
HYPOTHESIS AND THEORY
published: 27 July 2018

doi: 10.3389/fchem.2018.00287

Frontiers in Chemistry | www.frontiersin.org 1 July 2018 | Volume 6 | Article 287

Edited by:

Ramesh L. Gardas,

Indian Institute of Technology Madras,

India

Reviewed by:

Evgeni B. Starikov,

Karlsruhe Institute of Technology (KIT),

Germany;

and Chalmers University of

Technology, Sweden

Jesus Perez Rios,

Purdue University, United States

*Correspondence:

Miloslav Pekař
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Linear algebra treatment of the permanence of atoms (mass conservation) naturally leads

to the transformation of formation or destruction rates of components of a reaction

mixture into rates of reaction steps, which are sufficient to describe the transformations

mathematically. These steps form a scheme of independent reactions that can provide a

rational basis for elucidating the reaction mechanism (network) while reducing both the

component and parametric dimensionality of the description of kinetics. Several particular

reaction examples are used to explain the method and show that rates of additional,

dependent reactions cannot be unambiguously related to measured component rates.

They also illustrate how the rates of dependent reactions can be correctly expressed in

terms of the rates of independent reactions. The method starts only with a knowledge

of the components of a reaction mixture. It is argued that the design of consistent

reaction networks or mechanisms should take into account not only chemistry but also

mathematics.

Keywords: kinetics, reaction rate, independent reactions, dimensionality reduction, stoichiometry

INTRODUCTION

Chemical kinetics is one of chemistry’s disciplines in which mathematics establishes vivid and
important applications. This refers not only to the evaluation of kinetic data but also to general
theories, both on the molecular (microscopic) and phenomenological (macroscopic) levels. For
several decades, mathematicians have known that many empirically established concepts in
stoichiometry and mass-action kinetics can be given a formal representation in terms of linear
algebra. Surprisingly, this rigorous treatment of physicochemical problems has been largely
sidelined in the physicochemical community (in contrast to the area of chemical reaction
engineering, where more effort to felicitously apply mathematics in the design of chemical plants
can be observed). This is probably due to a lack of practical examples showing the benefits
(consequences) of such mathematics for kinetics. To better explain the motivation for this work,
we will start with a brief, and only apparently superfluous, discussion of the elementary concepts of
chemical kinetics.

The rate of chemical reaction is an established andwidely used quantity, though, in fact, it cannot
be measured. The rate of chemical reaction is obtained from the amounts (concentrations) of the
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components of the reaction mixture. These are measured either
as a function of time, or, in the stationary state of flow-
through systems, for specific values of quantities determining
the steady state (e.g., flow rate). Component rates, obtained in
this way, are then translated into the language of reaction rates.
Also, definitions of the rate of chemical reaction are based on
component rates. Let us test these statements by doing a random
search of selected textbooks on physical chemistry, chemical
kinetics, and reaction engineering.

Silbey et al. (2005) define the rate of a reaction by means of
the extent of the reaction, which, in turn, is defined through the
change in the amount of any component of the reaction mixture.
They state that “the rates of chemical reactions are obtained from
measurements of concentration as a function of time.”

A similar definition of the rate of reaction is used by Berry
et al. (2000). They stress that the concentrations of the substances
taking part in a reaction are the principal variables which affect
reaction rates. Further, they state that “the rate of change of a
given species is always the sum of the rates of all the processes
involving it” and “one must usually know (or guess) what all
the significant reactions are, and make some measurements
distinguishing them.” They also claim that “the rate at which [B]
changes is the algebraic sum of all the rates involving species B”
([B] meaning the concentration of B).

Pilling and Seakins (1996), in fact, do not define the reaction
rate. They recall the pioneering study by Wilhelmy on the rate
of hydrolysis of sucrose that was expressed as the dependence
on the first power of the sucrose concentration. This, and
many similar experimental results, are generalized to a rate law
in the form of the dependence of the time derivation of the
reactant concentration on the product of certain powers of the
concentrations of all reactants.

Mortimer and Taylor (2002) claim that “[t]o make progress in
understanding the rates of chemical reactions it is necessary to
adopt an experimental approach...” They start with a discussion
of the rate of change of the concentration of a reactant or product
with time and then define the rate of a chemical reaction on
this basis—as a concentration time derivative divided by the
corresponding stoichiometric coefficient. They also note that this
definition assumes constant volume conditions.

Metiu (2006) first indicates that the time derivative of the
number of moles would be a natural definition of the reaction
rate, but immediately prefers to use the time derivative of the
extent of the reaction.

Smith (1981) writes: “The rate of a homogeneous reaction is
defined as the change in moles (due to reaction) of a reactant, or
product, per unit time per unit volume of the reaction mixture.”
From the experimental point of view, this source states that
concentration–time profiles are measured and from them rate
equations are deduced.

Missen et al. (1999) operate with the extensive rate of reaction
with respect to a species A that “is the observed rate of formation
of A” (the intensive rate is obtained by referring, for example,
to the unit reaction volume or the unit mass of catalyst). For
simple (in fact, stoichiometric) reactions, they present the rate
of reaction as the component rates divided by the corresponding
stoichiometric coefficients. They also note that to measure the

reaction rates means to measure the concentrations of the
components of the reaction mixture.

Davis and Davis (2003) also define the reaction rate as
the time derivative of the extent of the reaction. They stress
that this is the definition for a homogeneous, closed system
at uniform pressure, temperature, and composition in which a
single chemical reaction occurs. They also note that conditions
in a chemical reactor are usually quite different from the ideal
requirements used in the definition of reaction rates and claim
that reaction rates cannot bemeasured directly in a closed system.
In such a system, the composition varies with time and the
rate is calculated from these measurements. In flow-through
reactors, they consider rate measurements in steady states. In
this case, the reaction rate is calculated, in principle, from the
fractional conversion, which, in turn, is also determined from the
composition, though here it does not change over time.

Thus, the concentrations or concentration changes of
individual components, or, at least, of a key component,
in a reaction mixture are measured in kinetic experiments.
Component rates can be calculated directly from these
experiments. A positive component rate means that the
respective component is formed during the reaction, whereas a
negative component rate indicates that the respective component
is consumed. The component rates then serve as a basis for
deducing, expressing, and calculating rates of reactions occurring
in the reaction mixture. Which reactions occur is usually
inferred on the basis of chemical insights, taking into account
the structure of detected components (reactants, products,
intermediates); here belong also computer modeling studies
exploring potential energy surfaces. This part of kinetic research
is closely related to the design or discovery of reaction schemes,
which can be formulated in the form of a reaction network (a
set of suitable, not necessarily elementary, reactions describing
chemical transformations in a reaction mixture) or a reaction
mechanism (a set of elementary reactions). Once the reactions
are designated, their rates can be written in terms of the kinetic
mass-action law, i.e., explicitly as a function of the products
of rate constants and (the products of) concentrations (raised
to powers/partial reaction orders) of species participating in a
particular reaction.

It should be realized that component or reaction rates are
also mathematical quantities, especially when they are used to
calculate or to model, for example, concentration profiles or
reactor behavior. They should be consistent with the permanence
of atoms or, in other words, with mass conservation. This
consistency places some mathematical constraints on the rates
considered as mathematical quantities. Using relatively simple
methods of linear algebra, Bowen presented a fairly general
analysis of such mathematical consequences, starting only with a
list of components in a reaction mixture and taking into account
also stoichiometric rules (Bowen, 1968). Among others, Bowen
showed that reaction rates are mathematical consequences of
(the linear algebra of) the permanence of atoms. In other words,
the existence of individual chemical reactions and their rates
is also a result of the mathematics behind the conservation
of atoms (of mass). Consequently, it is not only chemical
insights or approaches that can be used to identify reactions

Frontiers in Chemistry | www.frontiersin.org 2 July 2018 | Volume 6 | Article 287

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
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occurring in a reaction mixture; mathematics can also give clear
guidance in the search for possible reactions. It is the aim of
this work to analyze the consequences of linear algebra for the
description of reaction kinetics using several explicit examples
of chemically reacting mixtures and to make Bowen’s fruitful,
but still largely unexplored, results more readily available to the
chemical community.

THEORETICAL METHODS

For the convenience of readers, the basics of Bowen’s analysis
(Bowen, 1968; Pekař and Samohýl, 2014) are given in this part.
Note that the list of symbols is given at the end.

The conservation of mass in chemical reactions can be written
as:

n
∑

α=1

rwα = 0, (1)

where rwα is the mass production rate (per unit volume and
unit time) of component α. In fact, mass conservation is due
to the conservation of atoms (numbers of each atom) forming
the components of the reaction mixture (nuclear reactions are
not considered). The conservation can thus be rewritten using
the molecular weights Mα and the molar production rates of
components α = 1, 2, . . . , n, Jα , which will henceforth represent
the component (formation or consumption) rates:

n
∑

α=1

JαMα = 0. (2)

Equation (2) resembles the scalar product of two vectors in the
form of their components. Because the product is zero, the two
vectors should be perpendicular. These n-component vectors
are from some n-dimensional vector space and can be formally
expressed using its basis eα and reciprocal basis eα as follows.

J =

n
∑

α=1

Jαeα; M =

n
∑

α=1

Mαe
α (3)

The n-dimensional vector space will be called the component
space and denoted by U, the vector J is called the reaction rate
vector, and the vector M is called the vector of molar masses.
Conservation (2) can also be rewritten using the atomic weights
that form the weights of molecules:

Mα =

z
∑

σ=1

AσTσα , (4)

where Aσ is the weight of (one mole of) atom σ , Tσα is the
number of atoms σ in component α, and z is the total number
of types of atoms. The sum in (2) is

n
∑

α=1

JαMα =

z
∑

σ=1

Aσ

n
∑

α=1

TσαJ
α . (5)

Each atom should be conserved; consequently,

Aσ

n
∑

α=1

TσαJ
α = 0 ⇒

n
∑

α=1

TσαJ
α = 0; σ = 1, 2, . . . , z. (6)

The resulting equality (6) is a homogeneous set of linear algebraic
equations for Jα with matrix ||Tσα||. The component rates are
nonzero, i.e., chemical reactions are possible only if the rank (h)
of this matrix is less than n, from which n − h > 0 follows
for a reaction mixture. Generally, only h equations are linearly
independent; equality (6) can thus be simplified as

n
∑

α=1

SσαJ
α = 0; σ = 1, 2, . . . , h, (7)

where the matrix ||Sσα|| has rank h and was created from
the matrix Tσα by the elimination of linearly dependent rows.
Molecular weights can then be expressed by:

Mα =

h
∑

σ=1

Eσ Sσα , (8)

where Eσ is the weight of pseudoatomic element1 σ . The vector
of molar masses is then:

M =

h
∑

σ=1

Eσ

n
∑

α=1

Sσαe
α. (9)

Because matrix ||Sσα|| has rank h, the second sum in (9)
represents h linearly independent vectors fσ :

fσ =

n
∑

α=1

Sσαe
α; σ = 1, 2, . . . , h. (10)

These vectors can thus be considered as the basis of an h-
dimensional subspace that will be denoted byW. As follows from
(9), the vector of molar masses can be expressed in this basis and
lies in this subspace:

M =

h
∑

σ=1

Eσ fσ . (11)

Subspace W unambiguously determines a complementary
orthogonal subspace of dimension n − h denoted by V. Because
J .M = 0, cf. (2), vector J lies in subspace V.

Let us make a preliminary summary of the theoretical
background. The vector of molar masses M lies in the original
component space U but because of the permanence of atoms,
i.e., of mass conservation, it is, at the same time, located in its
subspace W. Its coordinates in U are the molecular weights,
whereas the coordinates in W are the atomic or pseudoatomic
weights. The reaction rate vector J is also in component space U

1An example, butene isomerization, is given below.
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with coordinates formed by the component rates, cf. (3), and also
in subspace V, which is orthogonal to W. The task now is to find
the coordinates of J in V.

First, the basis of subspace V should be selected. This can be
performed as in the case of subspaceW, cf. (10), using the base of
the original component space:

dp =

n
∑

α=1

Ppαeα; p = 1, 2, . . . , n− h. (12)

Here Ppα are elements of a suitable matrix ||Ppα|| with rank n−h
and fulfill the orthogonality condition:

fσ .d
p = 0 or ||Ppα|| · ||Sσα||

T = ||0|| (13)

The coordinates of J in V are then generally given by the following
relation.

J =

n−h
∑

p=1

Jpd
p (14)

The meaning of the coordinates Jp follows from the comparison
of (14) with (3):

n
∑

α=1

Jαeα ≡

n−h
∑

p=1

Jpd
p =

n
∑

α=1

n−h
∑

p=1

JpP
pαeα . (15)

From (15) it follows that

Jα =

n−h
∑

p=1

JpP
pα . (16)

Equation (16) shows that the component rates Jα can be
expressed through Jp, which, in fact, are the rates of n − h
independent reactions, as indicated by another orthogonality
result obtained using (12) and (3):

0 = dp.M =

n
∑

α=1

PpαMα; p = 1, 2, . . . , n− h. (17)

Equations (17) are equations of n − h chemical reactions if
corresponding chemical formulas are introduced instead of Mα ;
matrix ||Ppα|| is then the stoichiometric matrix (the matrix of
stoichiometric coefficients) with elements corresponding to the
participation of component α in the reaction p. Because its rank is
n−h, the reactions determined by (17) are (linearly) independent.

Finally, we can say that the coordinates of the reaction
rate vector in subspace V are the rates of independent
reactions, Jp, which will henceforth be called the reaction
rates. Thus, the existence of reaction rates is a consequence
of mass conservation based on the permanence of atoms. The
reaction rates result from the linear algebraic formulation of
the permanence of atoms. If mass conservation is expressed
in terms of molecular weights, then the component rates are
relevant, cf. (2) and (3). If it is expressed directly in terms

of atomic (or pseudoatomic) weights, then the reaction rates
follow.

Another consequence of linear algebraic treatment is
that only independent reactions are sufficient for describing
(mathematically) the transformations (mass or molar amount
changes) caused by chemical reactions and measured in kinetic
experiments. It should be stressed that the independence of
some elements is a mathematical concept and, as such, should
be precisely defined. Chemical literature contains descriptions
of independent reactions that need not mean the same thing
as here. In this work, independence should be understood
exactly as expressed by Equation (17) or (16). That is, in
the sense of the maximum number of relationships necessary
to express the permanence of atoms in terms of molecular
weights, none of these relationships can be expressed by a
(linear) combination of (some) others; or in the sense of
the maximum number of reactions necessary to translate
the component rates into the reaction rates in a given
reaction mixture, no reaction can be obtained as a (linear)
combination of (some) others. The root of this independence
lies in the existence of the (n − h)-dimensional subspace V.
Of course, this mathematical analysis does not present an
explicit formula for reaction rates (Jp). Mass-action expressions,
formulated on the basis of experimental experience, are often
used in traditional kinetics and can be used also here in
(16).

Of the monographs and textbooks referred to above, only
that by Missen et al. (1999) provides some basic information
on the number of independent chemical reactions (chemical
equations in their terminology) and states that “[a] proper set
of chemical equations for a system is made up of linearly
independent equations” and that “stoichiometry tells us the
maximum number of independent rate laws that we must obtain
experimentally.”

Note that a class of mathematical models of chemical
reactions based on atom-free stoichiometry (Érdi and Tóth,
1989) disregards the atomic structure of the reacting chemical
compounds. Thus, these models are beyond the scope of the
presented methodology. On the other hand, even the real
(nonnuclear) reactions in reacting systems described by such
models should occur in agreement with the permanence of
atoms.

RESULTS AND DISCUSSION

It should be stressed that the starting point of the presented
analysis is just the composition of a reaction mixture
(the determined or supposed reactants, products, and
intermediates). Selected examples should be viewed just as
examples of this analysis; there is no ambition to discuss or
even resolve the potential questions of “true mechanisms”
etc.

Ammonia Synthesis
The basic reaction mixture gives simple results. There are three
components (N2, H2, NH3; components 1, 2, and 3, respectively)
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and two atoms (N, H; atoms 1 and 2, respectively) giving the
following compositional matrix:

||Tσα|| =

[

2 0 1
0 2 3

]

. (A1)

Its rank is equal to 2; consequently,||Sσα|| ≡ ||Tσα||. The
coordinates of the vector M in component space U and in
subspace W are, respectively, as follows.

M =
(

MN2;MH2;MNH3

)

M =
(

2AN; 2AH;AN + 3AH
)

(A2)

The basis vectors of subspace W are as follows.

f1 = 2e1 + e3

f2 = 2e2 + 3e3 (A3)

Here, n−h = 1and only one independent reaction is possible. Its
stochiometric matrix can be selected as follows:

||Ppα|| =
[

−1 −3 2
]

. (A4)

It is very easy to check that (13)2 is fulfilled; the independent
reaction is just N2+ 3H2 = 2NH3 and Equation (16) gives:

JN2 = −J1; JH2 = −3J1; JNH3 = 2J1. (A5)

If additional components of the ammonia synthesis reaction
mixture are included, viz. H(ads), N(ads), N2(ads), NH(ads),
NH2(ads), NH3(ads) (Pilling and Seakins, 1996), then the
compositional matrix ||Tσα|| is of dimension 2× 9 and its rank is
2. Seven independent reactions are thus possible—this is just the
number of reaction steps listed in book by Pilling and Seakins
(1996); it is an easy task to check that they are independent
reactions.

In the ammonia example, the independent reactions following
from the mathematical analysis can be directly identified with the
reaction scheme proposed on the chemical basis. Other reaction
mixtures need not give such trivial results.

Atomic Chlorine Reactions
Pilling and Seakins (1996) present two reactions of chlorine
atoms originally generated by chlorofluorocarbons in the
stratosphere.

Cl+O3 = ClO+O2

Cl+ CH4 = HCl+ CH3 (C1)

This is a mixture of seven components formed by four atoms.
Its composition matrix is of rank 4; thus, three independent
reactions are possible. Consequently, the rates of the two
reactions (C1) may not be sufficient to describe the kinetics
of chemical changes occurring in this mixture. One additional
reaction might be added on the condition that (13) is fulfilled.
The stoichiometric matrix for such a reaction triple is generally:





−1 −1 1 1 0 0 0
−1 0 0 0 −1 1 1
P1 P2 P3 P4 P5 P6 P7



 ; (C2)

(component numbering: 1 = Cl, 2 = O3, 3 = ClO, 4 = O2, 5
= CH4, 6 = HCl, 7 = CH3). The orthogonality condition (13)
leads to the conclusion that only three of the seven coefficients Pi

can be selected independently—e.g., P3, P4, P7in the following
example:

P1 = −P3 − P7; P2 =
−P3 − 2P4

3
;

P5 = −P7; P6 = P7. (C3)

Two examples of the mathematically acceptable selection of the
third reaction are 2O3 = 3O2 or 2Cl+ O2 = 2ClO. Mathematics
does not yield a single, unambiguous stoichiometric matrix but
only the rules and conditions that any potential stoichiometric
matrix should conform to. Chemistry should then be used to
select a realistic stoichiometric matrix from the set of those
mathematically possible.

Butene Isomerization
Let us further consider a mixture of butene isomers (1,2-; cis-2,3-;
trans-2,3-). Here n = 3, z = 2, and the rank of the matrix:

||Tσα|| =

[

4 4 4
8 8 8

]

(B1)

is equal to 1, i.e., only two independent reactions exist, whereas
three reactions formed by interconversions between each pair of
isomers are usually considered. Matrix ||Sσα|| can be selected as
[

4 4 4
]

, which corresponds to the pseudoatomic element CH2

and E1 = AC + 2AH (14 g/mol). Another selection could
be

[

1 1 1
]

with the pseudoatomic element C4H8. Vector M is
expressed in the reciprocal basis eα as follows (in g/mol)

M = 56e1 + 56e2 + 56e3 (B2)

and the basis of the 1-dimensional subspace W corresponding to
the first selection of the matrix ||Sσα|| is

f1 = 4e1 + 4e2 + 4e3. (B3)

Vector M is illustrated in Figure 1 (red arrow). The
stoichiometric matrix can be selected as:

||Ppα|| =

[

−1 1 0
0 −1 1

]

. (B4)

Component rates are then expressed with the aid of the
(independent) reaction rates as follows.

J1,2 = −J1

Jcis2,3 = J1 − J2

Jtrans2,3 = J2 (B5)

An example of the reaction rate vector (3) is also shown in
Figure 1 (black arrow).

Subspace W is one-dimensional in this mixture and is
illustrated in Figure 2 together with the complementary (and
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orthogonal) two-dimensional subspace V. The two ways of
expressing the coordinates of the reaction rate vector are
illustrated in Figure 3 by examples of the two respective sets of
base vectors.

FIGURE 1 | The component space with the molar masses vector (red) and

with the example of the reaction rate vector (−50, 30, 20) (black)

corresponding to Equation (3) for a mixture of butene isomers (and unit base

vectors).

FIGURE 2 | Illustration of the one-dimensional subspace W (red) and the

complementary, orthogonal two-dimensional subspace V (gray) in the mixture

of butene isomers.

FIGURE 3 | Two bases that can be used to express the reaction rate vector in

the mixture of butene isomers. The basis of the component space, leading to

three component rates as coordinates of J, is shown using black arrows. The

basis of subspace V, illustrated in Figure 2 and leading to two independent

reaction rates as coordinates of J, is shown using blue arrows.

The two selected independent reactions, corresponding to
(B4), are 1,2-butene = cis-2,3-butene (Nr. 1) and cis-2,3-
butene = trans-2,3-butene (Nr. 2). If the reaction trans-2,3-
butene = 1,2-butene (Nr. 3) also occurs, then its rate is not
independent. Then, the question arises of how it can be expressed
in terms of the rates of the two independent reactions.

Independent and dependent reaction rates are generally
different and should be strictly differentiated. In fact, as
given in the introduction, reaction rates themselves cannot
be measured; that is, only component rates can be measured.
For the isomerization of butenes, it is sufficient to measure
only two component rates, which then determine the rates
of the two independent reactions, cf. (B5). If one wants to
describe this isomerization in terms of all three chemically
potential reactions (three traditional reaction steps), then the
component rates should be transformed into a different set of
rates of three reactions that are not independent. These are
denoted as {r1, r2, r3} (the numbering in subscripts is in bold
to distinguish the numbering of dependent and independent
reactions). Determining the relationship between the sets of
independent and dependent reaction rates is an easy task (see
Supplementary Material):

J1 = r1 − r3;

J2 = r2 − r3. (B6)

Equation (B6) shows that only the differences between ri pairs
are independent and that the set of dependent reaction rates is
not made from the set of independent reaction rates simply and
directly by adding an additional rate, i.e., J1 6= r1, J2 6= r2.
Mathematically determined independent reaction rates thus need
not be directly equal to single rates of (some) reactions occurring
in the reaction scheme suggested on a chemical basis. Specific
relationships between the rates ri can be found if their explicit
form is known; for an example of mass-action kinetics, see Pekař
(2007).

It is quite common to design reaction schemes preferably on
a chemical basis and not on the basis of the linear algebraic
procedure described above, the latter giving only independent
reactions and their rates. However, the rates of a set of dependent
reactions cannot be unambiguously related to the measured
experimental rates. In the example of butene isomerization, one
has the following relationships.

J1,2 = −r1 + r3

Jcis2,3 = r1 − r2

Jtrans2,3 = r2 − r3 (B7)

Equation (B7) is a set of algebraic equations for the
transformation of measured component rates into the reaction
rates of a suggested reaction scheme. The solution to this set is
generally r1 = −J1,2 + Z, r2 = −J1,2 − Jcis2,3 + Z, r3 = Z, where
Z is an arbitrary (real) nonzero number. Z is also a “stationary”
solution to (B7): if r1 = r2 = r3 = Z, then all component
rates vanish. Such an algebraic transformation of component
rates into the rates of reactions is usually not considered in
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kinetics. In the case of three isomerization reactions with rates
expressed in the traditional mass action form, the dependence
between dependent reaction rates leads to a restriction on the
rate constants, known also as the detailed balance condition
(Denbigh, 1951; Pekař, 2007).

Component rates are also the key to answering the question
posed above, i.e. below Equation (B5). The procedure for
answering this question is given in the Supplementary Material;
here, we state only that it is based on the fact that component rates
are still the same regardless of whether they are expressed using
the triplet of dependent reactions (B7), or the pair of independent
reactions (B5). The result is

r3 = (a/c) r1 +
(

b/c
)

r2, (B8)

where c = 1+a+b and a, b are (arbitrary) numbers fulfilling the
following matrix equation.





−1 0 1
1 −1 0
0 1 −1









1+ a b
a 1+ b
a b



 =





−1 0
1 −1
0 1



 (B9)

Note that the last matrix is the transposed stoichiometric matrix
(B4) and the first matrix is a similar matrix for the system
of three reactions [Nr. 1–3 listed after (B5)]. Thus, expressing
the dependent rate r3 in terms of the other two rates is not
unambiguous generally. An example of expressing a and b in
terms of traditional mass-action rate constants can be found in
the Supplementary Material.

Mixture of Atomic and Molecular Oxygens
The last analyzed example (but one used in the subsequent
section) is a mixture of components formed from a single
atom—oxygen: O (Nr. 1), O2 (Nr. 2), O3 (Nr. 3). It can easily
be found that h = 1 for this mixture and thus that two
independent reactions are possible. The participation of an inert
component can also be considered in this mixture3, but because
it is conserved per se in any reaction, it has no influence on the
mathematical treatment demonstrated here. If there were I inerts,
then h = 1 + I (it is self-evident that an inert is a pseudoatomic
substance) and n = 3+ I; consequently, n− h is always equal to
2. Pilling and Seakins (1996) give the following four reactions for
this mixture (M is the inert).

1. O2 + hν = 2O

2. O+O2 +M = O3 +M

3. O3 + hν = O+O2

4. O+O3 = 2O2 (O1)

Note that from the point of view of the permanence of atoms,
the second and third reactions are the forward and reversed
directions of a single reaction; in other words, the studied
mathematical treatment cannot take into account the effect of an
inert or radiation—an inert is conserved per se while radiation
has no atomic composition.

Let us select the following two independent reactions.

1. O2 = 2O

2. O+O2 = O3 (O2)

Then, the following relationships between independent and
dependent reactions are derived on the basis of component rates:
J1 = r1 − r4, J2 = r2 − r3 − r4. Two independent reactions mean
that it is sufficient to measure only two component rates, which is
a natural result of the permanence of atoms (6): 3J3+2J2+J1 = 0.
Without loss of (mathematical) generality, let us replace set (O1)
by set:

1. O2 = 2O

2. O+O2 = O3

3. O+O3 = 2O2 (O3)

The transformation of the two measured independent
component rates into the rates of dependent reactions of set
(O3) is, in this reaction example, given by: r1 = J1/2− J3/2+ Z,
r2 = Z, r3 = −J3 + Z, where Z is an arbitrary (real) nonzero
number, i.e., the second reaction rate can be selected arbitrarily
and mass conservation will still be fulfilled, as in the case of
butene isomerization. However, in the oxygen example, Z is not
a “stationary” solution in the sense that when r1 = r2 = r3 = Z,
all component rates do not vanish. The general relationship
for the interdependence of dependent reaction rates is then
derived, for example, as r1 = J1/2 + r2/2 + r3/2. In terms of
dependent reaction rates only, r3 = (d/f )r1 + (e/f )r2, where
f = 1+ d + e and d, e are numbers fulfilling the condition given
in the Supplementary Material.

Finding the Stoichiometric Matrix
As stated above, condition (13) does not determine the
stoichiometric matrix unambiguously. Hooyman (1961)
proposed a method that should aid in the determination of
the matrix. Because the stoichiometric matrix is of dimension
(n − h) × n and has rank n − h, Hooyman suggested its
representation as a matrix of two blocks (fields), one of which is
the unit matrix (1):

||Ppα|| =
[

1 P
]

. (18)

Hooyman’s method was designed to minimize the number of
stoichiometric coefficients to be determined, i.e. to minimize
the number of freely selectable coefficients. However, it is not
a universal method and cannot be used in all cases; besides,
condition (13) should be employed. Consider the reaction
mixture of N2O (=1), N2 (=2), O2 (=3), and O (=4), analyzed
previously (Pekař, 2009), with the composition matrix:

||Tσα|| ≡ ||Sσα|| =

[

2 2 0 0
1 0 2 1

]

. (19)

Hooyman’s suggestion is:

||Ppα|| =

[

1 0 P13 P14

0 1 P23 P24

]

. (20)
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It can easily be checked that (13) cannot be fulfilled with this
stoichiometric matrix. Even the more general form:

||Ppα|| =

[

1 P12 P13 P14

0 1 P23 P24

]

(21)

does not help. The problem is that although every matrix
can be transformed by Gauss or Jordan elimination to upper
triangular or “Hooyman’s” form, respectively, not every such
matrix can serve as a stoichiometric matrix. Elementary
matrix transformations can be expressed in the form of
matrix multiplications, but condition (13) allows for left-hand-
side multiplication only, i.e. for row transformations only.
Renumbering the components to 1 = O2, 2 = O, 3 = N2O, 4
= N2 gives:

||Tσα|| ≡ Sσα =

[

0 0 2 2
2 1 1 0

]

(22)

and now (20) can be used, giving the following two independent
reactions: 2N2O= 2N2 +O2, N2O=N2 +O. The renumbering
transforms the columns of matrix (19). However, in this
case, Hooyman’s method does not give reactions that would
correspond to experiments (Hunter, 1934), i.e. N2O = N2 +

O, O + N2O = O2 + N2. For this reaction mixture, this
can be achieved with the generalization (21), which leaves one
stoichiometric coefficient for free selection. The best practical
way to find a stoichiometric matrix is to combine its general form
ensuring its rank with chemical (experimental) information.

Summary Discussion
The example of butene isomerization clearly illustrates two
approaches to rates of reactions. One can use a mathematical
procedure to determine the number of independent reactions
and translate the measured component rates into reaction
rates with the aid of an acceptable stoichiometric matrix. The
other approach is to propose a reaction scheme using chemical
considerations. However, if the scheme contains more reactions
than the number of independent reactions, the measured
component rates cannot be translated unequivocally into
dependent reaction rates, and some reaction rates are determined
by other reaction rates, anyway. In this case, one can use either
a mathematically derived set of independent reactions as a
“formal” reaction scheme sufficient to describe the mathematics
of chemical transformation but not necessarily containing all
really occurring chemical processes, or a “chemically” proposed
scheme, keeping in mind that determining the rates of all its steps
independently is not possible.

What are the kinetic consequences of the arbitrary selection
of dependent reaction rates (one in the case of the butenes
example)? Mathematics enables this selection without violating
mass conservation—for example, it remains conserved for any
values of Z defined below (B7). If there were a chemical guide
(experiment) to select the proper value from all freely selectable
numbers, then the arbitrariness would be removed.

What about the consequences for experiments and for the
measurement and evaluation of kinetic data? Data are collected
in suitable reactors; for simplicity, but without loss of generality,

let us consider batch and continuously stirred tank reactors
(constant volume) with balances:

dcα
dt

= Jα (23)

dcα
dt

=
F0c0α − Fcα

V
+ Jα (24)

(the third basic system—plug flow—can be modeled as a series
of continuous stirred tank reactors). Measured data are “hidden”
not only in the derivatives but also in the component rates Jα

together with kinetic parameters (rate constants). The equations
should be solved with data to find the parameters, and for our
purpose it makes no difference whether they are in nonstationary
or steady-state (zero time derivatives) form.

The permanence of atoms (6) can decrease the dimensionality
of this problem in the sense of decreasing the number of
necessary concentrations or equations to be taken into account2.
Let us call this “component dimensionality.” In the butene
isomerization example, the permanence is expressed (rather
trivially) as J1,2 + Jcis2,3 + Jtrans2,3 = 0; thus, only two
components (and their rates) are sufficient (the component
dimensionality is reduced from 3 to 2). Equation (B5) shows that
the best selection should be J1,2 and Jtrans2,3, which also directly
determines the rates of the two independent reactions (the former
with reversed sign). With more complex reaction mixtures and
reaction schemes (networks or mechanisms), this reduction in
dimensionality need not be so trivial or clear, and an analysis
based on Bowen’s general results should be simpler and more
straightforward than, for example, the methodology described by
Al-Khateeb et al. (2009), which is, as published, limited to batch
systems.

The exploitation of Equations (23) and (24) requires explicit
expressions of Jα as functions of concentrations. Of course,
these are not delivered by Bowen’s approach analyzed here, not
even after their “translation” into the reaction rates Jp. Here,
traditional kinetic mass-action law and expressions are usually
used. If we select, for some chemical reasons, more reaction steps
(and their ratesrj) than the number of independent reactions,
then the (in)dependence places some restrictions on the values
of their parameters, i.e., rate constants; specific examples can be
found in Pekař (2007, 2016). Then, dimensionality in the sense
of the number of (selectable) mass-action kinetic parameters—
which can be called “parametric dimensionality”—is effectively
reduced. The existence of a limited number of independent
reactions itself need not reduce parametric dimensionality, as
was illustrated by butene isomerization. In the context of this
example, the existence of only two independent reactions does
not mean that we can simply work with only two members of
the triplet {r1, r2, r3}; indeed, the independent reactions are the
differences r1 − r3, r2 − r3. Another possibility is to express the
independent reactions Jp as functions of concentrations in terms
of the thermodynamic polynomial (for details and examples see

2This was realized, e.g., by Missen et al. (1999) who state that stoichiometry gives
the minimum number of species to be analyzed.
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Pekař, 2009; Pekař and Samohýl, 2014), which develops Bowen’s
approach to practical kinetic applications and directly reduces
parametric dimensionality. This is because this polynomial does
not work with rate constants in the reversed direction and
uses equilibrium constants of independent reactions, which
can be, in principle, calculated from thermodynamic databases
independently of kinetics.

Linear algebraic treatment enables us to find relationships
between dependent and independent reactions; as an example,
see (B8). However, they are rather general and not unambiguous,
as follows from the elementary results of linear algebra. On
the other hand, unambiguous forms can be found for specific
(mass-action) cases, as mentioned above. A similar attempt
by Vlad and Ross (2009) to express dependent rates using
independent rates resulted only in the expression of the ratio of
forward and backward rates of dependent reactions in terms of
ratios of forward and backward rates of independent reactions,
and is ambiguous because the same ratio (fraction) can be
obtained for an unlimited number of forward and backward
ratios (combinations of the numerator and denominator). Their
work is valid for mass-action kinetic expressions only. Thus, the
linear algebraic approach presented here really seems to be a
step toward a general treatment of the issue of (in)dependent
reactions.

Both of the works cited above (Al-Khateeb et al., 2009;
Vlad and Ross, 2009) are examples of an “a posteriori” analysis
of dependencies among reactions. This means that a reaction
scheme is proposed first and only then is the (in)dependence
evaluated. Bowen’s approach is of an “a priori” type; no reactions
are necessary but only the components of a reaction mixture. The
number and set of independent reactions then follow naturally
while the space for modifications based on chemical insights
is still open. This approach seems to be more natural and
consistent, especially when (chemical) data are to be evaluated
mathematically.

For the sake of simplicity and illustration, simple reacting
mixtures were used as examples. Subsequent work on mixtures
containing tens or hundreds of reacting species is going on
to analyze the impacts of the presented methodology on more
complex (and realistic) systems. Further, the principle of charge
neutrality may provide additional constraints in ionic reacting
systems; this issue is beyond the scope of Bowen’s method and
this work.

CONCLUSIONS

The existence of reaction rates is a mathematical consequence
of mass conservation (in other words, the permanence of
atoms). Linear algebra shows how (measurable) component
rates can be translated elegantly and effectively into rates of
individual reactions. Mathematical analysis starts just with the

list of components of a reaction mixture; it thus requires
very basic and elementary input information and operates
with independent reactions only. The latter can be identified
with the steps of a reaction scheme proposed on the basis of
chemical experimentation and insight; chemistry can thus help to
resolve certain ambiguities inherent in the general mathematical
treatment.

Often chemistry suggests more reaction steps than the number
of independent reactions. Reaction rates in such schemes are not
independent; some of them can be expressed using the remaining
ones, and a set of such reaction rates cannot be unambiguously
related to measured component rates. Even if the same reaction
occurs both in the (“mathematical”) set of independent reactions
and in the (“chemical”) scheme containing dependent reactions,
its rate can be different in these two cases.

This apparent paradox is a consequence of the effort to
describe the mathematics of chemical transformations by more
reactions than is necessary. Chemistry may simply add more
reactions (reaction steps) than is necessary mathematically and
is dictated by mass conservation. The paradox can be resolved
by using only independent reactions and their rates in the
mathematical data treatment or reactor design; that is, when
just mathematics is used, and discussing the whole scheme
when just chemistry (a description of reaction events on the
microscopic, i.e., atomic and molecular, level) is the primary aim.
Mathematically, it is not necessary to deal with or analyze rates of
dependent reactions because they are determined by the rates of
the other reactions.

In this way, the dimensionality of the data evaluation problem
can be reduced, both from the point of view of the number
of components concentrations that should be measured and
from the point of view of the number of necessary kinetic
parameters.
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Pekař, M. (2009). Thermodynamic framework for design of reaction rate
equations and schemes. Collect. Czech. Chem. Commun. 74, 1375–1401.
doi: 10.1135/cccc2009010
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NOMENCLATURE

Aσ Atomic weight of atom σ

α Component of reaction mixture

cα Molar concentration of component α

dp Basis of subspace V

eα , e
α Basis vectors

Eσ Weight of pseudoatomic element σ

fσ Basis of subspace W

F Volumetric flow rate

J Reaction rate vector

Jα Molar production rate (per unit volume and unit time) of

component α

Jp Rate of independent reaction p

M Vector of molar masses

Mα Molecular weight of component α

Ppα Stoichiometric coefficient of component α in reaction p;

element of stoichiometric matrix

ri Rate of (dependent) reaction i

rwα Mass production rate (per unit volume and unit time) of

component α

Tσα Number of atoms σ in component α

t Time

V Reactor volume

0 Superscript indicating reactor inlet
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