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Despite of a large number of imaging techniques for the characterization of biological

samples, no universal one has been reported yet. In this work, a data fusion approach

was investigated for combining Raman spectroscopic data with matrix-assisted laser

desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis

of biological samples because Raman and MALDI information can be complementary

to each other. While MALDI spectrometry yields detailed information regarding the lipid

content, Raman spectroscopy provides valuable information about the overall chemical

composition of the sample. The combination of Raman spectroscopic and MALDI

spectrometric imaging data helps distinguishing different regions within the sample with a

higher precision than would be possible by using either technique. We demonstrate that

a data weighting step within the data fusion is necessary to reveal additional spectral

features. The selected weighting approach was evaluated by examining the proportions

of variance within the data explained by the first principal components of a principal

component analysis (PCA) and visualizing the PCA results for each data type and

combined data. In summary, the presented data fusion approach provides a concrete

guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging

data for biological analysis.

Keywords: MALDI-TOF, Raman imaging, data combination, data fusion, normalization, PCA

INTRODUCTION

Different analytical methods could be utilized for biomedical analysis (e.g., cells, and tissues,
etc.) to highlight a certain aspect of the sample e.g., morphological microstructure, distribution
of electronic chromophores, molecule classes, or special proteins. Among the label-free imaging
approaches, matrix-assisted laser desorption/ionization (MALDI) spectrometry, and Raman
microscopy are certainly among the most powerful imaging techniques for the investigation
of biomedical samples. Raman spectroscopy is a non-destructive spectroscopic method, which
provides complex molecular information about the general chemical composition of the sample
with a rather high spatial resolution (Abbe limit) to highlight subcellular features (Kong
et al., 2015). The drawback of Raman imaging lies in its weak scattering efficiency that
makes sampling time rather long for large area imaging. Raman spectroscopic imaging has
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demonstrated its potential for biomedical diagnosis in numerous
cancer-related studies (Tolstik et al., 2014), biological material
analysis (Butler et al., 2016), cell characterization studies (Ramoji
et al., 2012), and many other biomedical applications (Matousek
and Stone, 2013; Ember et al., 2017).

On the other side, MALDI mass spectrometry provides
information on specific substances, such as lipids or proteins
(Fitzgerald et al., 1993). MALDI is a soft ionization technique
utilized for mass-spectrometric imaging (Gessel et al., 2014) to
determine large organic molecules and biomolecules undetected
by conventional ionization techniques. This technique was
employed in clinical parasitology (Singhal et al., 2016), microbial
identification (Urwyler and Glaubitz, 2016), and cancer tissue
investigation (Hinsch et al., 2017).

Raman spectroscopic and MALDI mass spectrometric
imaging both offer a high molecular sensitivity. Moreover,
Raman spectroscopy has been sequentially applied together with
different mass spectrometric techniques to address a variety of
biological tasks such as characterization of succinylated collagen
(Kumar et al., 2011), investigation of microbial cells (Wagner,
2009), identification of fungal strains (Verwer et al., 2014) and
characterization of lipid extracts from brain tissue (Köhler et al.,
2009). In all the aforementioned studies, the Raman and mass
spectrometric data are analyzed separately, and then summarized
or compared to each other (Masyuko et al., 2014; Bocklitz et al.,
2015; Muhamadali et al., 2016). To significantly increase the
information content, Raman spectroscopic and MALDI mass
spectrometric imaging data have to be co-registered (Bocklitz
et al., 2013) followed by a high-level (distributed) data fusion. It
means that each data type is analyzed separately to obtain the
respective scores, which are then fused together. Alternatively,
spectroscopic imaging can be used for mapping an area that
is suitable for further investigation by means of MALDI
spectrometric imaging (Fagerer et al., 2013) or a certain mass
peak is used to define an area, from which the Raman spectra
are analyzed (Bocklitz et al., 2013). Such a hierarchical pipeline
corresponds to a decentralized data fusion approach.

In the present work, we introduced an analytical method
to perform a low-level (centralized) fusion of Raman and
MALDI imaging data. Because the experimental implementation
of correlated imaging is challenging in many aspects (Masyuko
et al., 2013), we utilized a computational approach to combine
imaging data obtained by MALDI spectrometry and Raman
spectroscopy. The correlation of Raman spectroscopy with mass
spectrometric imaging techniques such as MALDI (Ahlf et al.,
2014) or secondary ion mass spectrometry (SIMS) (Lanni et al.,
2014) have proved its usefulness for biological applications.
Moreover, a combination of MALDI imaging data with optical
microscopy could attenuate instrumental effects (Van De Plas
et al., 2015), and a joint analysis of vibrational and MALDI mass
spectra could provide valuable information on brain tissue (Van
De Plas et al., 2015; Lasch and Noda, 2017). Nevertheless, even if
Raman and MALDI spectra are obtained by correlated imaging,
each type of spectra shows its own specific features and should
be preprocessed separately. Because the measurement techniques
are based on different physical effects, the difference in data
dimensionality and dynamic range can affect the contribution

of each datatype in the analysis. Therefore, a weighting
coefficient that balances the influence of Raman spectroscopic
and MALDI spectrometric data in the data fusion center is
required.

MATERIALS AND METHODS

Experimental Details
We demonstrated the data fusion on an example dataset
of MALDI spectrometric and Raman spectroscopic scans
obtained from the same mouse brain sample (Mus musculus)
of 10µm cryosection. The sample was cut on a cryostat, and
then dried on a precooled conductive ITO-coated glass slide.
Subsequently, Raman spectra were obtained using a confocal
Raman microscope CRM-alpha300R (WITec, Ulm, Germany)
and excited with a 633 nm HeNe laser (Melles Griot). The laser
irradiation was adjusted in order to have about 10mW power.
The laser was coupled through an optical fiber into a Zeiss
microscope. A spectral map was obtained by a raster scan with
a 25µm grid with a dwell time of 2 s and a pre-bleaching time of
1 s.

After the Raman scan, MALDI mass spectrometric imaging
was performed with a common matrix alpha-cyano 4-hydroxy
cinnamic acid (5 mg/mL) in 50% acetonitrile and 0.2%
trifluoracetic acid. The ImagePrep station (Bruker Daltonics)
was used to prepare and apply the matrix on the sample. The
MALDI-time-of-flight (MALDI-TOF) spectrometric map was
obtained on a Ultraflex III MALDI-TOF/TOFmass spectrometer
(Bruker Daltonics, Bremen, Germany). A “smartbeam” laser
(λ = 355 nm, repetition rate 200Hz) was used. The spectrometer
was calibrated with an external standard, a peptide calibration
mixture (Bruker Daltonics). The measurements were performed
in the positive reflectron mode with 500 shots per spectrum and
spatial resolution of 75µm.

Further experimental details for both data types and an
example of a hierarchical data fusion implementation can be
found in the report by Bocklitz et al. (2013). Nevertheless,
in the context of a further discussion, it is important to
highlight that in MALDI mass spectrometric imaging a
matrix suitable for the analysis of the lipid content was
applied.

Preprocessing of Raman Spectroscopic
Data
The influence of corrupting effects (e.g., cosmic spikes,
fluorescence) on Raman spectra cannot be avoided completely.
Thus, the development of complex preprocessing routines
(Bocklitz et al., 2011) is required. To allow further analysis
of the Raman spectra obtained with different calibrations, all
spectra need to be interpolated to the same wavenumber axis
(Dörfer et al., 2011). Moreover, keeping all the spectra in a
single data matrix simplifies a further processing routine, so it is
advantageous to perform the calibration as one of the first steps of
the preprocessing workflow (Figure 1). Besides the wavenumber
calibration, intensity calibration should be performed for the
comparison of the measurements obtained with different devices
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FIGURE 1 | A general pipeline for Raman data preprocessing. The workflow shows the main steps of the preprocessing routine necessary for robust Raman spectral

analysis. Although some steps should be defined while planning the experiment, subsequent preprocessing methods (highlighted in gray area) and their parameters

can be optimized for extracting the required information from the data.

or in the case where some changes in the measurement device
have occurred (Dörfer et al., 2011).

The calibration is always needed for a reliable analysis,
especially if the measurements were performed over a large
time period, or settings of the device were changed between
the measurements. In contrast, the following step within the
preprocessing workflow (i.e., noise removal) is an optional step.
However, among smoothing methods, only the running median
with a relatively large window is applicable for cosmic ray
noise removal. Unfortunately, filtering with a large window may
corrupt the Raman bands themselves. Alternatively, 2–3 spectra
per point can be acquired to eliminate the spikes that are not
present in each spectrum. Nevertheless, this approach increases
the measurement time dramatically. Therefore, this approach is
not suitable for Raman imaging when a large number of spectra
are recorded. Thus, specialized spike correction approaches
like wavelet transform (Ehrentreich and Summchen, 2001),
correlation methods (Cappel et al., 2010), calculation of the
Laplacian of the spectral data matrix (Schulze and Turner, 2014;
Ryabchykov et al., 2016), or a difference between the original and
a smoothed spectrum (Zhang and Henson, 2007) must be used
for spike removal.

The next step in the preprocessing workflow for Raman
spectra is fluorescence background removal. In this work, the
sensitive nonlinear iterative peak (SNIP) clipping algorithm
(Ryan et al., 1988) was used for baseline estimation. The SNIP
algorithm can be utilized for background estimation for a
number of spectral measurements, like X-ray and mass spectra.

After baseline correction, the Raman spectra must be
normalized (Afseth et al., 2006) to complete the basic
preprocessing. There are several normalization approaches
(e.g., vector normalization, normalization to integrated spectral
intensity, or a single peak intensity value) that enhance the
stability of the spectral data. In this work, we used vector
normalization and l1-normalization (Horn and Johnson, 1990)
for Raman spectra. The difference between normalization
to integrated spectral intensity and l1-normalization is that
the latter utilized absolute intensity values. As a result, the
difference between both normalization approaches becomes
more significant when negative values appear in the baseline
corrected spectra due to noise or baseline correction artifacts.

Preprocessing of MALDI Spectrometric
Data
Although the measurement techniques themselves differ
dramatically for Raman andMALDI mass spectroscopic imaging
data, the preprocessing of these data has a lot in common. The
m/z values are set according to an internal calibration and may
“float” slightly from one measurement to another. Therefore, a
phase correction along the m/z axis must be performed within
the preprocessing workflow (Figure 2) to ensure that the spectra
obtained in different measurements are comparable. For this
purpose, it is advisable to use the stable intense peaks within the
phase correction routine (Gu et al., 2006).

From a theoretical point of view, MALDI spectra should not
feature a spectral background. Nevertheless, inmeasuredMALDI
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FIGURE 2 | A general pipeline for MALDI data preprocessing. The workflow shows the main steps of the preprocessing routine necessary for robust MALDI spectral

data analysis and the main differences as compared to the Raman data preprocessing routine, described in Figure 1.

spectra a background is present. In literature, a background
present in MALDI mass spectra is also known as “chemical noise
background” (Krutchinsky and Chait, 2002). This type of noise
results from matrix impurities and unstable ion clusters created
during the sample scanning.

Similarly to Raman spectral preprocessing, the SNIP
algorithm (Ryan et al., 1988) can be used to eliminate the
background from mass spectra. Another complication in the

analysis of MALDI spectra results from the fact that even
after the phase correction, peak positions vary insignificantly
among different spectra. An interpolation procedure, which
is applied in Raman data preprocessing, would corrupt the

sharp peaks found in MALDI spectra and is therefore not

applied. To enable a direct comparison of the spectra, a
binning procedure is applied. This procedure is based on
the equalization of the m/z-values of peak positions within a
certain range. Since the average peak width along the m/z axis
increases with increased mass, the binning range is set with

a so-called tolerance relative to the mass values. In contrast
to Raman spectroscopy, intensity calibration for MALDI
mass spectrometric imaging is not required. Nevertheless,
normalization may be applied. Various types of normalization
are used for MALDI mass spectroscopic imaging data: total
ion count (TIC), vector norm (RMS), median, square root,
logarithmic, and normalization to a noise level. In contrast to
the Raman spectral data, MALDI mass spectra do not feature
negative values. Thus, TIC normalization and normalization
to l1-norm, which is a sum of absolute values, are equal for
MALDI spectra. If the significance level of the data is high,

the normalization may be not necessary for the subsequent
analysis.

Computational Details
For MALDI data acquisition and calibration, a flexImaging
software version 3.0 (Bruker Daltonics) was used. The
data processing was also performed in R (R Core Team,
2017) using packages akima (Gebhardt)1, Peaks (Morhac)2,
readBrukerFlexData (Gibb)3, rsvd (Erichson)4, spatstat
(Baddeley and Turner, 2005), and Spikes (Ryabchykov et al.,
2016).

Prior to the data preprocessing and data fusion, the MALDI
and Raman spectra were interpolated to the same (spatial) grid
by utilizing a co-registration framework. Based on the false
color images of Raman spectroscopic and MALDI spectrometric
scans, 6 points clearly representing the same positions on every
scan were manually selected. The coordinates of the Raman
spectroscopic map were then transformed to the coordinate
system of the MALDI mass spectrometric map. Subsequently,
the Raman spectra were interpolated to the grid of the MALDI
mass spectral map. To perform this interpolation, every point
within the Raman grid was assigned to the nearest point
within the MALDI grid. After that, the average of the Raman
spectra, assigned to the same point within the MALDI grid, was

1Gebhardt, H. A. “akima: Interpolation of Irregularly and Regularly Spaced Data.”
2Morhac, M. “Peaks: Peaks.”
3Gibb, S. “readBrukerFlexData: Reads Mass Spectrometry Data in Bruker ∗flex

Format.”
4Erichson, N. B. “rsvd: Randomized Singular Value Decomposition.”
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calculated. Two spectral maps were thus obtained and aligned in
a point-wise manner.

After the alignment, the Raman spectroscopic and MALDI
mass spectrometric imaging data were preprocessed. During
the preprocessing, the wavenumber calibration of the Raman
spectra and the phase correction of MALDI spectra were
performed. The MALDI mass spectrometric imaging data
were subsequently subjected to noise removal, background
correction, and TIC normalization. The Raman spectra were
corrected for fluorescence background and vector normalized.
The SNIP algorithm was used for background estimation in both
cases.

After the preprocessing, Raman and MALDI mass spectral
data differed in their dimensionality and in dynamic range. Data
with different dynamic ranges would contribute unequally in
a further analysis and consequently the spectral matrices have
to be additionally weighed before performing the PCA. The
weighting coefficient was selected as a ratio between the l1-
norms of the matrices, which are sums over the absolute values
in the matrix. After the weighting, the data were combined
in a single matrix and analyzed with a PCA. To illustrate
the benefit of data fusion and weighting, we also analyzed
the un-weighted data in a combined manner and each data
type separately. We also investigated the case, where the same
normalization approach was applied to both data types and no
additional weighting is required. When the Raman spectra were
normalized to the total spectral intensity, which is equivalent to
TIC normalization of mass spectra, the data matrices had equal
l1-norms.

RESULTS AND DISCUSSION

Both Raman spectroscopic and MALDI mass spectrometric
imaging data provide different insights into the chemical
composition of the sample. Information on a broad range
of molecules can be obtained from the Raman spectra. This
information can be complemented by detailed information on
lipid content, obtained from the MALDI data. To utilize both
types of information together, a data fusion must be applied.
This data fusion may be performed during different stages of
the analysis workflow. Therefore, the architecture of the data
processing workflow is dependent on the selected data fusion
approach. These approaches can be divided into the following
types (Castanedo, 2013):

• Centralized architecture (Figure 3A). The preprocessed data
from different sources are combined in the data fusion center
and are analyzed together.

• Decentralized architecture (Figure 3B). This scheme does not
have a single data fusion center. The processing workflows
are interacting at different processing stages. This architecture
may provide multiple outputs or be represented as a
hierarchical structure.

• Distributed architecture (Figure 3C). Each data type is
preprocessed and analyzed separately. Subsequently, the
output values are evaluated and combined to obtain a single
result.

The decentralized and distributed architecture already showed
their effectiveness for biomedical investigations (Bocklitz et al.,
2013; Ahlf et al., 2014). The current work focuses on
the centralized data fusion approach, also called low-level
data fusion. In contrast to decentralized and distributed
architectures, the centralized architecture shows a simpler
workflow (Figure 3A). The data are combined in early steps of
the analysis, directly after the preprocessing and even before
the dimension reduction. At the data fusion center, where the
different types of data are combined, an additional normalization
or scaling of the data may be required to weight the influence
of the different data types on the global model. The need
for this weighting step arises from the differences in the data
dimensionality, measurement units and dynamic ranges of
the different measurement techniques. It is worth mentioning
that the weighting is not a major issue in high-level data
fusion approaches, which usually deal with standardized low-
dimensional outputs of preliminary analysis in the data fusion
center. However, a low-level data fusion (such as the applied
centralized data fusion model) deals directly with preprocessed
spectra of different types. Thus, the data scaling may dramatically
influence extraction efficiency of the features.

To investigate the impact of data weighting, we searched for
a marker that would allow an objective comparison of different
data fusion and normalization approaches. This weighting
scheme is designed for biological samples (i.e., a complex
chemical composition), of which a large number of independent
features have to be identified for appropriate description. By
applying a PCA for dimension reduction, a large portion of the
data variance is expected to be spread among multiple principal
components (PCs) and the optimal approach should correspond
to the slowest raise of the cumulative proportion of variance with
a number of PCs.

The variances of the data explained by PCA are shown in
the Figure 4 where the normalization and fusion approaches
(described in section Computational Details) are shown.
Unfortunately, a direct comparison between cumulative
proportions of variance obtained from Raman and MALDI
mass spectral data, and their combined data is not suitable
due to the different number of variables. However, different
trends in the observed variance by the PCs in data with the
same dimensionality can be interpreted. The left side of Figure 4
shows that the variance of vector normalized Raman data is
spread among a larger number of PCs than that of the total area
normalized Raman data. This finding indicates that the vector
normalization allows extracting a larger number of significant
features from Raman data. Because the Raman spectra were
vector normalized and the MALDI spectra were TIC normalized,
the Raman data contribute more to the overall data variance
than the MALDI data. Consequently, the PCA will focus on the
variations in the Raman data and the variations in the MALDI
data will have only a small influence. Alternatively, two datasets
can be balanced by normalizing spectra of both types to their
l1-norms. By definition, this norm is a sum of absolute values. It
takes dimensionality and scaling of the data into account, so no
additional weighting is required. TIC normalization performed
on MALDI data is already equal to l1-normalization because
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FIGURE 3 | Various data fusion architectures: centralized (A), decentralized (B), and distributed (C) architectures.

FIGURE 4 | Influence of weighting in the data fusion center on the PCA. The left side of the figure shows cumulative proportion of data variance explained by first 20

PCs for Raman data (normalized in two different ways) and for MALDI data. On the right side of the figure, a slower raise of cumulative proportion of weighted data

variance in comparison to the non-weighted case is shown. This trend reflects that more independent features can be extracted from the data by applying weighting

prior to the data fusion. As it is also shown in the plot on the right side, a similar effect can be reached by applying the same type of normalization for both data types.

there are no negative values present in the mass spectra. The
right side of Figure 4 clearly shows that there is a marked
difference between the approach not taking the data scaling into
account and the approaches based on weighting or identical
normalization. However, no significant benefit was observed
when comparing the weighting to identical normalization
approach.

To further investigate the influence of weighting on data
fusion, the weighting coefficient was varied in a range from
1 to 20 and a PCA utilized for every case. The extracted
curves of the cumulative proportion of the variance were
organized as a surface plot (Figure 5). Tomake the interpretation
easier, the curves, which correspond to the data combination
without weighting and with weighting based on the ratio of l1-
norms, are additionally highlighted in Figure 5. Although no

single weighting coefficient is globally the best, the proposed
weighting coefficient lies close to the area where the data variance
is spread between multiple PCs. Thus, fusing data in this
manner enables the PCA to extract a larger number of reliable
features.

Although an optimal data fusion has been achieved as above-
mentioned, a direct comparison of cumulative proportions
of variance explained by the PCA for data with different
dimensionalities may be misleading. Hence, the results obtained
from the combined approach and separated data analysis
(Figure 6) were checked by means of inspecting the PCA
loadings and scores. The first three PCs were visualized separately
for the MALDI spectrometric imaging data (Figures 6A,C),
Raman spectroscopic imaging data (Figures 6B,D), and their
combination (Figures 6E–G).
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The comparison of the PCA scores in Figure 6 shows that
the image of the MALDI-Raman combination (Figure 6G)
depicts clearer spatial features of the sample (compared to
Figures 6C,D). The corresponding false-color score composite
(Figure 6G) is less noisy, and looks subjectively better than the
images obtained separately from the MALDI mass spectrometric
(Figure 6C) and Raman spectroscopic data (Figure 6D).
Moreover, the loading vector of the third PC of the MALDI
spectra (shown in blue color in Figure 6A) has positive and
negative values related to isotopes of the same molecules. It
means that it represents mostly noise and variations in the
signal to noise ratio. On the other hand, the MALDI part of the
loadings of the third PC in the combined analysis (shown in blue
color in Figure 6E) reflects a joint behavior for the isotopes of
the same ions. Moreover, the Raman part of this PC contains
the peaks associated with lipids (Notingher and Hench, 2006),
namely the C = C stretching region (1,655–1,680 cm−1), and
CH deformation band (1,420–1,480 cm−1). Although these two
peaks may also be associated with Amide I and CH deformations
of proteins, there is a decrease in the protein-associated range
(Notingher and Hench, 2006) in the wavenumber region
1,128–1,284 cm−1. Furthermore, there are notable changes in the
CH-stretching region (2,800–3,100 cm−1). Thus, the third PC
of the combined data represents the actual diversity in the lipid
composition of the sample. The relationship of the CH stretching
region of the Raman spectra to the changes in the lipid content
can also be observed by a high correlation of the Raman spectral
region with MALDI mass spectra (Figure 7).

Since both data types simultaneously reflect variations in
lipid content, the specific changes in the correlation profiles
(Figure 7) of the Raman and MALDI data are observed in
the areas related to lipid bands in Raman spectra. Besides the
contributions of lipids, which are found in the third PC, the
fingerprint region of Raman spectra contains numerous peaks
related to proteins and DNA. These Raman bands correlate
with MALDI peaks both positively and negatively (Figure 7).
The correlation of a certain MALDI peak with the Raman data
shows a similar structure, but with an opposite sign. This sign
change reflects changes in the contribution of specific lipids
with respect to the overall increase of lipid content in the
sample.

One of the non-lipid compounds, which feature strong Raman
bands, is phenylalanine. Its symmetrical ring breathing mode
and C-H in-plane mode are visible in the first two PCs at 1,004
and 1,030 cm−1. Another peak related to phenylalanine can be
found in the first two PCs at 1,104 cm−1 (Movasaghi et al., 2007).
Aside of that, the first PC contains contributions of tryptophan
at 760 cm−1 (Bonifacio et al., 2010). The protein backbone C-Cα

stretching of collagen is present in the second PC at 936 cm−1

and the ν(C–C) protein backbone is located in the first two PCs
at 816 cm−1 (Bonifacio et al., 2010). Also, prominent collagen-
associated bands like Amide I and Amide III can be seen in
the first PC at 1,655–1,680 and 1,220–1,284 cm−1, respectively
(Krafft et al., 2005; Notingher and Hench, 2006). Moreover, the
peak at 1,647 cm−1 is associated with the random coil structure
of proteins in general (Movasaghi et al., 2007). This peak is also
present in the first two PCs.

FIGURE 5 | Dependence of the variance explained by PCA using the

weighting scheme. The surface plot covers the first 20 PCs and weighting

coefficients between 1 and 20. The cumulative proportions of variance for the

weighted and non-weighted cases are shown as blue and green lines,

respectively (please refer to the online version for colors). Furthermore, the

lowest variance is highlighted for each number of PCs with a dot. These dots

represent an optimal unmixing for the related number of PCs. Although this

optimum changes with respect to PC numbers, the used weighting coefficient

based on l1-norms clearly lies near the minimum of cumulative proportion of

variance for a given number of PCs.

The main contribution to the first PC is the ratio between
the fingerprint region of Raman spectra and C-H stretching
region. On the other side, the fingerprint region of the second PC
contains both positive and negative peaks, reflecting the changes
in protein content. Along with the protein content, valuable
information about DNA is obtained from the first two PCs of
the Raman spectra. The peak at 1,180 cm−1 represents cytosine
and guanine. Another DNA peak is located at 1,263 cm−1 and
represents adenine and thymine (Movasaghi et al., 2007). All
Raman spectral features provide a complex overview of the
chemical composition of the mouse brain section. The MALDI
data, on the other hand, extends the overview of the distribution
of biomolecules based on Raman spectroscopy with detailed
information about the lipid content composition.

CONCLUSION

In this paper, a data fusion scheme was investigated to analyze
Raman spectroscopic and MALDI mass spectrometric imaging
data together. We described the most significant corrupting
effects influencing the analysis of Raman spectroscopic and
MALDI mass spectrometric imaging data. The preprocessing
workflows were shown for the suppression of these corrupting
effects by means of calibration, noise reduction, background
correction, and normalization for both data types. After the
pretreatment steps, the importance of data weighting prior
to data fusion is highlighted, especially when the data are
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FIGURE 6 | PCA analysis: first three PCs calculated for MALDI spectra (A), Raman spectra (B), combined Raman-MALDI data (E,F) and their false-color score

composites (C,D,G). Red, green, and blue colors indicate the first, second and third PCs, respectively. Separate plots for the loadings and false color images can be

found as Supplementary Material. The PCs composite image of the combined data (G) shows a smoother appearance, and the loadings after data fusion (E,F) are

easier to interpret. See text for further details.

FIGURE 7 | Correlation between Raman spectroscopic and MALDI mass spectrometric data. Correlation of two data types after being preprocessed is depicted in

yellow (positive values), red (zero), and violet (negative values) colors. Average preprocessed MALDI spectrum (on the top of the figure) and Raman spectrum (on the

right side of the figure) are plotted for easier interpretation.

obtained from different sources and have different scales and
dimensionalities. As there is no universal way of balancing
the influence of data types on the analysis, optimization, and
validation of weighting approaches should be done according
to the specific data. In order to allow a judgment of the

quality of a weighting, we proposed an approach that allows
estimating the goodness of data weighting. This approach is
based on analyzing proportions of data variance explained by
PCs and we applied this approach by examining the cumulative
variance. It was shown that the weighting, based on the ratio
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of l1-norms of the data matrices, allows optimal unmixing of
the example data set into features. Besides the comparison
of different weighting schemes, the proposed method can be
used for the comparison of normalization approaches. It was
found that vector normalization allows better unmixing of the
example Raman data as compared to the normalization to the
integrated spectral intensity (l1-norm). Besides the establishment
of a weighting approach, we discovered that a nearly optimal
result compared to the weighting is achieved if the spectra of both
types are normalized to the same norm. We could demonstrate
this by normalizing both types of spectra of an example dataset to
the same norm. This was the l1-norm in our example. However,
it is important to keep in mind that this method of comparing the
cumulative proportions of variance should be used only when a
researcher is interested in maximizing the number of extracted
independent features.

The revealing of additional meaningful features by means of

optimal data fusion was demonstrated for the combination of
Raman spectroscopic and MALDI mass spectrometric imaging
data. We showed this by comparing the third PC extracted from
each type of data separately and from the combined data. The

MALDI-related part of the third combined component showed

a clearer interpretation in comparison to the third loading
obtained from the MALDI data alone. Moreover, the Raman-
related part of the combined component reflected variations in
lipid to protein ratio. This PC depicts a decrease in a protein-
associated range that occurs along with an increase of bands

related to the CH deformation and C=C stretching in lipids,
which can be found in the regions 1,128–1,284, 1,420–1,480, and
1,655–1,680 cm−1, respectively. Therefore, changes in the lipid to
protein ratio and changes in lipid content itself can be observed
simultaneously through the data fusion of Raman spectroscopic
and MALDI mass spectrometric imaging data.

Finally, the advantage of the combined analysis was illustrated
by a comparison of the PCA results visualized as false-color
RGB images. These images were obtained separately for the
preprocessed Raman and MALDI imaging data and for the

combined data. Visual investigation of the images showed that
the combined approach provides a sharper image with less noise
contributions. This allows the conclusion that the data fusion
increases reliability not only for the spectral but also for the
spatial features present in the data.
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