reveal insights into central metabolism in
duckweed.

MATERIALS AND METHODS

S. polyrhiza Material and Long-Term
Culture Maintenance
All duckweed cultures used in this work were clonally propagated
Spirodela polyrhiza [ID number 7498 from the Rutgers
Duckweed Stock Cooperative (http://www.ruduckweed.
org/)] maintained on Schenk and Hildebrandt (SH)
medium prepared from SH Basal Salt Mixture (Sigma-
Aldrich St. Louis, MO) with 10% w/v sucrose and 1% agar
with the pH adjusted to 5.8 using potassium hydroxide.
Cultures were kept at 15◦C, with a 15 h light cycle under
white light from an LED array with light intensity of 17
µmol/m2•s.

Experimental Growth Conditions
For experiments conducted in the light, actively growing
duckweed cultures were maintained on sterile medium prepared
from SH Basal Salt Mixture (Sigma-Aldrich St. Louis, MO)
with the pH adjusted to 5.8 using potassium hydroxide, either
with or without 10% w/v sucrose depending on experimental
conditions. Cultures were maintained in a controlled growth
environment for 4–6 weeks, under a 16/8 day/night cycle of
cool white florescent light at an intensity of 67 µmol/m2•s
at 22◦C. Light was measured approximately at the level of
the cultures. Cultures were determined to be saturated when
the growth was covering the entire surface with little to no
medium visible when viewed from above. Upon saturation
the culture was transferred to labeled medium as described
below.

For experiments conducted in the dark, actively growing
duckweed cultures were maintained on sterile SH medium
prepared from SH Basal Salt Mixture at pH 5.8 (Sigma-Aldrich
St. Louis, MO) supplemented with 3.01 × 10−3 mM kinetin
as used for Lemna gibba (Slovin and Tobin, 1982) in a dark
box at room temperature under 2min of red light every 8 h (10
µmol/m2•s) at room temperature. Cultures were only removed
from the dark box under green light. When the cultures reached
saturated growth, the culture was transferred to labeled medium
for sampling as described below.

[15N]-Labeling Experiment Medium
Preparation
[15N]-labeled modified SH with a) no added sucrose; b) 10% w/v
sucrose; c) 10% w/v sucrose and 3.01 × 10−3 mM kinetin, was
prepared according to the specifications in Table S1. Nitrogenwas
provided as 80.7% K[15N]O3 and 19.3% [15N]H4 [15N]O3. The
pH of the solution was adjusted to 5.8 with potassium hydroxide
and autoclaved. The necessary iron components were added by
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syringe filter sterilization after the medium cooled to minimize
precipitation of medium components.

Duckweed Transfer and Sampling
Procedure
Experiments With a Light Cycle
Duckweed from actively growing cultures ± sucrose were
decanted from the culture under aseptic conditions and washed
with sterile distilled deionized water. Duckweed fronds were
then sorted into five groups and transferred into either five
2 L Pyrex bottles with 300mL of medium, or five 500mL
Pyrex bottles with 100mL of medium. Once duckweeds were
transferred, initial samples were taken from the extra plant
material not needed for the labeling and transferred to pre-
weighed 1.5mL microcentrifuge tubes and snap frozen in liquid
nitrogen. Samples were taken at the following time points:
0, 1, 2, 4, 8, 16, 32, 64, and 128 h. Additional samples were
also taken at 15 and 30min timepoints from cultures grown
without added sucrose. Each sample consisted of at least three
duckweed fronds. Snap frozen samples were stored at −80◦C
until extraction and LC-MS analysis. Two experiments were
carried out for the light without sucrose conditions, which were
started at different times in the day. One of these, started later in
the day, was used for pool size calculation, and the other, started
near the beginning of the light cycle in line with the other light
experiment, was used to estimate label enrichment and estimate
the kinetic model. This growth contained four replicates rather
than five.

Experiments in the Dark
The transfer and sampling procedures took place the same as for
light cycle experiments with the following exceptions. Sampling
was carried out in the dark under green light. Samples were taken
at the following time points: 0, 15, and 30min, and 1, 2, 4, 8, 16,
32, 64, and 128 h.

Microscopy
Duckweed plants were grown in either light or dark conditions
for at least 2 weeks. When cultures reached saturation individual
duckweed fronds were removed and thin layers of leaf tissue
were scraped off with a clean razor and put onto a microscope
slide. Brightfield and fluorescence images were taken at 1,000x
magnification with Leitz Laborlux D (Stuttgart, Germany)
fluorescence microscope. Fluorescence images were acquired
with an N2.1 filter to visualize chlorophyll [excitation wavelength
range: 515–560 nm (green); emission wavelength: >590 nm
(red)]. Image J was used to make montages, overlays, and to add
scale bars (Schindelin et al., 2012, 2015).

Sample Extraction
Frozen sample weights were taken. Samples were kept on dry ice
and up to 1.5 mL/mg sample fresh weight cold 70% isopropanol
was added to each sample. Samples were then homogenized
in a Geno/grinder tissue homogenizer at 1,500 rpm for 5min.
Sample homogenate was then centrifuged at room temperature
for at least 3min and supernatant was decanted into a fresh

microcentrifuge tube and stored at −80◦C until mass spectral
analysis.

Dry Residue Analysis
100 or 200 µL of sample extract was added to a pre-weighed
1.5mL microcentrifuge tube and the samples were then dried
under vacuum and the weight of the residue was determined.
Samples were reconstituted to a concentration of 2mg sample
extract/mL in 70% isopropanol and stored at −80◦C until mass
spectral analysis.

LC-MS Analysis
LC Sample Preparation
Extracted samples were removed from storage and centrifuged
at room temperature for at least 2min to settle particulate
matter. Samples were then loaded into LC-MS autosampler vials.
Fresh plant extracts were diluted 1:10 in 70% isopropanol. Dried
extract samples were diluted to a concentration of 1 µg/µL in
70% isopropanol in the light experiment without supplemental
sucrose and the dark experiment and to a concentration of 0.9
µg/µL in the light with sucrose experiment. A commercially
available [15N]/[13C]-labeled cell free mixed amino acid standard
(Sigma-Aldrich St. Louis, MO) containing all proteinogenic
amino acids was added to dry residue samples for a final
concentration of 0.02mM. All measurements were carried out
on five biological replicates except in the light with sucrose
experiment, which had only three replicates.

LC-MS Analysis
For each sample, 1 µL was injected onto a SeQuant ZIC-cHILIC
column, 3µmparticle size, 100× 2.1mm using an Ultimate 3000
UHPLC system coupled to a Q-Exactive quadrupole-Orbitrap
hybrid mass spectrometer (Thermo Fisher Scientific, Waltham,
MA) with a heated electrospray ionization source. A 20min
gradient at a flow rate of 0.4 mL/min with mobile phase A (0.1%
formic acid in water) and B (0.1% formic acid in acetonitrile)
with the following gradient: −2–0 min: 90% B, 0 min: 85%
B, 18 min: 40% B, 18–20 min: 40% B. MS analysis used the
following settings: full scan mode in positive ionization with
a scan range of 50–750 m/z, a resolution of 70,000, a target
automatic gain control of 1 × 106, and a maximum fill time
of 200ms. Data were collected using Thermo Xcalibur software
version 4.0. Amino acid identity was verified through comparison
of retention times and accurate mass to a commercially
available mixed amino acid standard. The amino acid isomers
of leucine and isoleucine are quantified together because of
the inability to separate these with the chromatography system
employed.

Data Analysis
Exact Mass Calculation and Retention Time

Determination
Exact masses for both labeled and unlabeled amino acids were
calculated using the University of Wisconsin—Madison
Biological Magnetic Resonance Data Bank exact mass
calculator (http://www.bmrb.wisc.edu/metabolomics/mol_
mass.php). Retention times and exact mass measurements of
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all amino acids were confirmed using amino acid standard H
(Sigma-Aldrich, St. Louis, MO).

MS File Conversion and Data Extraction
Data files were converted from .RAW files to .mzXML files
using the “msconvert” function of Proteowizard (Kessner et al.,
2008) prior to input into R. Data from each amino acid was
extracted through use of a pair of scripts developed in the
Hegeman lab currently available on GitHub (https://github.com/
orgs/HegemanLab files “metabolite turnover” and “clustering”).
Briefly, we utilized the ProteinTurnover (Fan et al., 2016) and
the XCMS R packages (Smith et al., 2006; Tautenhahn et al.,
2008; Benton et al., 2010) to extract amino acid extracted ion
chromatograms (EICs) for each amino acid isotopomer. These
data were then used to generate labeling patterns tracking the
decay of the unlabeled isotopomer (M0).

Data Modeling
Labeling patterns forM0 output by the clustering script were then
used to model the labeling pattern of each amino acid via the
“nls” function in R. The broom package was used to clean the
data for export. The model implemented was a variation of the
model by Yuan et al. (2006) for modeling a first-order decay of
the unlabeled (M0) isotopomer:

M0 = (1− c) e−kt
+ c

Where t is the labeling time in hours, k is the turnover
constant, and c is a constant that defines the plateau of the
labeling curve. Models were generated using time points 0–
16 h except for the following cases that used 0–32 h: lysine
in the dark grown experiment and 0–64 h: tryptophan in
the light grown experiment without supplemental sucrose and
alanine, arginine, threonine, and tryptophan in the dark grown
experiment. Histidine was omitted from all modeling and valine
was omitted from the light without sucrose and dark with sucrose
experiments due to low data quality. All models were estimated
using five biological replicates except in the light without sucrose
experiment, which had only three replicates.

Clustering
K-means clustering was performed using R, time points between
0 and 32 h with k selected to maximize the between-group
variation and to minimize the within group variation. The
Hartigan-Wong algorithm was used to form clusters based on
Euclidean distance. Further clustering was carried out based on
the pool sizes adjusted for turnover. The number of clusters used
for these analyses were the same as used for the first analysis
except in the case of the light with sucrose experiment where four
clusters rather than 3 were used.

Estimation of Pool Size, Pool Size Corrected for

Turnover, and Active Pool Size
Pool sizes in all experiments were estimated from the initial time
point to provide insight into the amount of available amino acid
in each condition. Pool sizes were estimated relative to the labeled
internal standard added to dry residue samples. All numbers for
pool size carry the units µmol/mg sample extract residue.

The k-values from each model was used to estimate a flux
value, denoted as pool size adjusted for turnover, for each amino
acid as follows:

fAminoAcid = kAminoAcid × PAminoAcid

Where fAminoAcid is the flux estimate through an amino acid,
kAminoAcid is the turnover number modeled for an amino acid,
and PAminoAcid is the initial pool size estimated for an amino
acid. All flux dimension numbers or turnover corrected pool sizes
carry units of µmol/mg sample extract residue/hour.

Pool sizes were corrected to approximate an “active pool” as
observed in illuminated Arabidopsis rosettes (Szecowka et al.,
2013) and maize (Arrivault et al., 2016). The c component in the
models were taken as an approximation of the proportion of the
pool not active in metabolism and the pool size estimates were
corrected as follows:

PActive = PInitial − (PInitial − c)

Where PActive is the estimated corrected pool size, PInitial is the
originally estimated pool size, and c is the modeled plateau for
each amino acid.

Pairwise Statistical Comparisons
Estimates for pool size and turnover adjusted pool size were
compared across the three pairs of experimental conditions: light
with sucrose vs. light without sucrose, light with sucrose vs. dark
with sucrose, and light without sucrose and dark with sucrose.
Comparisons were made via two-tailed student’s t-test assuming
unequal variance except where a F-test indicated equal sample
variances in which case an equal variance test was applied.

RESULTS

[15N]-Labeling of S. polyrhiza Amino Acids
in Phototrophic, Heterotrophic, and
Mixotrophic Growth Conditions
In order to confirm the physiological effects of the light
conditions duckweed grown for at least 2 weeks in light or dark
conditions were sectioned and imaged under both brightfield
and red fluorescence (Figure 2). Light grown samples exhibited
normal chlorophyll autofluorescence and as expected dark
grown samples had no detectable chlorophyll autofluorescence.
[15N]-labeling was conducted once the growth conditions were
confirmed as phototrophic, heterotrophic, and mixotrophic
based on chlorophyll content. Fifteen amino acids were
identified by utilizing LC-MS and retention time windows; their
isotopomer molecular ion masses are in Table S2.

[15N]-Label Incorporation Models for
Individual Amino Acids
Models for the incorporation rate of [15N]-label into each
individual amino acid were generated. Figure 3 contains a visual
representation of each model and the values for the parameters
of the models are listed in Table 1. General labeling patterns
can be seen for all amino acids as well as between each
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FIGURE 2 | (A) Brightfield microscopy of light grown duckweed at 100x, (B) Red fluorescence image of light grown duckweed, (C) Brightfield image of dark grown

duckweed, (D) Red fluorescence image of dark grown duckweed.

experimental condition. Most amino acids exhibit a plateau
or leveling-off phase around the 16 h time point with some
amino acids, most notably glutamate, taking longer to reach that
plateau. Dark grown samples generally exhibited slower turnover
and higher plateau values with several amino acids, including
alanine, asparagine, serine, and threonine not appearing to
reach fully discernable plateau values within the timeframe
measured Overall, the trends observed by modeling the rate of
[15N]-incorporation indicate there are both dramatic and subtle
trends that are seen when duckweed is grown in phototrophic,
heterotrophic, and mixotrophic conditions.

Estimation of Amino Acid Pool Size and
Pool Size Adjusted for Turnover
Pool sizes in µmol/mg sample extract residue were estimated
by comparison to an internal standard (Table S3). General
patterns were observed through the experiments with the dark
with sucrose condition exhibiting the largest pool sizes in
almost every case where an amino acid was observed in the
experiment (Figure 4A). However, the following amino acids
are the exception: aspartic acid, glutamate, glycine, asparagine,

and glutamine where the light with sucrose treatment exhibited
larger pool sizes than other conditions. The light without sucrose
treatment exhibited either the smallest or an intermediate pool
size in every amino acid. Pool sizes can be explained to be either
active or inactive. Active metabolite pools are those participating
in metabolic reactions, while inactive pools are not and may
be sequestered in a vacuole or otherwise unable to participate
in metabolic reactions (Szecowka et al., 2013). Therefore, in
addition to total pool sizes a total active pool size was estimated
for each amino acid. For our purposes the active pool size
was estimated by correcting the estimated pool size with the
plateau value (c) of each model. Interestingly, following this
correction the light with sucrose condition carried the largest
pool size for all amino acids with the exception of lysine and
arginine.

The turnover rates (estimated k-values) were multiplied by
the initial pool size estimates for each amino acid to give a
dimension of flux (µmol compound/unit time). This quantity
is not a true flux value as it will encompass all enzymes and
reactions involved in nitrogen transfer through each amino acid.
The utility of the estimation is to allow direct comparison of

Frontiers in Chemistry | www.frontiersin.org 6 May 2018 | Volume 6 | Article 191

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Evans et al. Spirodela Metabolic Patterns via [15N]-Labeling

FIGURE 3 | A graph showing the average ratio of the unlabeled isotopomer to the total isotopic envelope for each amino acid in each experiment. The lines represent

models generated in R. Error bars represent ± 1 standard error.

turnover rates between amino acids that may have dramatically
different pool sizes. Turnover rates adjusted for pool size in this
way in contrast to regular pool size estimates were higher in
the light with sucrose experiments in almost all cases (Table S3
and Figure 4B). The exceptions were isoleucine/leucine, lysine,
and arginine which both showed larger turnover values in the
dark. Similar to the pool size estimation the light without
sucrose treatment exhibited either the smallest or an intermediate
pool size in every case. However, the light with sucrose and
light without sucrose measurements for asparagine were nearly
identical.

Turnover rates were also corrected using the active pool size
and the results are summarized in Table S3 and Figure 4B.
These results largely mirror the uncorrected total pool sizes
with a few interesting differences. Lysine showed a compressing
of the differences between estimates with the dark grown pool

now slightly larger than the light with sucrose pool. In several
cases the differences observed in pool sizes between the dark
grown and light were reduced to the point it became visually
indistinguishable. Most notably in aspartic acid, glutamate,
proline, and asparagine. In addition, there was a drastic reduction
in the alanine turnover corrected for pool size in the dark grown
experiment.

Pairwise Statistical Comparison of Pool
Size and Turnover Adjusted for Pool Size
Pairwise statistical comparisons were made between each
sample pair (Table S4). Many experimental pairs, despite
showing appreciable graphical difference did not show statistical
significance at least to the p < 0.05 level. This may be due to
large sample variances in many of the pool size measurements.
The most significant differences in pool size were present
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TABLE 1 | The modeled values for turnover number (k) and the [15N] labeling

plateau value c for amino acids measured in S. polyrhiza.

Amino acid Experiment k-value Standard

error (k)

c-value Standard

error (c)

Alanine (A) Light with sucrose 0.85 0.05 0.13 0.01

Light without sucrose 0.47 0.03 0.16 0.02

Dark with sucrose 0.03 0.01 0.15 0.09

Arginine (R) Light with sucrose 1.16 0.11 0.24 0.01

Light without sucrose 0.43 0.03 0.11 0.02

Dark with sucrose 0.25 0.03 0.30 0.03

Asparagine (N) Light with sucrose 0.70 0.05 0.11 0.02

Light without sucrose 0.39 0.02 0.13 0.01

Dark with sucrose 0.32 0.02 0.29 0.01

Aspartic acid

(D)

Light with sucrose 0.38 0.03 0.32 0.02

Light without sucrose 0.11 0.02 (0.15) 0.10

Dark with sucrose 0.12 0.04 0.59 0.08

Glutamic acid

(E)

Light with sucrose 0.78 0.05 0.17 0.01

Light without sucrose 0.32 0.10 0.44 0.06

Dark with sucrose – – – –

Glutamine (Q) Light with sucrose 0.44 0.027 0.41 0.01

Light without sucrose 0.16 0.02 0.54 0.03

Dark with sucrose 0.19 0.05 0.74 0.03

Glycine (G) Light with sucrose 0.09 0.02 0.22 0.08

Light without sucrose 0.17 0.09 (0.20) 0.18

Dark with sucrose 0.04 0.02 0.80 0.06

Histidine (H) Light with sucrose 0.44 0.03 0.41 0.01

Light without sucrose – – – –

Dark with sucrose – – – –

Isoleucine

(I)/Leucine (L)

Light with sucrose 0.35 0.02 0.24 0.01

Light without sucrose 0.26 0.07 0.28 0.08

Dark with sucrose 0.04 0.002 0.07 0.02

Lysine (K) Light with sucrose 0.1 0.01 0.34 0.05

Light without sucrose 0.25 0.05 0.48 0.04

Dark with sucrose 0.09 0.05 0.77 0.07

Phenylalanine

(F)

Light with sucrose 0.39 0.03 0.33 0.01

Light without sucrose 0.82 0.05 0.03 0.02

Dark with sucrose 1.51 0.11 0.25 0.01

Proline (P) Light with sucrose 1.17 0.07 0.03 0.01

Light without sucrose 0.32 0.15 0.27 0.12

Dark with sucrose 0.02 0.004 0.40 0.07

Serine (S) Light with sucrose 0.32 0.04 0.17 0.04

Light without sucrose 0.36 0.03 0.15 0.03

Dark with sucrose (0.03) 0.02 (0.45) 0.24

Threonine (T) Light with sucrose 0.84 0.04 0.18 0.01

Light without sucrose 0.14 0.03 0.25 0.08

Dark with sucrose 0.06 0.005 0.54 0.03

Tryptophan (W) Light with sucrose 0.25 0.02 0.30 0.02

Light without sucrose 0.06 0.03 0.30 0.13

Dark with sucrose 0.04 0.01 0.46 0.04

Tyrosine (Y) Light with sucrose 0.16 0.021 0.37 0.04

Light without sucrose – – – –

Dark with sucrose – – – –

Valine (V) Light with sucrose 0.36 0.02 0.37 0.01

Light without sucrose – – – –

Dark with sucrose – – – –

All values had a statistical goodness of fit of p < 0.01 except where otherwise noted in

parentheses.

in alanine between the two light experiments and the dark
grown experiment as well as asparagine between the light with
sucrose and the dark grown experiment. The results in alanine
are preserved in the active pool estimates, while the results
for asparagine are not. Additionally, differences in the pool
size for proline between the two light experiments emerge
when the pool sizes are corrected for a possible active pool.
The turnover rates corrected for pool size show the most
significant difference in phenylalanine and asparagine between
the light without sucrose and the dark grown experiment and
in serine between the two light experiments. When an active
pool is considered, the differences in phenylalanine become less
significant while the differences in asparagine and serine remain
significant.

Amino Acids Expressed Labeling Patterns
That Could be Captured by Clustering
Analysis. Cluster Composition Was Not
Conserved When k-Means Clustering Was
Applied to Turnover Rates Adjusted for
Pool Sizes
Clustering analysis was performed using a k-means clustering
method to assess the similarities that may be present in the
label incorporation for amino acids (Figure 5). The appropriate
number of clusters (kclusters) was determined empirically by
minimizing the within group sum-of-squares variation and
maximizing the between group sum-of-squares variation. A
kclusters of 3 or 4 was found to be most appropriate depending
on the experiment. Broad patterns were seen repeated between
treatments using this method. There were distinct patterns
in labeling patterns that could be seen between the growth
treatments. Glutamine consistently showed the fastest turnover
in all experiments, closely followed by glutamate and aspartate.
Both light treatments had very similar rapidly turning over
clusters consisting of glutamine, glutamate, aspartate, serine,
and alanine. However, this grouping is broken up in the
dark treatment where glutamine maintained a rapid turnover
closely followed by glutamate and aspartate while a number
of amino acids involved in carbon and nitrogen central
metabolism, including asparagine, serine, and alanine displayed
lower turnover and clustered separately from glutamate and
aspartate. Each cluster was modeled by a non-linear regression
(Table 2).

K-means clustering was also performed using the estimated
turnover rates adjusted for pool size for each amino acid
individually. Exponential decay models for each amino acid
and the clusters generated when considering turnover adjusted
for pool size mapped onto a representation of amino acid
nitrogen flow are shown in Table 2 and Figure 6, respectively.
Several amino acids that seemed to be relatively “core” in
the previous analysis (glutamine, aspartate, glutamate, and
asparagine) retained their rapid turnover. Some amino acids
that grouped into apparently rapid turnover segments in the
first two analyses, notably glycine and arginine in the light
experiments, were shown to have much lower numbers when
pool sizes were taken into consideration. This demonstrates that
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FIGURE 4 | Circle area plots showing a visual representation of relative amino acid pool sizes (µmole) and turnover correct for pool size (µmole/hr) in each

experiment. Colors indicate the experiment as shown. Circle areas are proportional to the magnitude of the estimate indicated. (A) Relative amino acid pool size and

active pool size estimates (B) Results for turnover normalized to pool size for total and active portions.

modeling based on the pattern of labeling can be a useful way
to categorize metabolites into broad metabolic groups without
needing to individually model each amino acid in turn. However,
this approach may convolute some details and may also be
affected to a certain extent by inactive pools or plateaus in the
labeling pattern and might also not reflect a full picture of the
quantity of material moving through a given metabolite.

DISCUSSION

We used stable isotope labeling to model the kinetics of amino
acids grown under three different light and/or carbon source
conditions. Two conditions used a light cycle, either with or
without 10% w/v sucrose in the growth media and one condition
grown in the dark with 10% w/v sucrose in the growth medium.
Growing an angiosperm plant under these three different
conditions adds a considerable amount to the existing body

of research involving stable isotope labeling in planta (Freund
and Hegeman, 2017). Previous studies involving the labeling of
whole plants generally have involved plants grown exclusively
in heterotrophic conditions (Kikuchi et al., 2004; Szecowka
et al., 2013). Photoautotrophic, mixotrophic, and heterotrophic
growth conditions have all been investigated in the microalgae
Chlamydomonas reinhardtii (Boyle and Morgan, 2009), however,
there is a limited number of studies investigating whole plants
grown and labeled under these three conditions. In particular
we lay the groundwork for future intensive labeling studies
for S. polyrhiza by demonstrating experimental and analytical
frameworks that can be adapted to [13C]-labeling through the use
of [13C]O2 or [

13C]-labeled sugars.
The three growth conditions used in this study reflect

fundamentally different metabolic modes, which in turn has
an affect on the growth of the plant. This difference in plant
status can be seen at both macroscopic and microscopic levels
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FIGURE 5 | Average labeling patterns following the decay of the unlabeled isotopomer over time for each experiment. The lines are the models generated by R and

the error bars represent ±1 SE. Maps adjacent to each set of graphs represent the flow of nitrogen among amino acids. The colored bubbles correspond to the

clusters in the above figure highlighting similar isotopic exchange rates for the members of a cluster.

(Figure 2) as plants grown in light show normal coloration
and chlorophyll autofluorescence while those grown in the
dark show a bleached color and lack any sign of chlorophyll
autofluorescence while still retaining plastid structures.

Labeling kinetics of each individual amino acid also shows
interesting patterns. After analyzing and inspecting the data we
chose to model the decay of the unlabeled isotopomer following
Yuan et al. (2006) with an added term to account for the visible
plateau reached by almost all of the amino acids by about
16 h. Each of these models, with few exceptions, has a very
high goodness of fit level (p < 0.001) despite somewhat large
standard errors in some cases. Though as noted in a similar
analysis carried out by Szecowka et al. (2013) this may be due
to an averaging effect across compartments, which could not
be resolved in our current analysis. As described above models
were generated using the time 0–16 h points for almost all
amino acids. However, for certain amino acids, most notably
many in the dark grown experiment the apparent plateau was
not fully realized until closer to the 64 h time point, if at
all.

TABLE 2 | A summary of the exponential decay models for each cluster.

Experiment Cluster k-value p (k) SE c (constant) SE p (c)

Light 1 1.002 *** 0.05 0.179 0.01 ***

With 2 0.437 *** 0.02 0.380 0.01 ***

Sucrose 3 0.205 *** 0.03 0.530 0.04 ***

1 0.472 *** 0.04 0.110 0.03 ***

Light 2 0.128 *** 0.05 0.000 0.25 –

Without 3 0.360 *** 0.10 0.529 0.06 ***

Sucrose 4 0.149 – 0.08 0.547 0.15 ***

1 1.659 *** 0.12 0.278 0.02 ***

Dark 2 0.286 *** 0.03 0.302 0.03 ***

With 3 0.061 ** 0.03 0.514 0.19 ***

Sucrose 4 0.008 – 0.08 0.000 9.26 –

Statistical significance is indicated by asterisks with the following levels represented:

***p < 0.005, **p < 0.01, and −p > 0.05.

This failure to reach a plateau can be seen in Figure 7 for
glutamine. Both light experiments have models and labeling
patterns that follow each other closely. However, the dark grown
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FIGURE 6 | Results of k-means clustering for estimates of turnover

normalized to active pool size. Colors of each bubble represent the same

cluster positions (1–4) and relative exchange rates as in Figure 5.

experiment begins to deviate from the model after the 16 h time
point. This pattern continues for several amino acids in the dark
grown condition, including: aspartate, glutamate, phenylalanine,
isoleucine/leucine, lysine, proline, and serine. There are several
possibilities that could account for this deviation from the
initial models seen in the dark grown samples. Rather than
a plateau/inactive pool, it would be simplest to model a two-
phase labeling. This model would consist of an initial (fast)
labeling, similar to our initial estimate followed by a slower
second phase as (1) the larger-than-estimated active pool is
completely washed out or (2) certain sub-pools/compartments
with lower turnover begin to take up label. In addition,
some irregularities can be observed in the labeling patterns,
again in Figure 7, and as discussed later regarding metabolic
clusters, where glutamine appears to label at a faster rate than
glutamate, which seems novel as glutamate is the first entry
point for nitrogen during uptake. It is uncertain what causes
this labeling pattern, but it is possible that glutamine, which
possesses multiple nitrogen atoms, may exhibit two different
turnover coefficients, causing one nitrogen atom, most likely
in the side chain, to label much more slowly than the alpha
nitrogen.

We also used comparison of the time zero samples to a labeled
standard to achieve estimates of pool size for most of the amino
acids measured. No similar estimates have been carried out in
any duckweed species to date to our knowledge making this a
unique and useful data set. Several clear patterns emerged in these
pool size estimates including the dark experiment showing larger
pool sizes in alanine, phenylalanine, isoleucine/leucine, lysine,
arginine, serine, threonine, and tryptophan. This result is notable,

FIGURE 7 | Individual models for glutamate and glutamine for each

experiment.

as many of these amino acids have been shown to accumulate
in chlorophyll-deficient mutants during recovery of a normal
pigment phenotype (Maclachlan and Zalik, 1963; Shortess and
Amby, 1979). That we see the same patterns between dark
grown and light grown with sucrose as was previously seen with
some chlorophyll mutants indicates that the differences we are
observing likely do come from a difference in autotrophic vs.
heterotrophic status of the cell.

In addition to estimating total pool size, we also estimated
an active pool size based on the observed plateaus in each
labeling pattern. These active pools were defined as the total pool
size minus a part of the pool size proportional to the modeled
plateau. When this estimation was taken into account many of
the amino acids displaying larger pool sizes in the dark no longer
displayed larger pool sizes with respect to the light with sucrose
treatment, with the exception of lysine, arginine, and serine. This
result shows larger inactive pools, overall, in the dark grown
experiments. This is significant particularly in asparagine, which
is known to be a particularly prevalent nitrogen storage molecule
(Lea et al., 2007), and one that is sensitive to the carbon status of
the plant as well as arginine, which is generally a primary nitrogen
storage molecule in the roots (Winter et al., 2015). As arginine
pool sizes seem largest in the dark this could be an indication
that metabolism in dark grown duckweed is functioning more
like sink tissues such as roots.

Turnover rates were normalized to pool size by multiplying
the rate by pool size estimates for each amino acid. By making
this adjustment we are able to estimate a quantity with the
dimensions of a flux parameter (moles/unit time) that can
help better inform the results that we observed in the labeling
patterns. While the turnover rates for many amino acids
were noticeably slower in the dark, we can see that relatively
larger pool sizes of these samples result in more moderate
differences between treatments when considering the pool size
normalized turnover rate values. This is consistent with the idea
that those plants have a much more robust nutrient supply
having carbon available through both photosynthetic carbon
fixation and through supplemental sucrose in the medium. The
notable exceptions to this are arginine and lysine which both
show higher pool size adjusted turnover values in the dark.
These pool size adjusted turnover rates were also calculated
for the estimated active pools and yielded similar results. The
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one exception is the large decrease in pool size normalized
turnover rate when estimated with the active pool size in
alanine.

One of the most biologically interesting results is that of
serine and the high level of statistical significance found for
the difference between pool size adjusted turnover rate in the
light experiments with and without sucrose and also between
the light without sucrose and dark grown experiments. This
is an even more notable result because of a recent interest
in serine metabolism. The main source of serine biosynthesis
in most conditions is the glycolate pathway (Douce et al.,
2001; Ros et al., 2014). This pathway is associated with
photorespiration and is thus not expected to be a contributor
to serine turnover in conditions where photorespiration is low
or nonexistent, such as in a root or an etiolated plant as in
the dark grown condition potentially leading to lower turnover
overall.

Before attempting individual modeling of amino acids we
employed clustering analysis to identify broad patterns in amino
acid labeling without the need to calculate individual models.
This met with some success. However, when investigating a
metabolic system, the most important measure is going to
be the pathway flux. While we have not estimated a true
flux through each amino acid for reasons outlined above
pool size adjusted turnover rates give us a measurement with
the dimensions of flux. When similar clustering analysis is
carried out on these normalized rate values general patterns
are still observed. However, many clusters now contain only
one metabolite giving far less meaningful results. Even with this
many of the patterns that are seen in the turnover adjusted
for pool size, especially areas of relatively rapid turnover
can still be seen. Though, there are some notable changes
such as asparagine showing considerably higher turnover than
was estimated in the light with sucrose condition through
labeling pattern alone. Thus, while useful, due to the fact that
they cannot fully capture fluxes and other more quantitative
information a clustering-type analysis may be more useful
when attempting to investigate metabolic dynamics where full
identification and quantification of the involved metabolites is
not possible, such as with portions of secondary or specialized
metabolism.

CONCLUSION

In this study stable isotope labeling was used to investigate
labeling patterns, pool sizes, and turnover in S. polyrhiza
under three growth conditions corresponding, roughly to
full photoautotrophic growth, mixotrophic growth, and full
heterotrophic growth and demonstrated growth of S. polyrhiza in
the dark for the first time as well as providing the first amino acid
pool size estimates for S. polyrhiza. These data established the
clear labeling plateau and likely presence of metabolically inactive
or less active pools in experiments with a light cycle. They also
showed that correcting for active pool sizes could, in some cases,
have a large effect on comparisons between experiments. We
showed that pool sizes are not sufficient to make full metabolic

comparisons and that adding a flux dimension, whether via full
metabolic flux analysis or the use of turnover number corrected
for pool size, can highlight differences that would be otherwise
missed in simply considering pool size or turnover number
alone.

Labeling patterns in each condition highlighted some
interesting known (asparagine pool sizes in the dark)
and emerging (serine turnover adjusted pool sizes) trends,
particularly, the results regarding serine support the function
of photorespiratory pathways as the most efficient/highest
turnover mechanism of serine metabolism as we see
pool accumulation in conjunction with low turnover in
heterotrophic growth conditions. Labeling patterns were
also captured by k-means clustering analysis. When pool
sizes and turnover numbers were considered it became clear
that many differences apparent when using those metrics
could be masked when only considering the labeling pattern.
However, the agreement that does exist between labeling
pattern-derived clusters and turnover normalized for pool
size indicate that application of clustering techniques based
on labeling pattern could be useful for situations where many
compounds are unknown, such as investigation of secondary
metabolism.
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