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A chiral phosphoric acid promoted enantioselective NMR analysis of atropisomeric

quinazolinones was described, in which a variety of racemic arylquinazolinones such as

afloqualone and IC-87114 were well recognized with up to 0. 21 ppm 11δ value. With

this method, the optical purities of different non-racemic substrates can be fast evaluated

with high accuracy.
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After the first experimental detection of atropisomerism by Christie and Kenner in 1922 (Christie
and Kenner, 1922), axial chirality was gradually recognized as an important type of molecular
asymmetry which derived from the restricted rotation of a single bond in biaryls, amines, etc.
For example, axially chiral BINAP and its analogs were found to be excellent ligands in various
asymmetric catalytic transformations (Miyashita et al., 1980; Akutagawa, 1995; Kumobayashi
et al., 2001; Brunel, 2005, 2007; Genet et al., 2014), while a lot of optically active biaryl natural
products were successfully isolated and identified in the past few decades (Bringmann et al., 2011;
Smyth et al., 2015). Besides, atropisomers were found to exhibit different pharmacodynamics
and pharmacokinetics in many cases (Eichelbaum and Gross, 1996; Clayden et al., 2009). Thus,
exploring efficient chiral recognition and determination method for atropisomeric compounds is
crucial to the asymmetric synthesis as well as structure-bioactivity study.With the fast development
of analysis technology, GC (Schurig and Nowotny, 1990), IR (Reetz et al., 1998), HPLC (Han,
1997), circular dichroism (Ding et al., 1999; Nieto et al., 2008, 2010; Ghosn and Wolf, 2009),
fluorescence spectroscopy (James et al., 1995; Mei and Wolf, 2004; Pu, 2004; Zhao et al., 2004;
Li et al., 2005; Tumambac and Wolf, 2005; Liu et al., 2009), electrophoresis technologies (Reetz
et al., 2000) and NMR spectroscopy have been frequently employed in chiral determinations.
Among these methods, we are particularly interested in the NMR based chiral analysis method
which employs chiral shift reagents (CSRs) (Frazer et al., 1971; Goering et al., 1971; Yeh et al.,
1986; Ghosh et al., 2004; Yang et al., 2005) or chiral solvating reagents (CSAs) (Pirkle, 1966;
Lancelot et al., 1969; Parker, 1991; Wenzel and Wilcox, 2003; Seco et al., 2004; Lovely and Wenzel,
2006; Ema et al., 2007; Wenzel, 2007; Iwaniuk and Wolf, 2010; Moon et al., 2010; Gualandi
et al., 2011; Pham and Wenzel, 2011; Quinn et al., 2011; Wenzel and Chisholm, 2011; Ma et al.,
2012; Labuta et al., 2013; Zhou et al., 2015; Akdeniz et al., 2016; Bian et al., 2016a,b; Huang
et al., 2016) to directly differentiate enantiomers of the analytes, since it takes many advantages
such as easy operation, fast evaluation, broad analyte scope and so on. In 2017, we reported
a chiral phosphoric acid (CPA) promoted enantioselective NMR analysis of indoloquinazoline
alkaloid type tertiary alcohols with high efficiency and wide application; this methodology was
also employed in the fast optimization of reaction conditions in amino acid metal salt catalyzed
asymmetric aldol reaction via direct analysis of the reaction mixture without purification (Liu
et al., 2017). Inspired by this result and given the growing interest in axially chiral compounds,
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FIGURE 1 | Chiral 1H NMR analysis of arylquinazolinones with a chiral phosphoric acid.

TABLE 1 | Evaluating the chiral recognition abilities of chiral phosphoric acids 1 with 2a.

a All samples were prepared by mixing 1 (0.01 mmol) and the guests 2a (0.01 mmol) in CDCl3 at 25
◦C.

bAcetone-D6 was used as deuterated solvent.
cCD3OD was used as deuterated solvent.
dDMSO-D6 was used as deuterated solvent.
e0.2 equiv. of 1a was used.
f0.5 equiv. of 1a was used.
g1.5 equiv. of 1a was used.

atropisomeric arylquinazolinones, which are constituents of
various biologically active natural products and pharmaceutical
compounds, were chosen as the next target to further evaluate the
chiral recognition ability of chiral phosphoric acids (Figure 1).
Herein, we wish to report our preliminary results on this topic:
in the presence of 0.2–1.5 equiv. of α-naphthyl phosphoric acid,
a variety of racemic arylquinazolinones including afloqualone
and IC-87114 were well recognized with up to 0.21 ppm 11δ

value; additionally, the corresponding analysis system can also be
employed in the accurate determination of enantioselectivities of
chiral arylquinazolinones.

Our exploration of this hypothesis began with evaluating
the interaction between chiral phosphoric acids 1 and racemic
2-(furan-2-yl)-3-(o-tolyl)quinazolin-4(3H)-one 2a in CDCl3 at
25◦C. As shown in Table 1, after additions of 1 equiv. of chiral
phosphoric acids to racemic 2a, chemical shift non-equivalences
were observed. However, the structure of phosphoric acids has
obvious influence on the recognition result. For example, BINOL
derived phosphoric acid 1a was found to be the best host which
afforded a baseline resolution and the largest chemical shift
nonequivalence of methyl H signal of 2a (0.16 ppm), while
spiro-phosphoric acid 1i with the same substituents exhibited
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TABLE 2 | Differentiating the enantiomers of different racemic 3-arylquinazo-linones derivatives 2 in the presence of phosphoric acid 1aa.

a All samples were prepared by mixing 1a (0.01mmol) and the guests 2 (0.01mmol) in CDCl3 at 25
◦C.

b 0.015 mmol 1a was used.

FIGURE 2 | afloqualone and IC-87114 were discriminated under standard conditions.
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FIGURE 3 | 1H NMR signals of non-racemic 2a samples in the presence of 1 equiv. of 1a in CDCl3 (left); linear relationship between NMR measured ee values versus

the HPLC determined ee values (right).

poor chiral recognition ability; additionally, phosphoric acids
with very bulky substituents such as 1b and 1j also failed
to provide satisfactory discriminating results. (For details, see
Supplementary Materials). With optimal host 1a in hand, the
effect of deuterated solvents was also studied. It was shown that
the interaction between chiral phosphoric acid 1a and guest 2a
existed even in protic and polar solvents (CD3OD, acetone-D6,
DMSO-D6); however, CDCl3 was still found to be the best choice
of solvent. To further explore the chiral recognition ability of
1a, attempts to evaluate the influence of the amount of 1a were
also carried out. Generally, larger amount of 1a led to better
recognition results (entries 1, 16–18). Noticeably, it was found
that 20mol% 1a was enough to give clear baseline resolution of 2a
under standard analysis condition, albeit with smaller chemical
shift nonequivalence (entry 16, 0.05 ppm). Finally, as the optimal
compromise between discriminating result and atom economy,
1 equiv. of chiral phosphoric acid 1a was chosen in standard
analysis conditions.

The general applicability of these conditions for a variety of
racemic 3-arylquinazolinones was fully demonstrated in Table 2.
In the presence of 1 equiv. of phosphoric acid 1a in 0.5mL
CDCl3 at 25◦C, a number of racemic 3-arylquinazolinones
derivatives 2b−2m with various substituents can be well
resolved. For example, other aromatic moieties such as thiophene
or quinoline on 2 position of 3-arylquinazolinones can also result
in good enantiodiscrimination, albeit with smaller 11δ value
(2b and 2c, 0.02–0.06 ppm); besides, 2-methyl substituted 3-
arylquinazolinones with either electron-withdrawing group or
electron-donating group on 6, 7, 8 position were proved to
be good guests under optimal conditions, affording baseline
resolutions with good chemical shift nonequivalence (2d−2k,
0.02-0.21 ppm). Noticeably, 3-(2-methoxyphenyl)-2-methyl-
6-nitroquinazolin-4(3H)-one 2e was well recognized with

the largest 11δ value of 0.21 ppm. Additionally, different
substituents such as methyl, methoxyl or halogen group on the
N-3 benzene ring were also well tolerated. However, when 2′-
iodo-benzene was used as substituents on N-3 position, 1.5 equiv
of 1a was found necessary to afford satisfactory result (entry 12).

To demonstrate the practical utility of our methodology,
commercial drugs (candidate) were next selected for chiral
recognition with phosphoric acid 1a. To our delight,
racemic 3-arylquinazolinone type bioactive molecules
such as multifunctional afloqualone and IC-87114 can be
well enantiodiscriminated with baseline resolutions under
standard analysis conditions (Figure 2), for details, see
Supplementary Materials.

Encouraged by these good discrimination results, this
methodology was subsequently applied to the enantiomeric
determination of various non-racemic 2a samples. As shown in
Figure 3, the optical purities of 2a can be accurately obtained by
integrating the corresponding H signals of methyl group of 2a in
the presence of 1 equiv. of 1a. Compared with those data obtained
from chiral HPLC analysis, excellent linear relationship and up to
1.4% absolute errors were obtained.

CONCLUSIONS

In conclusion, we developed an efficient chiral NMR analysis
method for atropisomeric quinazolinones, in which chiral
phosphoric acid shows excellent abilities to discriminate the
enantiomers of various 3-arylquinazolinones with good chemical
shift non-equivalence. With this method, the optical purities
of different non-racemic 2a can be fast evaluated with high
accuracy. Further studies on the interactions of chiral phosphoric
acid with other analytes are currently underway.
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