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Development of a simple and easy handing process for preparation of multifunctional

heterogenous catalysts and exploration of their applications in sequential organic

transformation are of great significance in heterogeneous asymmetric catalysis. Herein,

through the utilization of a BF−4 anion–bonding strategy, we anchor conveniently both

organic bases and chiral ruthenium complex into the nanopores of Me-FDU−12,

fabricating a Lewis base/Ru bifunctional heterogeneous catalyst. As we envisaged,

cyclic amine as a Lewis base promotes an intermolecular aza–Michael addition between

enones and arylamines, affording γ-secondary amino ketones featuring with aryl

motif, whereas ruthenium/diamine species as catalytic promoter boosts an asymmetric

transfer hydrogenation of γ-secondary amino ketones to γ-secondary amino alcohols.

As expected, both enhance synergistically the aza–Michael addition/asymmetric

transfer hydrogenation one–pot enantioselective organic transformation, producing chiral

γ-secondary amino alcohols with up to 98% enantioselectivity. Unique features, such as

operationally simple one–step synthesis of heterogeneous catalyst, homo–like catalytic

environment as well as green sustainable process make this heterogeneous catalyst

an attracting in a practical preparation of optically pure pharmaceutical intermediates

of antidepressants.

Keywords: asymmetric catalysis, heterogeneous catalyst, tandem reaction, silica, anion bonding

INTRODUCTION

With the extensive explorations of mesoporous silicas as supports in catalysis, various strategies
have been employed to construct supported molecular catalysts(Song, 2005; Heitbaum et al.,
2006; Yang et al., 2007; Margelefsky et al., 2008; Thomas and Raja, 2008; Bartók, 2010; Yu and
He, 2012). Of all the well–established strategies, immobilization though a hydrogen–bonding
have attracting a great deal of interest since it allow the facile anchoring of small molecular
catalysts on a support with a suitable counterion of organometallic complexes(Fraile et al., 2009).
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This simple and practical approach endows the immobilized
catalyst with an original catalytic environment as its
homogeneous counterpart which is helpful for the catalytic
reaction. These features are beneficial to construct highly efficient
heterogeneous catalysts like their corresponding homogeneous
counterparts, bridging the gap between homogeneous and
heterogeneous catalysis. Recently, some remarkable works
developed by several groups have utilized F3CSO

−

3 anion to bond
cationic complexes, fabricating various supported molecular
catalysts with high catalytic efficiency (Bianchini et al., 2001;
Raja et al., 2003; Rouzaud et al., 2003; O’Leary et al., 2004;
Wang et al., 2006; McDonagh et al., 2007; Xu et al., 2012).
These explorations overcome nicely the shortage of low catalytic
efficiency of heterogeneous catalyst because of highly catalytic
nature of cationic active species themselves, realizing superior
catalytic performance relatively to their corresponding neutral
counterparts. Similar to the F3CSO

−

3 anion hydrogen–bonding
method, recent reports also find that the BF−4 anions are
used for fabrication of highly recyclable catalysts (Jones et al.,
2003; Wiench et al., 2009; Shu et al., 2015; Liao et al., 2017;
Xia et al., 2017). An outstanding example was reported by
Toste and co–workers (Shu et al., 2015). In this work, the Au–
complexes (Ph3PAuBF4) were tethered within the nanochannels
of SBA−15 material via a hydrogen–bonding method between
the BF−4 anion and the inner silanols of SBA−15. This as–made
heterogeneous cationic gold (I) catalyst not only performs a
superior regioselectivity to its corresponding homogeneous one
in the cyclization of alkynoic acids. More importantly, through
the suitable coordination with chiral phosphine ligands, the
obtained chiral cationic gold (I) catalyst also shows the dramatic
enhancement of enantioselectivities in the enantioselective
lactonization reactions relative to its homogeneous one. In
particular, high recyclability (11 runs) opens great potential in a
practical application. Quite recently, we also take advantage of
this BF−4 anion–bonding method to bond Au/carbine complexes,
together with a covalent–bonding of neutral Ru/diamine
complexes, to fabricate a recyclable heterogeneous catalysts
for the enantioselective synthesis of halohydrins through a
hydration/asymmetric transfer hydrogenation cascade process
(Xia et al., 2017). Therefore, further development of this easy
handing hydrogen–bonding method and direct immobilization
of dual active centers on mesoporous silica for multi–step
sequential organic transformation is still of great significance in
heterogeneous asymmetric catalysis.

Large–pore mesoporous silicas, like FDU−12 (Fan et al.,
2005; Ma et al., 2010; Li et al., 2015), possess large size of
regular mesopores in their silicate networks, which have great
potential in assembly of various heterogeneous catalysts (Li
et al., 2012; Yan et al., 2013; Chen et al., 2014). At first, large
space of nanopores can accommodate large steric organometallic
complexes or multiply active species, which are beneficial to
fabricate bi– or multi–functionalized heterogeneous catalysts.
Also, large space of mesopores can avoid the accumulation
of multiple active species, which can reduce efficiently the
cross–interactions of multiple active species and overcome the
shortage of homogeneous catalysis. Furthermore, large size of
regular mesopores benefits mass transport, which can lead to

an improved catalytic efficiency relative to those small–sizes of
mesoporous counterparts. More importantly, through a control
of molecular catalysts in an adjacent position on a support,
a potential cooperative effect may make some unfeasible or
lowly efficient tandem reactions in homogeneous condition into
possibility. Therefore, the utilization of advantages of large–pore
mesoporous FDU−12 in fabrication of multifunctional catalyst
and the exploration of its application in a tandem reaction to
promote reactivity, enantioselectivity and stability are highly
desirable.

In this contribution, we employ a large–pore size of
FDU−12 as a support and assemble a Lewis base and a chiral
ruthenium/diamine dual species within its regular nanopores
via a BF−4 anion–bonding approach, fabricating a bifunctional
heterogeneous catalyst. This catalyst performs an efficient
synthesis of valuable pharmaceutical intermediates of optically
pure γ-secondary amino alcohols that had been explored
extensively by various asymmetric catalysis in homogeneous
conditions recently (Gao and Sharpless, 1988; Robertson et al.,
1988; Kakei et al., 2004; Liu et al., 2005; Fujima et al., 2006;
Geng et al., 2011; Träff et al., 2011; Wang et al., 2013a,
2015; Zhou et al., 2014; Hu et al., 2015; Wu et al., 2017).
Benefits of this heterogeneous catalysis not only overcome the
drawbacks of expensive transition–metal recycle and transition–
metal contamination in homogeneous catalysis system, but also
realize multi-step reactions to yield a series of synthetically useful
amino alcohols under mild reaction conditions in environmental
friendly fashion.

EXPERIMENTAL

Catalyst 1 Preparation
In a typical route, (Step I: Synthesis of mesoporous FDU−12)
directing template EO106PO70EO106 (Pluronic F127, 0.5 g),
1,3,5–trimethylbenzene (TMB, 0.6 g) and KCl (1.25 g) were
added to a hydrochloric acid solution (50mL, 1.0M) at 15◦C.
After stirring for 1.0 h, tetraethyl orthosilicate (TEOS, 2.08 g)
was slowly added to previous solution. The resulting mixture
was vigorously stirred for another 24 h at 15◦C. Subsequently,
the obtained suspension was kept in a Teflon–lined autoclave
at 170◦C for 24 h under static conditions. After cooling
to room temperature, the as-made FDU-12 was seperated
through filtration and dried. (Step II: Preparation of mesoporous
Me–FDU−12 by protection of the outer facial silanols) The
collected FDU-12 (1.0 g) were dispersed in 25mL anhydrous
toluene, and HMDS [(CH3)3Si)2N] (10mL, 0.050mol) was
then added. The suspension was kept and stirred for 12 h at
room temperature. After filtration and rinse with excess water
and ethanol, the collected solids was redistributed to 120mL
of ammonium nitrate solution (80mg (1.0 mmol) in 120mL
(95%) of ethanol), and the cloudy solution was stirred at 60◦C
for 10 h. Once finsihed, the solids were filtered and washed
with excess water and ethanol, and dried under vacuo, affording
trimethysilylated Me–FDU−12 as a white powder (1.21 g). (Step
III: Immobilization of (DABCO)BF4 (1–(chloromethyl)−1,4–
diazabicyclo[2.2.2]octanium tetrafluoroborate) and
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(MesityleneRuTsDPEN)(BF4) (TsDPEN = N–((S,S)−2–
amino−1,2–diphenylethyl)−4–methylbenzenesulfonamide).
The Me–FDU−12 (0.50 g) was firstly dispersed into dry CH2Cl2
(10.0mL) within a round–bottom flask at 25◦C, then the freshly
prepared [MesityleneRuTsDPEN] BF4 (43.50mg, 0.064 mmol)
was rapidly added. The resulting red suspension was stirred
for 12 h at 25◦C. After that, the newly prepared (DABCO)BF4
(74.42mg, 0.30 mmol) was added to previous solution, and
the reaction solution was stirred at 25◦C for another 12 h.
Once finished, the crude solid catalyst was obtained via
filteration. Finally, the unreacted starting materials was removed
by Soxhlet extraction using dry CH2Cl2, furnishing desired
(DABCO)BF4@(MesityleneRuTsDPEN)BF4@Me–FDU−12
(1) (0.57 g) as a faint–yellow powder. The Ru loadings was
determined by inductively coupled plasma optical emission
spectrometer (ICP–OES) analysis, showing that 10.40mg (0.1020
mmol of Ru) per gram of catalyst. Elemental analysis for the
fresh catalyst 1 (%):C 15.03, H 3.43, N 0.57, S 0.33.; and for the
recycled catalyst after fifth run: C 14.45, H 3.35, N 0.48, S 0.29.
13C CP/MAS NMR (161.9 MHz): 149.2–121.7 (C of Ph and Ar
groups), 108.4, 101.5 (CH3 of Arene groups), 73.6–67.3 (CH of
–NCH–Ph), 66.2–59.3 (CH2 of –N+CH2- in DABCO moiety,
and CH2 of –OCH2CH2O– groups in F127), 53.2, 46.3 (CH2

of N(CH2)3- in DABCO moiety), 31.1 (CH2 of –CH2Ph), 23.3
(CH3 of mesitylene), 19.4 (CH3 of –OCH(CH3)CH2O– in F127),
2.8 (CH3 of –Si(CH3)3) ppm; 29Si MAS NMR (79.4 MHz): Q3 (δ
=−104.8 ppm), Q4 (δ =−114.3 ppm).

General Procedure for 1-Catlayzed
Aza–Michael Addition/ATH One–Pot
Enantioselective Cascade Reactions
In a typical procedure, catalyst 1 (19.61mg, 2.0 µmol of Ru,
according to ICP–OES analysis), HCO2Na (68.0mg, 1.0 mmol),

enones (0.10 mmol), amines (0.11 mmol) and 2.0mL of co-
solvents (H2O/

iPrOH, v/v = 1/1) were successively added to
a round bottom flask. The resulting mixture was heated to
40◦C and stirred for 8–24 h until the fully consumption of
enones. Upon completion of reaction (monitoring by TLC), the
catalyst 1 was recycled via centrifugation (10,000 rpm). The
transparent solution was extracted using ethyl acetate (3 ×

3.0mL). The combined organic phase were washed with brine (2
× 5mL) and dried with Na2SO4. After removal of EtOAc under
reduced evaporation, the crude residue was purified by flash
column chromatography to release the desired products. The
enantiomeric excess was determined by HPLC equipped with a
Daicel chiralcel column (Ø 0.46 cm, L 25 cm) and an UV–Vis
detector.

RESULTS AND DISCUSSION

Synthesis and Structural Characterization
The BF−4 anion–bonding of DABCO molecules
as well as chiral ruthenium/diamine complexes
immobilized in the nanopores of trimethysilylated
FDU−12 (Me–FDU−12), in an abbreviated form as
(DABCO)BF4@(MesityleneRuTsDPEN)BF4@Me–FDU−12 (1),
((DABCO)BF4 = 1–(chloromethyl)−1,4–diazabicyclo[2.2.2]
octanium tetrafluoroborate) (Li and Liu, 2004; Li et al., 2005;
Chauhan et al., 2014; Wen et al., 2014; Ying et al., 2014),
(MesityleneRuTsDPEN)BF4 (Hashiguchi et al., 1995; Ohkuma
et al., 2007): where TsDPEN = N–((S,S)−2–amino−1,2–
diphenylethyl)−4–methylbenzenesulfonamide), was performed
as shown in Figure 1. The mesoporous Me–FDU−12 was firstly
obtained according to the reported approach with slightly
modification (Fan et al., 2005; Ma et al., 2010), where the outer
facial silanols of FDU−12 were protected through the treatment

FIGURE 1 | Preparation of heterogeneous catalyst 1.
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with ((CH3)3Si)2N compounds. Continuous hydrogen–bonding
of (DABCO)BF4 and (MesityleneRuTsDPEN)BF4 to the inner
silanols of nanopores in Me–FUD−12 then led to the crude
catalyst. Finally, the well-defined catalyst 1 was obtained through
a strict Soxhlet extraction from its corresponding crude form
(see Figures S1, S2 of ESI).

Figure 2, the solid–state 13C cross–polarization (CP)/magic
angle spinning (MAS) NMR spectroscopy of as-synthesized
catalyst 1, provided the direct evidence to the successful
anchor of both anion functionalized chiral ruthenium/diamine
complexes and DABCO–molecules species within the internal
silanols of mesopores in Me–FDU−12 since both characteristic
carbon signals could be observed clearly. In the part of
DABCO–molecules, the characteristic peaks at 53.2 and 46.3
ppm were corresponded to the cyclic carbon atoms in
DABCO moiety, which were similar to those attained with

FIGURE 2 | The solid–state 13C CP/MAS NMR spectrum of catalyst 1.

FIGURE 3 | Nitrogen adsorption–desorption isotherms of Me–FDU−12 and

catalyst 1.

its homogeneous counterpart(Chauhan et al., 2014), suggesting
the DABCO–functionality have been successfully incoporated in
catalyst 1. In the part of chiral ruthenium/diamine–complexes,
besides the general carbon peaks around 70 ppm for the
carbon atoms of –NCH groups and around 130 ppm for
the carbon atoms of aromatic groups from TsDPEN, the
characteristic peaks found at 108.4 and 101.5 ppm could be
attributed to the carbon of mesitylene, while that at 23.3
ppm belonged to the carbon atoms of the CH3 groups of
mesitylene. These carbons signals are the same as those of
its homogeneous (MesityleneRuTsDPEN)BF4(Ohkuma et al.,
2007), demonstrating its well–defined single–site ruthenium
center in catalyst 1. Furthermore, to confirm DABCO molecules
and chiral ruthenium/diamine–complexes dual active centers
immobilized via the BF−4 anions, the solid–state 19F MAS NMR
spectrum of catalyst 1 was used to compare with those of two
corresponding single immobilized DABCO molecules and chiral
ruthenium/diamine–complexes on Me-FDU-12. It was found
that the wide F signals between−147 and−151 ppm are assigned
to F signals in BF−4 anions interacting with dual centers via
the BF−4 hydrogen bonding since they are similar to those of
the their corresponding single immobilied DABCO molecules
or chiral ruthenium/diamine–complexes solid-state 19F NMR
spectra (see Figure S3 of ESI for their solid–state and liquid–
state 19F NMR spectra). The other signals (at −181.3, −155.1,
−101.6, and−74.2 ppm) denoted by asterisks were responded to
the general “bulk” BF−4 species that often appeared in 19F MAS
NMR spectroscopy.

FIGURE 4 | SEM images of catalyst 3, (b,c) TEM images of catalyst 1 viewed

along the (a) [100] and (b) [110] directions.
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Figures 3, 4 revealed the mesostructure and morphology
of catalyst 1, which were characterized by scanning electron
microscopy (SEM), nitrogen adsorption–desorption technique,
transmission electronmicroscopy (TEM)with chemical mapping
technique. The nitrogen adsorption–desorption isotherms of
FDU−12, Me–FDU−12 and catalyst 1 presented the typical
IV–type isotherms with H2 hysteresis loop (Figure 3), which
are similar to those reported in the literatures, confirming
its mesoporous structure(Fan et al., 2005; Ma et al., 2010).
The SEM image of catalyst 1 disclosed the hexagonal arrays
of uniform cages (Figure 4a) whereas the TEM images of
catalyst 1 (Figures 4b,c) demonstrated the FDU−12–type face–
centered–cubic mesostructures. Both confirmed that catalyst 1
retained the general morphological structure of FDU−12 after
the immobilization of dual active species. Of significantly clear
TEM image coupled with a chemical mapping (see Figure S4 of
ESI) well demonstrated the uniformly distribution of ruthenium
active centers within the inorganic silicate network of catalyst 1.

All these characterizations and analyses elucidated that
the obtained heterogeneous catalyst 1 had an operationally
simple prepared procedure, well-defined dual active species as
well as uniformly distributed ruthenium active centers, which
would have a positive impact on its catalytic activity discussed
below.

Catalytic Performance of Catalyst 1
Cationic chiral N–sulfonylated diamine functionalized
organometallic complexes, a type of catalytically efficient
active species for asymmetric transfer hydrogenation (ATH)
reaction, have obvious superiority in catalytic process with
respect to their corresponding neutral ones since cationic
complexes as real active species based on mechanism study
could significantly favor asymmetric transfer hydrogenation
process of ketones especially in an aqueous medium (Noyori
and Hashiguchi, 1997; Liu et al., 2004a,b; Gladiali and Alberico,
2006; Wu et al., 2006, 2008; Ikariya and Blacker, 2007; Ohkuma
et al., 2007; Wang et al., 2008, 2011, 2013b; Ding et al., 2013;
Yang et al., 2014, 2016; Zhang et al., 2015). Therefore, direct
immobilization of cationic ruthenium active species within
the FDU−12 is beneficial to enhance ATH transformation.
In particular, utilization of Me–FDU−12 as a support could
ensure the dual active centers into the inner nanopores due the
control of the protection step before the removal of surfactants
during the synthetic procedure in the experiment part, where
the potentially adjacent position of DABCO–molecule and chiral
ruthenium/diamine–complex could promote cooperatively its
catalytic performance.

With the well-established bifunctional catalyst 1 in hand, we
transferred our attention to its catalytic and enantioselective

TABLE 1 | The aza–Michael addition/ATH one–pot enantioselective tandem reactions to prepare chiral γ-secondary amino alcoholsa.

Entry Ar1, Ar2 (3) Time (h) %Yieldb %eec

1 Ph, Ph (3a) 8 92 96

2 Ph, Ph (3a) 24 79 95d

3 Ph, 4–ClPh (3b) 10 89 95

4 Ph, 3–ClPh (3c) 10 81 94

5 Ph, 2–ClPh (3d) 10 92 97

6 Ph, 4–BrPh (3e) 10 91 96

7 Ph, 4–NO2Ph (3f) 10 83 98

8 Ph, 3–NO2Ph (3g) 10 85 96

9 Ph, 3,4–Me2Ph (3h) 12 76 96

10 Ph, 3,5–Me2Ph (3i) 12 73 95

11 Ph, 3–Cl−4–MePh (3j) 12 72 96

12 Ph, 3–MeOPh (3k) 12 81 96

13 4–FPh, Ph (3l) 10 92 92

14 4–ClPh, Ph (3m) 10 89 93

15 4–BrPh, Ph (3n) 10 91 94

16 4–IPh, Ph (3o) 10 88 94

17 4–MePh, Ph (3p) 12 82 94

18 4–MeOPh, Ph (3q) 12 80 95

aReaction conditions: catalyst 1 (19.61mg, 2.0 µmol of Ru based on ICP–OES analysis), enones (0.10 mmol), amines (0.11 mmol), HCOONa (1.0 mmol), 2.0mL of iPrOH/H2O (v/v = 1:

1), and reaction time (8–24 h).
b Isolated yields.
cThe ee was determined chiral HPLC analysis (see SI in Figures S5, S7).
dData were obtained using the mixed DABCO–siloxane and its homogeneous MesityleneRuTsDPEN as dual catalysts.
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performance in intermolecular aza–Michael addition/ATH one–
pot process through the use of tandem reaction of acrylophenone
and phenylamine as an example at the beginning. Based on
the preliminary optimization of reaction conditions (see Table
S1 of ESI), the tandem reaction was carried out with the 2.0
mol% of ruthenium–loading in 1 as a catalyst, the HCOONa
as a hydrogen resource in the mixed solvents (H2O/

iPrOH,
v/v = 1/1) at 40◦C reaction temperature. It was found that
the organic transformation of 1–phenylprop−2–enone and
aniline could provide the target product 3a in 92% yield with
96% ee in 8 h. Such a yield was markedly higher than that
of 79% yield obtained by the use of mixed homogeneous
(DABCO)BF4 and homogeneous (MesityleneRuTsDPEN)BF4 as
dual catalysts, even in a prolonged reaction time (Table 1,
entry 1 and 2). This comparative analysis well demonstrated
the existence of cross–interaction between (DABCO)BF4 and
chiral (MesityleneRuTsDPEN)BF4 in the homogeneous catalytic
conditions. Further products analysis found that about 19% of
intermediate 1–phenyl−3–(phenylamino)propanone could not
be converted, suggesting the DABCO part interfered in the
reduction of (MesityleneRuTsDPEN)BF4. In other words, high
catalytic activity of catalyst 1 demonstrated that the dual active
species in catalyst 1 could overcome efficiently this kind of cross–
interaction because the co-existent dual active had a potential
site–isolated effect in the nanopores of catalyst 1. Meanwhile,
the obtained 96% ee in this tandem reaction was comparable to
that of 97% ee obtained in single–step ATH transformation of 1–
phenyl−3–(phenylamino)propanone, disclosing that the chiral
catalytic environment of single–site (MesityleneRuTsDPEN)BF4
species in catalyst 1 was not affected during the immobilization
procedure. This judgment could be further confirmed by a
comparison of the XPS spectra. It was found that catalyst 1

and its homogeneous counterpart ((MesityleneRuTsDPEN)BF4)
had the similar Ru 3d5/2 electron binding energies (281.88 vs.
281.81 eV), as displayed in Figure 5. This finding confirmed the
presence of the similar catalytic environment as both had the
similar electronic environment of active ruthenium centers.

Promoted by the previous catalytic results, the as-synthesized
heterogeneous catalyst 1 was thereafter examined using the
aza–Michael addition/ATH enantioselective cascade reactions by
systematically changing the substitution pattern of enones under
the same reaction conditions, and the results were summarized
in Table 1. It was found that all tandem reactions with the
tested substrates could produce steadily the corresponding chiral
products in satisfactory yields and excellent enantioselectivities.
Gratifyingly, the electronic properties of substituents attached
to the aromatic rings of Ar2 group affected slightly reactivity,
where the reactions with electron–withdrawing substituents
had inferior yields relative to those results obtained with
electron–donating substituents (Entries 3–8, 9–12). However,
their enantioselectivities were not affected significantly for all
chiral products bearing electron–withdrawing and/or –donating
substituents of Ar2 group had high ee values (Entries 3–12).
Similarly, in the case of the substituents on the aromatic rings of
Ar1 group, this phenomenon was also observed (Entries 13–18).

In order to confirm the tandem behavior and explore the
catalytic nature of catalyst 1, the time course for one–pot organic

FIGURE 5 | The XPS spectra of the homogeneous (MesityleneRuTsDPEN)BF4
and catalyst 1.

FIGURE 6 | Time course of the aza–Michael addition/ATH of 1–phenylprop

−2–enone and aniline to (S) −1–phenyl −3–(phenylamino) propanol (reaction

was performed with 1 equivalent of 1–phenylprop−2–enone, 1.1 equivalent of

aniline, 2.0mol % of catalyst 1, 10.0 equivalent of HCOONa at 40◦C).

transformation of acrylophenone and phenylamine to chiral γ-
secondary amino alcohols 3a was investigated. It is worth noting
that both the aza–Michael addition of aniline to acrylophenone
(2a) and the ATH transformation of reaction intermediate A

to chiral γ-secondary amino alcohols 3a occur simultaneously
during the first 1 h, where the content of 1–phenylprop−2–
enone (2a) rapidly decreases down to 9% and that of (S)−1–
phenyl−3–(phenylamino)propanol (3a) rises to 12%, as outlined
in Figure 6. Meanwhile, during the first hour, the maximum 79%
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FIGURE 7 | Reusability of catalyst 1 for the organic transformation of

1–phenylprop − 2–enone and aniline to (S) − 1–phenyl −

3–(phenylamino)propanol.

yield of the intermediate 1–phenyl−3–(phenylamino)propanone
(A) is observed. Subsequently, one–pot organic transformation
of acrylophenone and phenylamine proceeds smoothly, resulting
in (S)−1–phenyl−3–(phenylamino)propanol (3a) in 92% yield
within 8 h. Such a time course reveals the catalytic nature of this
aza–Michael addition/ATH enantioselective undergoes a tandem
process.

As a heterogeneous catalyst, it was highly expected that it
could be recovered by simple centrifugation and the recycled
catalyst could retained highly reactivity even after several
recycle. Indeed, the newly developed catalyst 1 could be easily
separated and recovered using centrifugation techniques from
reaction solution, providing the desired adduct 3a in 90%
yield with 96% ee in fifth recycled experiment via the one-pot
aza–Michael addition/ATH enantioselective tandem reaction of
acrylophenone and aniline (Figure 7, also see Table S2 and Figure
S7 of ESI). In order to explain the decreased reactivity after fifth
recycle (at sixth run), an analysis of the Ru–leaching was carried
out by the use of ICP–OES techniques. The result showed that the
amount of Ru at fifth run was 9.59mg (0.0941 mmol) per gram of
1, meaning that the leaching amount of Ru should be 7.8% with
respect to the original value (10.40mg, 0.1020 mmol of Ru per
gram of catalyst). For comparison, ICP–OES analysis after fifth
recycle (at sixth run) indicated that the amount of Ru was 9.21mg
(0.0904 mmol) per gram of 1 and 11.6% of Ru was lost, revealing
the obviously decreased reactivity at sixth run was attributed to

the large number of Ru–leaching in catalyst 1. In addition, the
loss of (DABCO)BF4 molecules after fifth recycle was about 20%
via a comparison of their element analyses.

CONCLUSIONS

In conclusions, by using a BF−4 anion–bonding strategy,
we develop a facile approach to one–steps assemble both
DABCO–molecules and chiral ruthenium/diamine–complexes
species into the inner surface of Me–FDU−12, constructing
a bifunctional heterogeneous catalyst. As we envisaged, the
DABCO–molecules in catalyst 1 as a Lewis base enables aza–
Michael addition whereas chiral ruthenium/diamine–complex as
chiral promoter catalyzes asymmetric transfer hydrogenation.
Synergistic contribution of both functionality boost greatly one–
pot enantioselective synthesis of a series of chiral γ-secondary
amino alcohols from enones and amines in a tandem manner.
This method described here offers an operationally simple
synthetic procedure to fabricate bifunctional heterogeneous
catalyst used for synthesis of valuable chiral pure γ-secondary
amino alcohols.
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