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The Keggin-type polyoxometalate [γ-SiW10O36]
8− was covalently modified to obtain a

bis-biotinylated conjugate able to bind avidin. Spectroscopic studies such as UV-vis,

fluorimetry, circular dichroism, coupled to surface plasmon resonance technique were

used to highlight the unique interplay of supramolecular interactions between the

homotetrameric protein and the bis-functionalized polyanion. In particular, the dual

recognition mechanism of the avidin encompasses (i) a complementary electrostatic

association between the anionic surface of the polyoxotungstate and each positively

charged avidin subunit and (ii) specific host-guest interactions between each biotinylated

arm and a corresponding pocket on the tetramer subunits. The assembly exhibits

peroxidase-like reactivity and it was used in aqueous solution for L-methionine methyl

ester oxidation by H2O2. The recognition phenomenon was then exploited for the

preparation of layer-by-layer films, whose structural evolution was monitored in situ by

ATR-FTIR spectroscopy. Finally, cell tracking studies were performed by exploiting the

specific interactions with a labeled streptavidin.

Keywords: biotin, avidin, polyoxometalates, recognition, surface plasmon resonance, bio-hybrids, oxidation

catalysis

INTRODUCTION

The preparation of bio-inorganic conjugates is currently investigated for the preparation of
biosensors, metal-based antibiotics, radiopharmaceuticals, anti-cancer drugs, and imaging contrast
agents (Orvig and Abrams, 1999; Barry and Sadler, 2013; Albada and Metzler-Nolte, 2016;
Liu et al., 2016). In addition, bio-hybrid nanostructures are emerging as innovative functional
materials (Wortmann et al., 2014; Liu et al., 2016). Among inorganic nanodrug candidates,
polyoxometalates (POMs) are multi- metallic and polyanionic oxides which have shown interesting
potential applications as antibacterial, antiviral, antitumoral agents (Rhule et al., 1998; Hasenknopf,
2005; Bijelic et al., 2018). Such biological activity mainly derives from their redox behavior, their
biomimetic activity, or from their capability to interact with biological macromolecules through
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electrostatic interactions (Prudent et al., 2008; Li et al., 2016). Due
to their nanosized dimension and polyanionic charge, indeed,
POMs can easily interact with positively charged domains of
peptides and proteins, affecting their secondary/tertiary structure
and altering their functionalities (Wu et al., 2005; Zhang et al.,
2008; Geng et al., 2011). On the other hand, the competition
with electron rich natural substrates, such as DNA and ATP, can
also lead to the inhibition of enzymatic processes (Judd et al.,
2001; Prudent et al., 2010; Iqbal et al., 2013; Stephan et al.,
2013). To control this behavior, POMs can be engineered to
tune their polarity, redox potential, shape, acidity and surface
charge distribution (Rhule et al., 1998; Hasenknopf, 2005; Bijelic
et al., 2018). However, since inorganic POMs present low
hydrolytic stability at physiologically relevant pH values, leading
to cytotoxic derivatives, many efforts have been made to modify
their structure and composition, in order to obtain compounds
with low toxicity, higher stability and selectivity (Wang et al.,
2003). In particular, the covalent functionalization of POMs
with organic pendants (Dolbecq et al., 2010; Proust et al., 2012)
imparts higher stability under physiological conditions, and
offers an appealing strategy for improving their bio-distribution
(Dong et al., 2011; Flütsch et al., 2011; Yang et al., 2013; Fu et al.,
2015; Karimian et al., 2017; Linnenberg et al., 2017). There is a
definite potential of hybrid, organic-inorganic, POMs to trigger
the recognition of cellular receptors and of biological matter,
although with few cases (Li et al., 2013; Ventura et al., 2018).
In this direction, we have designed a tweezer-like (Carraro et al.,
2012a; Modugno et al., 2014) biotinylated POM (Prudent et al.,
2008; Linnenberg et al., 2017) in order to exploit the well-known
avidin-biotin complex (ABC).

The affinity between biotin (vitamin H) and the
homotetrameric avidin is known as one of the strongest
non-covalent interactions in nature, with a dissociation
constant KD = 10−15 M. Avidin is the natural transport
protein of biotin and the biotin-avidin association is routinely
exploited in several biochemical assays. In addition, since
avidin can expose a diffuse positive charge (with an isoelectric
point, pI, of about 10.5), the complementary electrostatic
interaction with the negative POM surface can be a further
assembly drive. We show herein that a bis-functionalized
decatungstosilicate complex with formula (nBu4N)3H[γ-
SiW10O36{(C5H7N2OS)(CH2)4CONH(CH2)3Si}2O] (TBA-
POM-biot2) interacts with the avidin target by an interplay
of electrostatic and host-guest binding interactions, which
set the basis for novel supramolecular bio-conjugates with
applications in drug delivery, catalysis and material sciences. In
particular, surface plasmon resonance (SPR), UV-vis, circular
dichroism (CD), fluorescence spectroscopy and attenuated
total reflectance Fourier transform infrared spectroscopy
(ATR-FTIR) evidences are compared and contrasted vis-à-vis the
association properties of biotin-free POMs, as well as considering
the stoichiometry/geometry of the resulting bio-hybrid
adduct.

Our results include catalytic tests in the presence of H2O2 as
co-factor, which highlight the functional response of the POM
surface as artificial peroxidase, and a preliminary investigation
on cell internalization (Dong et al., 2011; Flütsch et al., 2011; Yang

et al., 2013; Fu et al., 2015; Karimian et al., 2017; Linnenberg et al.,
2017) of the biotinylated POM by means of labeled streptavidin.

EXPERIMENTAL SECTION

K8[γ-SiW10O36] (K-POM), (Canny et al., 1986) (nBu4N)4[γ-
SiW10O34(H2O)2] TBA-POM (Kamata et al., 2003) (nBu4N)4[γ-
SiW10O36{NH2(CH2)3Si}2O] (TBA-POM-NH2) (Carraro et al.,
2006, 2012a; Modugno et al., 2014) were prepared as described in
the literature.

Phosphate saline buffer (PBS) was prepared dissolving
sodium phosphate 0.01M, sodium chloride 0.14M,
potassium chloride 0.03M in deionized water and used in all
experiments.

Synthesis of (nBu4N)3H[γ-SiW10O36{(C5H7N2OS)(CH2)4
CONH(CH2)3Si}2O] (TBA-POM-biot2): Biotin (37mg,
151µm) was introduced in a well dried Schlenk with magnetic
stirring, under N2 atmosphere. Anhydrous DMF (0.5mL) and
CH3CN (1mL), N,N

′

-dicyclohexylcarbodiimide DCC (33mg,
160µm) and N-hydroxysuccinimide NHS (19mg, 164µm)
were then added. The reaction mixture, vigorously stirred, was
allowed to react for one night at 50◦C, under nitrogen. Then,
TBA-POM-NH2 (200mg, 59.4µm) and TEA (21.3µL, 149µm)
were dissolved in 2ml of anhydrous CH3CN and added to the
reaction mixture. The mixture was stirred for 1 day at room
temperature. Finally, the reaction mixture was centrifuged to
remove insoluble reagents and byproducts. The volume of the
solution was reduced to 1mL, upon evaporation under vacuum,
then water was added to precipitate the product. The solid was
washed with water (3 times) and diethyl ether (3 times) on a
fritted funnel under vacuum. 154mg of product were obtained
(68% yield).

FT-IR (KBr, cm−1): 2961 (m), 2,934 (m), 2,873 (m), 1,662 (m),
1,469 (m), 1,387 (w), 1,099 (w), 948 (m), 901 (s), 820 (s), 734 (s),
544 (w); 1H NMR (300 MHz, CD3CN, δ): 0.55 (4H, m), 0.99
(48H, m), 1.39 (32H, m), 1.64 (32H, m), 2.63 (2H, m), 3.15
(32H, m), 4.33 (2H, m), 4.49 (2H, m), 5.09 (2H, s, br), 5.85 (2H,
s, br), 6.89 (2H, s, br); 13C NMR (75.5 MHz, CD3CN, 301K, δ):
14.08 (32C), 20.42 (32C), 21.96 (2 C), 24.47 (32C), 25.92 (2 C),
26.67 (2 C), 29.21 (2 C), 36.77 (2 C), 41.89 (2 C), 42.90 (2 C), 56.56
(2 C), 61.24 (2 C), 62.77 (2 C), 164.69 (2 C), 174.18 (2 C); 29Si
NMR (CH3CN/CD3CN, 301K, δ): −62.01 (2 Si, s), −88.43 (1 Si,
s); 183WNMR (16.67 MHz, CH3CN/CD3CN, 301K, δ):−107 .55
(4W, s),−136.09 (2W, s),−142.08 (4W, s); ESI-MS (-), CH3CN,
m/z: calcd for [C26H44N6O41S2Si3W10]4− 770.9; found, 768.2,
Anal. calcd. for C74H153N9O41S2Si3W10 C 23.3; H 4.1; N 3.3; S
1.7; found: C 23.1; H 4.2; N 2.7; S: 0.9.

Synthesis of hybrid POMs as sodium salts: Na4[γ-SiW10O36

{(C5H7N2OS)(CH2)4CONH(CH2)3Si}2O] (Na-POM-biot2)

and Na4[γ-SiW10O36{NH2(CH2)3Si}2O] (Na-POM-NH2): In
around-bottomed flask, 100mg of TBA-POM-Biot2 or TBA-

POM-NH2 (24.7 µmol) were dissolved in 3ml of acetonitrile.
Then 26.7mg of tetramethylammonium bromide (173 µmol),
dissolved in 2ml of water, were added. The reaction mixture was
stirred at room temperature for one night. The solution obtained
was then poured into EtOH (15mL). The white precipitate
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obtained was filtered, dried under vacuum and, finally, eluted
in a chromatography column (3 cm diameter, 40 cm length)
partially filled (ca. 100 cm3 volume) with a cation exchange
resin (Amberlyst 15) pre-loaded with sodium ions (1M NaCl
overnight), using ca. 50mL of water/acetonitrile mixtures with
variable composition (from 50:50 to 100:0) as eluent. Finally,
the solution was lyophilized to remove water. The Na-POMs
were collected with ca. 40% yield. FT-IR of Na-POM-biot2 (KBr,
cm−1): 3,464 (s,b), 2,928 (w), 2,870 (w), 1,684 (s), 1,635 (s), 1,558
(m), 1,541 (m), 1,458 (s), 1,270 (s), 1,039 (m), 958 (m), 883 (s),
824 (m), 753 (s), 528 (w). FT-IR of Na-POM-NH2 (KBr, cm−1):
997 (w), 862 (m), 901 (s), 797 (s), 744 (m), 517 (m).

SPR Measurements
SPR analysis was performed on a BIACORE 100 system. CM5
chips from BIACORE (Uppsala, Sweden) were used for all
the experiments. Avidin was anchored to the chip via EDC-
NHS activation of the surface. To this aim, a dextrane-coated
gold chip (CM5) was activated by flowing a 1:1 mixture of
0.2M N-ethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC)
and 0.05M N-hydroxysuccinimide (NHS) in water. Avidin
(50µg/mL) in 10mM sodium acetate (pH 5) was immobilized
on the activated chip surfaces at a flow rate of 10 µL/min.
Excess of activated carboxylic groups on the chip was blocked
with ethanolamine. HBS-EP buffer (0.01M HEPES pH 7.4,
0.15M NaCl, 3mM EDTA, 0.005% v/v Surfactant P20) was
used as running buffer to dilute avidin and water soluble POM
solutions and for avidin immobilization. HBS-EP buffer with
5% DMSO was used to dilute all the other POMs solution and
as running buffer in the corresponding experiments. All the
solutions were filtered on a 0.22µm membrane prior to use.
All the experiments were conducted at 25◦C with constant flux
of 10 µl/min. Association and dissociation phases were 200 s
and 100 s long, respectively. After each experiment, the surface
was regenerated using 1M NaCl in 50mM NaOH. The recovery
of the initial RU count was controlled before considering
chip reutilization. The kinetic parameters were calculated using
the BIACORE evaluation software on a personal computer.
Analysis and fitting were performed using the bridging ligand
model.

ATR-FTIR Monitoring of LbL Self-Assembly
ATR-FTIR spectra were acquired with a Perkin Elmer Spectrum
One spectrometer equipped with an ATR horizontal sampling
apparatus. The internal reflection element (IRE) was a three
bounce 4mm diameter diamond microprism (Smith Detection,
USA, former SensIR technologies). The spectral resolution used
for all measurements was 4 cm−1. Before each experiment, the
diamond crystal was polished with an aqueous 0.05µm Al2O3

slurry and then rinsed with deionized water and ethanol. The
deposition of alternate layers of Na-POM-biot2 and avidin onto
the diamond surface was achieved in a flow-based “layer by layer”
manner by means of a cylindrical flow cell clamped onto the
ATR plate and sealed via a Parafilm gasket, with an internal
volume of 150µL. Spectra were acquired while Na-POM-biot2
or avidin solutions were flowed across the surface of the IRE
at a flow rate of 2.2mL min−1 using a peristaltic pump. Both

POM and avidin were dissolved in PBS buffer at pH 7.0. Final
POM and avidin concentrations were 0.13 and 0.4 g/L (40 and
6.3µM) respectively. A positively charged protein as cytochrome
c (pI = 10.0–10.5, close to that of avidin) can be easily bound to
Na-POM-biot2 layers, while a negatively charged protein as GOx
(pI = 4.05) suffers from a strong repulsion with the polyanion,
which is completely rinsed from the surface.

Cell Culture and Imaging
Human cervical carcinoma cells (HeLa) were grown in a standard
culture media at 37◦C and in 5% CO2 atmosphere. Cells were
seeded in a µ-Slide 8-well ibidi plate (Martinsried, Germany)
at a density of 5 × 104 cells per well (1.0 cm2) and were
allowed to adhere overnight. Before cell incubation with POMs,
the medium was changed. Cells were then incubated with 0.2
or 0.4mg/ml of Na-POM-NH2 or Na-POM-biot2 for 24 h at
37◦C. After incubation the cells were washed 3 times with
PBS, fixed with paraformaldehyde, permeabilized by Triton and
then stained with Atto 633-Streptavidin (Sigma #00336). Nuclei
were counterstained with Hoechst 33342 (Invitrogen, Oregon,
USA), according to manufacturer’s instructions. Cellular uptake
and internalization of biotin labeled POMs was visualized and
evaluated with an inverted confocal laser scanning microscope
(CLSM; Carl Zeiss LSM 510) equipped with a 63×/1.3 oil DIC
objective, using excitation lines at 405 (Hoechst 33342) and
633 nm (Atto 633-Streptavidin 638/658). ImageJ software was
used for image analysis. PI staining and FACS (Fluorescence-
activated cell sorting) signals were analyzed accordingly to a
literature protocol (Riccardi and Nicoletti, 2006).

RESULTS AND DISCUSSION

Synthesis
The bis-biotinylated POM has been obtained starting from
the divacant decatungstosilicate K8[γ-SiW10O36] K-POM, which
has been initially treated with aminopropyl triethoxysilane
(APTES) and tetrabutylammonium bromide to yield the
doubly functionalized amino-derivative (nBu4N)3H[γ-SiW10O36

{NH2(CH2)3Si}2O] TBA-POM-NH2 (Scheme S1) (Carraro et al.,
2006).

The addition of dicyclohexylcarbodiimide (DCC) to a
CH3CN/DMF solution of POM-NH2, biotin and N,N-
diisopropylethylamine at 0◦C, results in the formation of the
biotinylated conjugate (nBu4N)3H[γ-SiW10O36{(C5H7N2OS)
(CH2)4CONH(CH2)3Si}2O] (TBA-POM-biot2) (68% yield,
Figure 1). TBA-POM-biot2 has been characterized by 1H, 13C,
29Si, 183W NMR (CD3CN), FT-IR, ESI-MS (Figures S1–S6) and
elemental analysis. 1Hand 13CNMR signals confirm the presence
of biotin signals (among diagnostic peaks, three broad NHCO
signals at 5.1, 5.9, 6.9 ppm and the two C=O signals at 164.7 and
174.2 ppm, Figures S1, S2), while heteronuclear (29Si and 183W,
Figures S3, S4) NMR yield the typical signal patterns expected
for a divacant Keggin structure decorated with a R-Si-O-Si-R
tweezer-like motif,11 thus confirming the integrity of the POM
scaffold after the post-functionalization with biotin. ESI-MS
(negative mode, CH3CN, Figure S5) shows a peak atm/z= 768.2,
due to the tetra-anionic species ([C26H44N6O41S2Si3W10]4−,
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FIGURE 1 | Structure of POM-biot2 [γ-SiW10O36{(C5H7N2OS)(CH2)4
CONH(CH2)3Si}2O]

4− showing the organic domain, including the biotin and

an aminopropyl spacer, and the ball & stick model of the inorganic scaffold

(blue balls = W atoms; red balls = oxygen atoms), and possible POM binding

modes (bridging or tweezer) with the avidin homotetramer.

calcd. m/z = 770.9). The corresponding water soluble salt
(Na-POM-biot2) was obtained by replacing TBA counterions
with Na+ on an ion-exchange resin (Figure S7).

Study of the Avidin/POM-Biot2 Host-Guest
Binding Interaction
The interaction between avidin and TBA-POM-biot2 was
investigated including a direct comparison with the biotin
free precursors TBA-POM-NH2 (Carraro et al., 2006, 2012a;
Modugno et al., 2014) and (nBu4N)4[γ-SiW10O34(H2O)2] TBA-
POM, (Kamata et al., 2003) their corresponding alkali metal salts
Na-POM-biot2, Na-POM-NH2, K-POM, as well as the POM-
free biotin (Biot). This approach is aimed at dissecting the diverse
contribution of the POM components (anionic charge, satellite
counterions, organic spacer and biotin-tweezer) that could play a
role with respect to the avidin binding.

A first investigation on the interaction between avidin
and TBA-POM-biot2 was performed by monitoring circular
dichroism (CD, Figures S8–S11). Avidin, in the region 220–
235 nm, shows a positive Cotton effect (λmax = 227 nm),
(Verdoliva et al., 2010) which is only slightly affected (15%
decrease) by Biot guest, with a maximum decrease after addition
of 4 guest equivalents (Figure S8). Addition of POMs has a
stronger impact, with an abatement of the dichroic signal ranging
from 50% (for K-POM) to 60% (for POM-Biot2), after addition
of about one POM equivalent per avidin subunit. This evidence
suggests that the POM scaffold by itself induces a modification of
the protein structure, likely ascribed to electrostatic or hydrogen
bond interactions between the inorganic POM surface and the
protein residues Wu et al., 2005; Zhang et al., 2008; Geng et al.,
2011; Li et al., 2013; Ventura et al., 2018).

Fluorescence quenching is generally used to monitor the ABC
host-guest interaction, that leads to the rearrangement of two

or three tryptophan (Trp) residues shifting into an internal,
more hydrophobic protein environment. These phenomena are
responsible for a typical blue-shifted fluorescence quenching
(Kurzban et al., 1989). This is indeed the case of avidin titrated
with Biot or TBA-POM-biot2 (Figure 2, Figures S12, S13),
which both give a partial quenching of the emission, with
a wavelength shift from 338 to 331 nm. Monitoring of the
fluorescence intensity ratio, (I0/I)-1, at 338 nm upon addition
of TBA-POM-biot2(Figure 2, Figure S13), yields an initially
upward curvature, suggesting the involvement of both static and
dynamic quenching, followed by a different regime after the
addition of 1 biotin equivalent per avidin subunit (corresponding
to two POM equivalents per tetrameric avidin, 1×10−6 M). The
lower slope of the second region is in agreement with a decreased
affinity for additional POM units.

No fluorescence shift is observed with the biotin-free POMs
(Figures S14–S16), that are instead responsible for a continuous
static quenching, as reported in literature for other proteins,
with Stern-Volmer constant KSV =104-106 M−1 (Zhang et al.,
2007; Goovaerts et al., 2013). From the initial points of the
Stern-Volmer plots (Figure 2, Figures S12–S16), it is indeed
possible to compare the quenching efficiency of all samples, being
>3 times higher for TBA-POM-biot2 (Ksv = 9.6 × 105 M−1)
than those obtained for the other samples (Ksv in the range
1–3 × 105 M−1). This result highlights the dual role of both
the biotin pendant and of the POM scaffold interacting with
avidin.

To gain further insight on the binding nature, the affinity of
all synthesized POMs toward avidin was investigated via UV-
vis by means of the HABA (4′-hydroxyazobenzene-2-carboxylic
acid, a molecule with lower affinity for avidin with respect to
biotin) competitive titration probe (Figure 2, Figures S17–S20)
(Skander et al., 2004). When the commercially available HABA-
avidin adduct (KD (HABA-avidin) = 10−6 M) is titrated with
biotin, a progressive decrease of the 500 nm absorption peak,
due to bound HABA, is observed. In this way, the number of
the effective hosting sites can be monitored from the number of
released HABA equivalents. Four biotin equivs are required to
displace all HABA molecules. In our case, 2 equivalents of TBA-
POM-biot2 are indeed enough to replaceHABA, thus confirming
the retention of the guest-specificity of both biotins installed on
POM surface. As expected, the biotin-free POMs have no effect
on HABA displacement (Figure 2, Figures S19, S20).

Concerning the binding geometry, POM-biot2 can adopt two
possible arrangements: either one avidin serves as a di-topic
receptor for the POM-biot2 tweezer, or POM-biot2 bridges two
distinct avidins (Figure 1). Considering the steric hindrance of
the POM scaffold, the latter binding mode is the most likely
(Green et al., 1971; Geninatti Crich et al., 2005). The POM-
bridgingmodel was further inspected through amodified HABA-
substitution titration. HABA-avidin was first titrated with 3
equivalents of biotin, in order to generally leave only one binding
site occupied by HABA per protein (Figure S21). When 0.5
equivalents of TBA-POM-biot2 were added to the solution, they
displaced all the remaining avidin-bound HABA, suggesting that
each conjugate may easily arrange in a bridging conformation
where two avidins are simultaneously bound.

Frontiers in Chemistry | www.frontiersin.org 4 July 2018 | Volume 6 | Article 278

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zamolo et al. Polyoxometalate-based Bio Hybrids

FIGURE 2 | (Top) Fluorescence spectrum of avidin (1 × 10−6 M, in PBS 5%

DMSO, 25◦C) in the presence of increasing amount of TBA-POM-biot2
(0–6µm) dissolved in PBS 5% DMSO. Excitation wavelength: 280 nm; 1 cm

path length quartz cell. Inset: Stern-Volmer graphs, obtained for the

fluorescence emission at 338 nm, in the presence of different POMs or Biot, in

the range 0–2µM. (Bottom) UV-vis spectra of tetrameric avidin-HABA (0.65

× 10−6 M, in HEPES buffer, 25◦C) in the presence of increasing amount of

biotin equivalents. Inset: % absorbance decrease observed at 500 nm in the

presence of Biot (0–0.81µM) or different POMs (0–0.41µM, 1 biotin equiv.

corresponding to 0.5 POM equivs.).

The strength of the interaction between the guests and
avidin was then investigated by using the SPR (Surface Plasmon
Resonance) technique. To this aim, avidin was immobilized
on a dextran-coated gold chip via amide coupling (about
2–4 ng/mm2) and exposed to an increasing amount of
TBA-POM-biot2 in HBS-ES buffer containing 5% DMSO,
producing the corresponding sensorgram (Figure 3, top). Each
injection of TBA-POM-biot2 produces a clear increase of
signal, measured in resonance units (RU), indicating the
binding of the compound to the chip surface. After the
injections, the flow of the buffered solutions induces a partial
dissociation of TBA-POM-biot2 from the surface but, after four
additions, a substantial amount of TBA-POM-biot2 (250 RU,

FIGURE 3 | Sensorgram (red lines) obtained for TBA-POM-biot2 (Top) and

of Na-POM-biot2 (Bottom) with their corresponding fittings obtained as the

result of three concomitant events: a specific binding (gray track), a reversible

interaction (purple curve) and a negligible bulk contribution arising from dilution

artifacts (pink line). Conditions: flow (10 µl/min) of POM-biot2 solutions (5, 10,

20, 40µM) in HBS-ES buffer (pH = 7), with 5% DMSO (only for

TBA-POM-biot2 ) on an avid functionalized dextran-coated gold chip.

corresponding to 0.25 ng/mm2) remains strongly anchored on
the surface.

The sensorgram in Figure 3 is the result of two different
biding contributions, featuring different strength and specificity.
Indeed, the sensorgram could be successfully fitted with a model
accounting for two binding modes. The first is characterized
by a slow association, followed by a very slow dissociation
rate, resulting in irreversible binding that leads to a stable
anchorage of the TBA-POM-biot2 on the avidin- modified
chip.

This behavior is typical of the specific ABC formation, yielding
the dissociation constant KD = 2 × 10−14 M, which is in the
expected range of the avidin-biotin interactions. The second
binding mode, which is likely related to unspecific electrostatic
interactions, features quite fast association and dissociation rates,
resulting in a calculated KD = 4× 10−6 M.Owing to its reversible
character, it does not contribute to the final RU counts, i.e., to the
amount of TBA-POM-biot2 that remains irreversibly bound to
the avidin-modified chip.
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Similar results were obtained for Na-POM-biot2 (Figure 3,
bottom) whereby, taking into account the different loading and
the different solvent buffer composition (HBS-ES buffer with
no DMSO), the only relevant difference is a lower dissociation
constant for the unspecific electrostatic binding (KD = 5 ×

10–8) M, that is likely ascribed to an easier cationic exchange, in
aqueous environment, between the tetracationic avidin subunits
and Na+.

To evaluate the contribution of the organic groups and of the
anionic surface of the POM in the affinity toward avidin, the
behavior of other POMs was then screened (Figures S23, S24).
Both TBA-POM-NH2 and TBA-POM revealed an unusually
high affinity toward avidin, corresponding respectively to a KD

of 10–9 M and 10–8 M, in addition to a reversible contribution
with value KD = 10–6 M.

The fluorescence quenching profiles and the SPR results
indicate that the presence of organic residues, on the
POM surface, promotes a stable association with avidin,
since both TBA-POM-NH2 and TBA-POM display an
improved affinity and on-chip adhesion with respect to
totally inorganic species (cfr. K-POM in Figure S25). This
behavior can be ascribed to a preferential interaction of
POM hybrids with the apolar binding site of avidin, thus
reinforcing the association (Mock et al., 1988; Rosano et al.,
1999).

To highlight the cross-linking potential of the TBA-POM-

biot2, for the organization of multi-avidin networks, we have
explored the modification of the SPR response upon alternate
addition cycles of the avidin host and of the biotinylated POM
guest (Taylor et al., 1991)1. Interestingly, addition of further
avidin on the chip irreversibly loaded with POM-based ABC in
the first experiment cycle, shows a significant increase of the
RU values, confirming the additional scavenging of avidin by
the TBA-POM-biot2 (Figure S22), and the occurrence of the
bridging binding mode (Figure 1). Moreover, fitting of the SPR
curves, yields a KD of ca. 10–14 M for the second binding event,
that points to an independent behavior of the two biotinylated
arms anchored on the POM surface.

This POM-directed biotinylated bridge is expected to enable
the formation of polymeric structures2. The cross-linked
interaction between the biotinylated POM and avidin can be
carefully controlled by means of a layer-by-layer (LbL) approach
(Ariga et al., 2007). ATR-FTIR spectroscopy was thus employed
for in-situ monitoring of the sequential deposition of alternate
POM-biot2/avidin layers on diamond micro prism which served
as internal reflection element and as solid support for the
deposited layers (in this case, the sodium salt was used to
fully exploit the two binding contributions, while avoiding the
competing hydrophobic interactions, see text above). By means
of a simple physisorption process, avidin proved to adhere

1The amount of loaded POM, after a first measurement corresponds to about 10%
of the maximum hosting capability by the avidin, meaning that biotin equivalents
are in stoichiometric defect.
2Transmission electron microscopy (TEM) images obtained for Na-POM-Biot2
and avidin (2:1) assembled in aqueous environment show the occurrence of
entangled amorphous aggregates with cross section > 50 nm (Figure S26)

irreversibly onto the bare ATR crystal forming the first protein
layer. The intensity of infrared absorption bands, arising from
subsequent deposition of alternate POM/avidin layers, reveals
that the amount of immobilized avidin increases in presence
of a Na-POM-biot2 layer, according to the deposition process
sketched in Figure 4 (steps A-D). The bridging action of Na-
POM-biot2, indeed, promotes the deposition of multiple avidin
layers and strengthen the bio-hybrid architecture.

Moreover, in situ ATR-FTIR spectroscopy monitoring under
flow conditions, shows that the Na-POM-biot2 adhesion occurs
by a strong irreversible host-guest interaction but also via a much
weaker binding mode that appears reversible upon rinsing.

The total loading of avidin in the second deposition cycle
(step D) is consistent with ca. 3 fold infrared signal enhancement,
which is indicative of multiple cross-links directed by the
biotinylated POM (Figure 4).

On the other hand, spectra recorded upon addition of Na-
POM-biot2 over a biotin-saturated avidin layer show signal
intensities 3 times lower than those obtained with the free
avidin, highlighting the role of host-guest interaction in
promoting an efficient protein/POM association (Figure S27).
A further evidence in this direction has been collected by
using streptavidin, another target protein of biotin, which is
characterized by a negative surface at neutral pH (pI= 5, Dittmer
et al., 1989). In this case, a smaller (25% lower) ATR-FTIR signal
can be detected, as a result of the repulsion between the negative
charge densities on both surfaces, which hampers the formation
of a dense protein layer onto the physisorbed Na-POM-biot2
layer (Figure S28).

The possibility to access POM based bio-hybrid films is
relevant for the design of functional materials with application
in sensor technology, electronics, catalysis and nanomedicine
(Volatron et al., 2015).

Catalytic Behavior of the POM/Avidin
Assembly
The highly specific interaction resulting from the association of
biotin with avidin is commonly exploited for the design of novel
semi-synthetic metalloenzymes, whereby the natural protein,
functionalized with a biotinylated metal complex, provides a
biostructured environment for the catalytic core (Steinreiber
and Ward, 2008). Owing to the capability of vacant POMs
to activate hydrogen peroxide (Carraro et al., 2006, 2012b;
Sartorel et al., 2007), the Na-POM-biot2/avidin (2:1) assembly
has been evaluated as potential POM-based bio-hybrid catalyst
for the oxygen transfer to a hydrosoluble organic sulfide.
The two-step oxidation of L-methionine methyl ester to its
corresponding sulfone has thus been considered as model
reaction to demonstrate the retention of catalytic properties of
the assembled POM (Carraro et al., 2011). The reaction smoothly
occurs in buffered aqueous solution [pH 7, at T = 28◦C, i.e.,
under non-denaturating conditions (Thomas et al., 2005; Pordea
et al., 2009)] where it was monitored by FT-IR, see Figure
S29). Owing to its polymeric nature, Na-POM-biot2/avidin acts
as dispersed heterogeneous peroxidase. While the conversion
of the L-methionine methyl ester to its sulfoxide is very fast

Frontiers in Chemistry | www.frontiersin.org 6 July 2018 | Volume 6 | Article 278

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zamolo et al. Polyoxometalate-based Bio Hybrids

FIGURE 4 | Layer by Layer deposition of alternating avidin/Na-POM-biot2 layers. The deposition model proposed (left) is in agreement with adsorption kinetics of

both components (right). The letters A, B, C, D allow to relate the steady infrared signals with the molecular architecture of the films. Marker bands for avidin and

POM are at 1,536 and 919 cm−1 respectively. Each kinetic curve was obtained in difference mode, thus following the deposition of the last fluxed component.

(quantitative conversion was observed in ca. 10min), further
oxidation to sulfone was achieved in ca 24 h, with t1/2 = 5.1 h
(Figure S29). The isolated Na-POM-biot2 displays a similar
catalytic activity (t1/2 = 4.1 h) thus indicating that the avidin
ligation is not precluding the access of both substrate and H2O2

to the POM active sites3.

POM Delivery and Tracking Into HeLa Cells
The control of the interaction between POMs and protein
can be also exploited to design new delivery strategies. The
cell delivery of metal-cores as bio-hybrid conjugates often
represents a challenging task, while offering a promising strategy
for advanced theranostic and anti-oxidant defense (Orvig and
Abrams, 1999; Barry and Sadler, 2013; Albada and Metzler-
Nolte, 2016; Liu et al., 2016). The negatively charged surface
of the cells, indeed, represents an obstacle to internalization
of POMs, that can be considered the molecular analogs of
metal-oxide nanoparticles, showing a prominent peroxidase-
activity. In addition, tracking of the polyanions often requires

3Considering the biotin-POM spacer (valeric acid side chain, ca. 13.5 Å) and the
POMmolecular volume [>600Å3, calculated for Keggin structures, see López et al.
(2006)]. The avidin binding pocket [9 Å below the surface of the avidin molecule,
with a molecular volume of 293 Å3, see Rosano et al. (1999)] is not expected to
encapsulate the POM scaffold, which explains the lack of stereo control registered
for the methionine methyl ester sulfoxidation by the bio-hybrid catalyst.

disruptive methods, which involves metal detection by X-
ray-based spectroscopies. Recently, detection of labeled POMs
(Geisberger et al., 2013; Carraro et al., 2014) or encapsulation
onto labeled carriers (Geisberger et al., 2011; del Mercato
et al., 2014) have been proposed as methods to track hybrid
POMs by fluorescence microscopy. We show herein a novel
approach, based on a Labeled Streptavidin Biotin (LSAB)
complex strategy. POM tracking has thus been investigated by
incubating HeLa cells with 0.4 mg/mL of water soluble Na-

POM-biot2 or Na-POM-NH2, followed by treatment of the
pre-incubated cells with Atto 633-labeled Streptavidin, used as
a staining agent. As expected, the internalization of the Na-

POM-biot2, that binds strongly to the streptavidin staining
agent, is tracked by means of confocal microscopy, thanks
to the red-fluorescent streptavidin probe. Vice-versa, because
of the weak binding to the biotin-free POM, the labeled
streptavidin is readily washed off in the control experiment with
Na-POM-NH2.

Indeed, the Na-POM-biot2 incubated cells show well defined
red spots in the cytoplasm region (Figure 5 shows nuclei-stained
HeLa cells). These defined spots correspond to the intracellular
localization of biotin, detected as Labeled Streptavidin Biotin
(LSAB) complex. Although this increased biotin content
(Dakshinamurti and Chalifour, 1981) is likely ascribed to the
biotinylated POM, whose amphiphilic nature promotes the
formation of vesicles or aggregates in the physiological cell
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FIGURE 5 | HeLa cells incubated at 37◦C for 24 h in presence of 0.4 mg/mL of Na-POM-NH2 (Left) Na-POM-biot2 (Right), and stained with Atto 633-Streptavidin

(red fluorescent signal). Nucleus stained by Hoechst 33342 (blue). Images acquired by a confocal light scanning microscope (CLSM). A similar signal was seen with a

concentration of 0.2 mg/ml POM.

environment (Geisberger et al., 2013; Fu et al., 2015), further
experiments will be required to assess both POM content and its
internalization mechanism.

The cytotoxicity of these POMs was determined by flow
cytometry, after staining non-viable HeLa cell with propidium
iodide (PI), after 24 and 48 h incubation with 60–500µg/mL of
POMs (Figures S30, S31). The experiments showed no decrease
of viability and no pro-apoptotic events, suggesting a low
cytotoxicity of hybrid POMs even at high doses (Riccardi and
Nicoletti, 2006).

CONCLUSIONS

In summary, we have presented for the first time a POM-based
bio-conjugate for specific targeting of proteins. The selectivity of
POM-biot2 for avidin was confirmed by CD, fluorimetry, UV-
vis titrations, SPR and ATR-FTIR of LbL self-assembly. Among
the explored samples,Na-POM-biot2 displays the highest affinity
toward avidin, arising from two distinct binding contributions,
i.e., a host-guest specific interaction, strengthenedbyanunspecific
electrostatic interaction, and it allows the cross-linking of proteins
to obtain a 2D bio-hybrid network.

This approach provides an efficient engineering of bioactive
nano-inorganics and paves the way to a tailored functionalization
of the POM surface for bio-recognition, biomimetic catalysis and
cell internalization.
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