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Fibrous cellulosic materials have been used as templates for material synthesis or

organization via thermal degradation of the cellulose. Most of these methods, however,

fail to exploit fiber organization, in part due to loss of structure with processing.

Herein, we demonstrate that chemi- and physi-sorbed modifiers of cellulose alters the

thermal degradation mechanism allowing for controlled deposition of oxide and carbon

(incomplete combustion) along the original paper fiber network. We demonstrate that

the degradation of the cellulose fibers depends on the amount of physisorbed material

due, in part, to effect on the propagation of the ignition event. From the distribution of the

residual elements and shape of the deposits, we can infer that the thermal degradation

process depends on the nature, and concentration, of filler(s) or occluded.

Keywords: paper, thermal degradation, iTD paper, surface modifiers, silanes, Fe2Cl3

INTRODUCTION

Frugal approaches to organized functional materials synthesis are desired, in part due to the
ability to exploit size dependent (nano- to micro-) features of such materials. One approach to
achieve this goal is the use of appropriate templates (Xia and Whitesides, 1998) or sacrificial
scaffolds (Liu et al., 2011; Tallon and Franks, 2011). Such processes are well known, for example;
colloidal crystals/assemblies—to create metallic nanostructures (Jiang et al., 1999; Velev et al., 1999;
Kulinowski et al., 2000; Velev and Kaler, 2000; Xu and Goedel, 2005), electrospun fibers (Sakai
et al., 2013; Son et al., 2013), secondary bonding networks (Macgillivray et al., 2008), among others.
Sacrificial scaffolds are removed post-synthesis using methods like selective dissolution (Li and
Sieradzki, 1992; Erlebacher et al., 2001; Ding and Erlebacher, 2003; Ding et al., 2004), subtractive
phase changes such as sublimation (Flauder et al., 2014), or breaking secondary bonds (Macgillivray
et al., 2008; Bai et al., 2018). Other methods that do not require template removal exploit interface
and/or dynamic properties of the assembling materials and include use of scanning probes (Fait
et al., 2018) and polymerization induced self-assembly (Zhang et al., 2017). While these methods
create well-defined porous nanostructures, they are often complex, labor intensive, expensive or
require specialized equipment. A major thermodynamic caveat is that work is required to assemble
and disassemble the system, as such, they are overall endergonic processes. Alternatively, exploiting
an already porous material as the initial template, that can also undergo controlled exothermic
(dissipative) degradation allows the use of precursor moieties that are in situ transformed and
organized along the template in a coupled oxidation and diffusion limited sintering process.
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FIGURE 1 | (A) Previous work showing generation of textured silanized amphiphobic paper surfaces (Oyola-Reynoso et al., 2016d). (B) Thermal degradation of

silanized paper under controlled environment gives lower ash residue (Oyola-Reynoso et al., 2016a)–as published by The Royal Society of Chemistry. (CI-CIII)

Templating process for untreated cellulose fiber leads to collapsed structures, (DI-DIII) Use of amphiphobic paper, with concomitant surface concentration of the salt

and silane particles can, potentially, lead to surface concentration of the ash residues.

Utility of paper as a functional material is well demonstrated
and has recently gained increased interest, in part, due to
advances in controlling selective wetting (Huang and Kunitake,
2003; He et al., 2005; Sun et al., 2011; Zhou et al., 2011; Zhao and
Shao, 2012; Thuo et al., 2014; Fratzl et al., 2018). Whitesides and
co-workers, for example, have recently shown that noble metal
nanostructures can be made using paper as a template and fuel
source in a thermal-oxidative process (Christodouleas Dionysios
et al., 2017). The process used is simple and involves occlusion of
salts in paper followed by oxidative precipitation ofmetal adducts
upon thermal degradation of the paper. Structures produced
appears to be irregular, likely due to incomplete sintering of the
metal adducts around the cellulose fibers or amanifestation of the
underlying stochastic degradation process. Modifying the surface
energy of cellulose could, potentially, alter produced structures
by tuning the distribution of the physisorbed precursors. We
Oyola-Reynoso et al. (2016a, 2017) recently demonstrated

that paper treated with silanes gives tunable amphiphobicity
that is characterized by hydrophobic and hydrophilic regions
(Figure 1A). Reaction of paper with trichloroalkylsilanes can
lead to step-growth polymerization induced self-assembly to
give surface chemisorbed nano- to micro-sized polymer particles
on the surface (Oyola-Reynoso et al., 2016a, 2017). The size
of such generated surface particles can be varied through
reaction time and temperature, which in turn leads to tunable
wettability (Oyola-Reynoso et al., 2016d). This modification
led to better thermal degradation (low ash) under controlled
condition and without release of toxic HF (Figure 1B). The
use of silane treated materials in the Whitesides approach
to paper-templated synthesis could, therefore, alter both the
adsorption of the salts and the degradation mechanism. We
hypothesize that the silane coating would alter the morphology
of templated microstructures derived from thermal degradation
of paper from collapsed structures (Figure 1C) to fiber network
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mimicry (Figure 1D). The changes in surface energy (wettability)
should promote distribution of the occluded salt at or near the
fiber surface. Thus, we would expect morphological changes
in the salt adducts between untreated and silanized fiber after
thermal degradation (Figures 1C,D). With the surface adsorbed
materials, the precipitated ashes should, in theory, closely mimic
the fiber network when the paper is silanized. Presence of salt
and surface silane also influences the degradation mechanism as
detailed below.

Thermal degradation is triggered by ignition, which in turn
depends on the concentration of the material (fuel), an oxidant
(often O2), and activation energy. Ignition, in chemical terms,
is a runaway bond dissociation/disproponation reaction cascade
triggered by presence of an oxidant and thermal activation. In
ambient conditions, the dissipative propagation of the ignition
event is an entropically favored self-limiting set of runaway
reactions commonly refered to as combusition (Schmidt-Rohr,
2015). Based on the simplified Shell ignition model for a
hydrocarbon, RH, it follows that (Equation 1; Halstead et al.,
1977; Sazhina et al., 1999, 2000; Sazhin et al., 1999);

[1RH] =
1 [O2]

pm
(1)

Where []=concentration (molar concentration), p= propagation
event and m = number of carbons in the hydrocarbon. The
dependence of degradation (1 [RH]) on concentration of
oxygen (Equation 1) suggests that in isotropic fibrous materials
ignition is expected to primarily occur on the surface of the
fiber and if proper mixing and complete combustion occurs,
then the fibers would degrade from surface to the core (outside-
inside degradation). Where propagation is rapid, incomplete
combusition will occur leading to accumulation of ash on
the surface of the fiber, which in turn limits oxidant supply.
It is therefore to be expected that a deposition of surface ash
leads to higher residue and eventual inhibition of thermal
degradation. Since the critical propagation step of the ignition
is thermally activated, the dissipation—hence temperature, of
the material is a critical parameter to consider in understanding
degradation mechanism and eventual properties of produced
ashes. According to the Shell model, changes in temperature with
time upon ignition can be simplified as (Equation 2; Halstead
et al., 1977; Sazhina et al., 1999, 2000; Sazhin et al., 1999);

dT

dt
=

1

CvNi
KpqV [R.] (2)

Where Cv = heat capacity at constant volume (Joules/Kelvin),
Ni = total number of molecules per unit volume—a
parameter that also captures the specific surface of the
material, Kp = ignition propagation rate (related to the
concentration in each propagation step, defined in Halstead
et al., 1977), q = exothermicity per cycle (Joules), V = volume,

[R.] = concentration of the ignited hydrocarbon(s) (molar
concentration). This simplified model for an isotropic fuel source
captures the role of the dissipative nature of the propagating
front (q) and the rate of propagation (Kp), whose effect(s) on
temperature is inversely proportional to the heat capacity of the

material. It therefore follows that the rate of thermal degradation
can be tuned either by varying concentration of material or
oxidant (Equation 1) or via temperature (Equation 2).

Based on the above simplified equations, two major scenarios
can be deduced vis: (i) based on Equation (1) as applied to
fibrous materials, introduction of heterogeneity on the surface
can slow or inhibit surface ignition (for example, surface grafting
as in Figure 1A). In such a scenario, stochastic temperature
dependent autoignition has to occur in the bulk of the
material, leading to multiple propagation fronts and likely more
complete combustion due to minimized local ash deposition.
We (Oyola-Reynoso et al., 2016a, 2017) recently demonstrated
this thermal degradation scenario under controlled environment
(Figures 1A,B). (ii) From Equation (2), it follows that, in thermal
degradation of heterogeneous materials, differences in specific
heat capacity can provide thermal sinks/concentrators that could
autoignite leading to multiple propagating fronts. In cases
where one component is reactive or transforms, consumption
of thermal energy at the propagating front reduces number
of propagating events hence increased incomplete combustion.
Based on these scenario, we hypothesized and demonstrate
that interfering with thermal degradation mechanism, fibrous
materials (in our case paper) can be used as templates for
frugal synthesize of carbon-based materials with concomitant
incorporation of oxidized adducts as demonstrated with Fe2O3.
This scenario, once validated, provides orthogonal design rules to
previously reported paper templated salt adduct formation.

MATERIALS AND METHODS

Materials
All reagents were obtained from Sigma-Aldrich and were
used as supplied. NYX blotting paper (NYX Cosmetics),
Chromatography paper (Whatman #1), and Cardstock paper
(Georgia Pacific) were used as cellulose templates. These papers
were selected for their variations in both fiber density and types
of fillers. (See Supporting Information, Figure S1).

Salt Solution
Iron (III) Chloride (FeCl3, 97% Sigma-Aldrich) salt solution (10
g/L, 0.06M) was prepared using ultrapure water (obtained from
Thermofisher Smart2Pure6 water purification system) and used
as prepared to impregnate the paper.

Paper Preparation
Paper samples (NYX Blotting, Whatman No. 1 Chromatography,
Georgia-Pacific Cardstock) were cut into 4 × 4 cm squares.
Surface modification was performed by vapor phase deposition
as previously described (Oyola-Reynoso et al., 2016d). The
process was conducted in a pre-heated desiccator containing
drierite. Paper samples were placed in the desiccator with 100 µL
of trichloro(1H,1H,2H,2H-perflurooctyl)silane and immediately
evacuated for ca. 2min. The evacuated desiccator was placed in
an oven maintained at 95◦C and reaction allowed to run in vacuo
for 1 h.
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Saturation of Paper in Salt
All paper samples were pre-weighed before saturation with the
salt. Paper samples were submerged in the solution for 10–15 s
followed by drying in an oven at 50◦C for ca. 7min. Once dried,
the samples were re-weighed, and the process repeated until there
was no observable change in mass.

Degradation
Salt saturated paper were thermally degraded via two methods:
(I) Samples were ignited in a fume hood with a butane lighter
and allowed to burn (flash burning), (II) thermal degradation was

performed using thermogravimetric analysis (TGA) equipment
(TA Instruments Q50) from room temperature to 800◦C
(20◦C/min, air/N2 purge gas). Residual ashes were then
characterized using SEM and EDS.

Scanning Electron Microscopy (SEM) and
Energy Dispersive X-Ray Spectroscopy
(EDS)
Fabricated shapes were characterized and imaged by Scanning
Electron Microscopy (FEI Quanta 250 FEI-SEM). The SEM was

FIGURE 2 | Scanning electron microscopy (SEM) images of templated structures derived from pristine (salt) and silanized (SiF+salt) cellulose respectively burned by

flash thermolysis. (A,B) Chromatography paper (CH). (C,D) Cardstock paper (CS). (E,F) Blotting paper (NYX).
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operated under high vacuum with accelerating voltage of 2–3
kV at 10.5mm working distance. Everhart-Thorley Secondary
electron detector was used to take micrographs. Line integration
settings was used to ensure high signal to noise ratio at lower
beam currents. Elemental composition was determined using
EDS with a silicon drift detector at an increased accelerating
voltage of 10 kV for increased count rate. EDS Map analysis
was done with 256 × 256 pixels resolution, 3 frames, 100 µs
dwell time setting using the AztecOne software on the same
instrument.

RESULTS AND DISCUSSION

Three types of paper, namely chromatography (CH), card stock
(CS) and blotting (NYX) paper were used in this work. The
papers were chosen based on variation in fiber density, grammage
(NYX>CS>CH) and filler content (no fillers in CH, precipated
calcium carbonate in CS–expected to react with the by-product
of silanization and talc in NYX–unreactive). The salt, FeCl3, was
used as the model metal ion source due to ease of access and
differences in color with changes in oxidation state and potential
to form magnetic precipitates.

Paper loaded with the salt, as expected, changes color
with significant differences observed with increase in fiber
densities and treatment times. As explained above, we employed
two main approaches to thermal degradation; (i) direct flash
pyrolysis- where the paper was ignited into an open flame, (ii)
controlled degradation- where the paper was thermally degraded
under controlled environment and heating rates. Under flash
thermolysis, the impregnated samples burned with a bright
yellow flame. As expected, when untreated paper samples (with
or without salt , see Supporting Information Figure S2) were
degraded, a complete collapse of the fibers occurred precipitating
the ash along the now degraded network (Figure 2A). As
previously shown byWhitesides and co-workers (Christodouleas
Dionysios et al., 2017), with the untreated paper, the salt sinters
and adopts a connected porous network akin to that of the paper
fiber network (Figure 2A).

Effect of Paper Fillers
We compared thermal degradation of papers with (CS and
NYX) and without (CH) fillers after impregranation with Fe salt
(Figure 2). We observe that the filler-free paper largely degrades
to form porous structures (Figure 2A). These structures are
fragile and most of the paper fiber has been fully degraded.
On the other hand, CS paper contains PCC (precipitated
CaCO3) that can release CO2 under thermal degradation or
convert to CaCl2 on reaction with HCl (a by-product of the
silanization with trihalo alkylsilane). Produced CO2 retards
thermolysis hence likely to promote incomplete combustion
by slowing the propagation of the ignition event (low Kp in
Equation 2). Presence of amorphous carbon and oxidized Fe
adducts may lead to increased residual ashes. As a result, the
structure of the paper fibers is better preserved and show better
continuity compared to CH paper (Figure 2C). Similarly, for
the NYX paper that contains a non-reactive filler and has
higher grammage, the native fiber network is more evident

than in the CH paper, although a significant number of
defects on the residue were observed compared to the CS.
We can therefore infer that the nature of the residual ashes
depends on amount of fiber per unit area (Equation 1) and
control over the rate of ignition propagation, Kp, (combustion)
process.

Effect of Fiber Density
For comparison purposes, we investigated papers with increasing
density, CH<CS<NYX, as previously reported (Oyola-Reynoso
et al., 2016d). The NYX paper is ∼2x the fiber density relative to
CH and contains talc (Mg/Al oxide) fillers that do not reactively
interfere with the degradation process. We observe that high
density papers producedmore residues as predicted by Equations
(1, 2). The NYX paper, for example, produces significantly
more carbonaceous mass than the CH especially without surface
treatment (Figures 2A vs. 2E). Although this observation is in
line with the predictions based on propagation of the ignition
event, we exercise caution in its over-interpretation as the talc
filler may play a yet to be determined role. We therefore infer
an association, but not a causation, between residual mass and
density of the paper.

Modifying Surface Energy as a Design Tool
for Creating Structures
Occlusion of salt (higher thermal coefficient than cellulose) on
paper fibers significantly improves heat transfer into the material,
which in turn affects thermal degradation rate. The modification
of surface energy by silane treatment leads to omniphobicity
which in turns tunes liquid absorption into the paper. Controlled
solvation in turns tunes amount of salt adsorption/occluded in
the paper fibers. We previously demonstrated that, silanized (RF)
paper biodegrades slower than pristine paper, in part, due to
slow absorption of water (Oyola-Reynoso et al., 2016b,c). We
infer that thermal degradation of paper fibers can, therefore,
be tuned through silanization, which concomitantly affects the
resulting structure of the residues. This hypothesis has been
confirmed as shown in Figure 2 above (i.e., Figures 2A,C,E

vs. 2B, D,E). Besides the effect of treatment on structure, we
also observe changes in the overall composition of the ashes.
Considering the low-fiber density, filler-free, CH paper, a clear
difference in morphology of the residues is observed (Figures 2A
vs. Figure 2B) with concomitant treatment-dependent difference
in distribution of residual carbon (Figures 3AI-AII). In the
case of CS, most significant difference was observed in the
distribution of the filler adducts. The untreated CS paper
showed a uniform distribution of Ca (Figure 3BI) while upon
silanization asymmetric distribution is observed with most of
the Ca deposition away from the residual carbon and Fe
(Figure 3BII). Enhanced residual carbon concentration was also
observed with treatment for NYX, however, in this case the
distribution of the filler adduct did not depend on treatment.
(Figures 3CI-CII) Comparing filler adducts in CS (Figure 3B)
and NYX (Figure 3C), we infer that when fillers are transformed
during the processing, translation (movement) may occur
leading to significant reorganization. Based on the high overlap
in distribution of the salt and residual carbon, (Figure 3 and
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FIGURE 3 | Distribution maps of key elements in the residual ash from flash burning as observed by Energy Dispersive X-ray spectroscopy (EDS) of the structures

derived from hydrophilic paper treated with (I) Salt and (II) SiF + Salt. (A) Chromatography paper. (B) Cardstock paper. (C) Blotting paper.

Supporting Information Figure S3) we infer that when the salt is
occluded into the fibers (as opposed to physisorbed on the fiber),
then localization of the ignition event is more likely leading to
better patterning of residual ashes along the native fiber network.

Effect of Heating Rate
To assess the effect of heating rate, we compared flash
burning with controlled indirect heating (performed in a TGA
instrument) under air (80% N2, 20% O2). Figure 4 shows SEM
images of the samples after burning in TGA up to 800◦C
(at a heating rate of 20◦C per min). From direct comparison
with flash burning (open flame), we observe an enhanced
deposition of ash along the fiber network (Figure S2) albeit
with significant collapse of individual structures. We infer that
rapid but incomplete degradation under flash burn leads to
deposition of residual carbon hence enhanced fiber structure
integrity. Due to requisite airflow in a TGA oven, effect of
high oxidant concentration likely affects the ignition point
and eventual propagation hence the extent of fuel (paper)
consumption. We confirm compositional differences via SEM-
EDS (Figure S5 and Table S1). Carbon content in flash heated
samples are significantly higher (except for CS , see Supporting
Information Figure S4 and Table S1 for distribution ratios of
different elements), supporting the inference that there is likely
incomplete burning of the cellulose fibers. We hypothesize
that in CS, the reactive PCC fillers affect degradation rate
orthogonal to what is under flash burning, in part due to gaseous
exudates promoting local mixing hence improved combustion. A
secondary effect could be due to thermal energy accumulation in
the PCC prior to degradation leading to multiple ignition events.

We, however, cannot decouple these two processes but can infer
that a reactive filler will interfere with the degradation process,
hence the product, irrespective of the pathway.

Analysis of the rate of degration from the TGA reveals
that all papers degrade via multiple steps in a manner that
depends on the nature of the paper and presence or absence
of the surface modifier. Figures 5A–C shows the TGA plots
for all samples (control, salt and SiF+salt). Control samples
all follow similar degradation paths with two main events,
one large and quick and a second shorter and slow event.
We Oyola-Reynoso et al. (2016a) previously reported similar
degradation patterns for the NYX paper under controlled oxygen
(Figure 1B). For clarity, we represent the thermal degradation
steps through the differentiated curves (change of mass with
change in time) such that each degradation step is represented by
a peak (Figures 5D–F). Baseline resolution of the peaks indicates
two clearly decoupled events, where one comes to completion
prior to the following step.We observe baseline resolution for the
control samples, especially in presence of fillers (Figures 5E,F).
Degradation of control paper samples is dominated by the first
step occurring at ca. 350◦C. In presence of PCC, a second
degradation event occurs at 450◦C but at ∼500◦C in presence
of talc. To further support our inference that the predominance
of the second peak is likely due to the presence of the fillers, we
note that upon occluding salt into the papers, two distinct peaks
were observed. The first peak initiated significantly earlier than in
the control sample, further supporting our hypothesis that salts,
with higher thermal coefficient, can act as heat concentrators
promoting local ignition. The second peak also initiates at a low
temperature than in the control although the intensity shows a
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FIGURE 4 | Scanning electron microscopy (SEM) images of templated structures derived from pristine (salt) and silanized (salt+SiF) cellulose respectively degraded in

a TGA oven (controlled burning). (A,B) Chromatography paper (CH). (C,D) Cardstock paper (CS). (E,F) Blotting paper (NYX).

dependence on the nature of the filler. The significantly different
mass loss in-between the first and second peak in presence of the
salt, however, further supports the idea that, under flash burning,
physisorbed materials can interfere with the propagation of the
ignition event, hence, promote incomplete combustion. From
Equations (1, 2), we caution that this being a kinetically driven
event, the patterns are highly dependent on oxygen concentration
and its flux into the burning material. In fact, comparing
current NYX control data (Figure 5F) with previously reports
for degraded under reduced oxygen (Figure 1B), we observe
slight differences in the initiation temperatures and residue mass.

From the previous study, however, we observe that the initiation
temperature is slightly lower upon silinazation supporting the
observations above. When salt is occluded in silanized papers,
however, hybrid behavior is observed. The arrangement of
the degradation peaks are akin to a hybrid degration of the
control samples and those with occluded salts. We infer that
silanization limits occlusion of the salt hence a smaller mole
fraction of the salt is physisorbed. The shifting of degradation
peaks, therefore, are dependent on salt concentration in the
paper which can be tuned through surface energy (wettability)
modification.
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FIGURE 5 | (A–C) Thermogravimetric analysis (TGA) of templated pristine and silanized cellulose. (D–F) Associated differential TGA highlighting the degradation

maxima and number of degradation events.

CONCLUSION

Tuning the thermal degradation process, either through
chemi- and/or physi-sorbed adducts on paper, affects the
propagation of the ignition event leading to enhanced incomplete
combustion. This reduced degradation process precipitates
structured networks akin to the native fiber structure. We can
therefore infer that modification of paper with concomitant
felicitous choice of degradation conditions is a viable pathway to
synthesize networks of metallic adducts. Tunability of the paper
network during pulp processing can therefore be exploited in a
tunable thermal degradation process to produce carbon networks
impregnated with various metal-salt adducts.
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