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A model solvent, 1,3,5-trimethylbenzene, was encapsulated using coordination

assembly between metal ions and tannic acid to reveal the deposition of coordination

complexes on the liquid-liquid interface. The deposition was confirmed by zeta

potential, energy dispersive spectroscopy and X-ray photoelectron spectroscopy.

Scanning electron microscopy and transmission electron microscopy were integrated

to characterize the microcapsules (MCs). According to atomic force microscopy height

analysis, membrane thickness of the MCs increased linearly with sequential deposition.

For MCs prepared using the Fe3+-TA system, the average membrane thicknesses

of MCs prepared with 2, 4, 6, and 8 deposition cycles were determined as 31.3 ±

4.6, 92.4 ± 15.0, 175.4 ± 22.1, and 254.8 ± 24.0 nm, respectively. Dissolution test

showed that the release profiles of all the four tested MCs followed Higuchi kinetics.

Membrane thicknesses of MCs prepared using the Ca2+-TA system were much smaller.

We can easily tune the membrane thickness of the MCs by adjusting metal ions or

deposition cycles according to the application requirements. The convenient tunability

of the membrane thickness can enable an extensive use of this coordination assembly

strategy in a broad range of applications.

Keywords: microcapsule, polyphenol, metal ion, deposition, coordination assembly, membrane thickness

INTRODUCTION

Microencapsulation technology is a promising approach that has been widely reported to
protect sensitive core materials, including but not limited to chemicals and living biomaterials
(Parthasarathy andMartin, 1994; Anderson and Shive, 2012; Tong et al., 2012; Li B.-X. et al., 2017).
The past few decades have seen significant advances of microencapsulation in drug delivery (Wang
et al., 2006; De Koker et al., 2012; Simoes et al., 2015; Jia et al., 2017; Li H. et al., 2017),
material industry (White et al., 2001; Su and Schlangen, 2012; Jamekhorshid et al., 2014),
biomaterials (Parthasarathy and Martin, 1994; Zhi and Haynie, 2006; Kurayama et al., 2012;
Ekanem et al., 2017; Zhao et al., 2017), agrochemicals (Li et al., 2016, 2018; Liu et al., 2016;
Liang et al., 2017), food industry (Xu et al., 2013), and other fields. There are numerous
encapsulation methods focusing on in situ polymerization (Su et al., 2013; Zuo et al., 2014),
interfacial polymerization (Wagh et al., 2009), spray drying (Zhang and Zhong, 2013), solvent
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evaporation (Lee et al., 2012) and so on. However, these methods
show some drawbacks in terms of financial cost, time cost,
simplicity or environmental compatibility, as listed in Table 1.
Thus, more environmentally friendly and versatile methods are
urgently required.

In recent years, coordination complexes utilizing metal ions
and natural products have attracted extensive interest from

TABLE 1 | Advantages and disadvantages of various encapsulation methods.

Encapsulation

method

Advantage Disadvantage

In situ

polymerization

Inexpensive wall materials

and simple manufacturing

equipment (Sukhorukov

et al., 2001)

Highly complex procedure (Fan

and Zhou, 2010); An important

precursor, formaldehyde, has a

pungent smell and high toxicity

for higher animal life (Cassee

et al., 1996; Zuev et al., 2013)

Interfacial

polymerization

Simple process and lower

emphasis on monomer

purity (Wagh et al., 2009;

Zhang et al., 2018a)

Time-consuming; high cost of

polymer monomer (Li et al.,

2013; Zhang et al., 2016)

Spray drying Simple procedure (Wang

et al., 2016)

High energy consumption

(Aghbashlo et al., 2012)

Low encapsulation efficiency

(Varona et al., 2013)

Solvent e

vaporation

Simple procedure (Fan

et al., 2014)

Low drug-loading efficiency (Lee

et al., 2012)

FIGURE 1 | Scanning electron microscopy images of 1,3,5-trimethylbenzene-loaded MCs prepared with different numbers of deposition cycles. Scale bars represent

2µm.

the scientific community due to their high environmental
compatibility (Bentley and Payne, 2013; Ejima et al., 2013;
Guo et al., 2014; Li et al., 2016; Rahim et al., 2016). These
materials can be assembled onto planar or particulate
substrates with a range of functionalities, including enhanced
mechanical stability selection, permeability, and stimuli-
responsiveness (Rahim et al., 2014; Ping et al., 2015; Ejima
et al., 2016; Richardson et al., 2016). However, few reports had
explored the deposition of such materials on a liquid-liquid
interface. Since the interfacial properties of the liquid-liquid
interface and the solid-liquid interface differ significantly,
the deposition process of coordination complexes may be
very different. Therefore, urgent exploration is required to
characterize the deposition process based on the liquid-liquid
interface.

Microcapsules (MCs) prepared with these polymers always
release slowly in target sites because the polymers can hardly
degrade in water, soil, or air (Zhang et al., 2016). However,
in addition to long-term effectiveness, a rapid efficacy of core
materials is also required in many situations, such as the rapid
activity in emergency medicine and rapid insecticidal efficacy
in agriculture. Moreover, the residual and other unforeseeable
risks of core materials in the environment also increase due to
the slow release of core materials after the encapsulation (Li
et al., 2014). Release profiles of MCs in conventional systems
have often been regulated by the membrane thickness, particle
size, pore size, membrane permeability or stimuli-gated channels
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(Siepmann and Siepmann, 2012; Jeong et al., 2014; Zhang et al.,
2014, 2018b; Shi et al., 2016; Cui et al., 2017; Huang et al.,
2017). The fabrication of wrinkled MCs is another important
strategy for increasing the surface area of the membrane, but
little progress was observed in terms of the release rate (Ina et al.,
2016). MCs prepared with coordination complexes were reported
to degrade faster and the release of core materials was pH-
responsive (Ejima et al., 2013). Thus, we would like to provide
strategies for achieving the tunable membrane thickness of MCs
by using coordination assembly.

As proof, we report the formation of metal-polyphenol
networks on the liquid-liquid interface using 1,3,5-
trimethylbenzene as a model core material. The deposition
was confirmed by zeta potential, EDS and XPS. SEM, TEM,
and AFM were also integrated to characterize the MCs. We
have thus provided convenient strategies for obtaining a tunable
membrane thickness of MCs by using coordination assembly.

MATERIALS AND METHODS

Reagents
The solvent 1,3,5-trimethylbenzene (purity of 97%), and the
wall materials tannic acid (TA) (C76H52O46, AR), iron (III)
chloride hexahydrate (FeCl3·6H2O, ACS), and calcium chloride
anhydrous (CaCl2, ACS) were all purchased from Aladdin
Reagent Co. Ltd., (Shanghai, China). Calcium lignosulfonate was
purchased from Yanbian Chenming Paper Industry Co., Ltd.,
(Jilin, China). Sodium lignosulfonate with the molecular weight
of 10,000–12,000, and sulfonation degree of 0.85 mmol g−1 was
purchased from MeadWestvaco Holding Co. Ltd., (Shanghai,
China). Distilled water was used throughout the study.

Preparation of Solvent-Loaded MCs
The standard procedure used in this work is as follows: in the first
step, 30.93 g of 1,3,5-trimethylbenzene was accurately weighed
as the organic phase. Then 1 g of surfactant was dissolved in
40 g of water to obtain the aqueous continuous phase. After
pouring the organic phase into the aqueous continuous phase,
homogenization at 10,000 rmin−1 was implemented with a
homogenizer (BRT-25w, Shanghai BRT Equipment Technology
CO., Ltd., Shanghai, China) to fabricate a fine emulsion.
Subsequently, the mixture was transferred to magnetic stirring at
1,000 r min−1. Solutions of FeCl3·6H2O (or CaCl2 for the Ca2+-
TA system) and TA were then added to deposit on the oil-water
interface. Finally, we obtained solvent-loaded MCs after reaction
for another 5min.

Characterization of Solvent-Loaded MCs
Surface zeta potentials of the samples were measured using
a Zetasizer Nano ZS90 (Malvern Instruments, UK). Scanning
electronmicroscopy (SEM) images were obtained using a Quanta
250 SEM instrument (FEI, USA) operated at the acceleration
voltage of 20 kV. Energy dispersive spectroscopy data were
obtained using an X-Max EDS system (Oxford Instruments, UK).
Transmission electron microscopy (TEM) images were acquired
using a JEM-2100 TEM (JEOL Ltd., Japan) with an operational
voltage of 200 kV. Atomic force microscopy (AFM) experiments

were conducted using a Bruker Multimode 8 scanning probe
microscope (Bruker Corporation, German). Tapping mode was
used in AFM scans, and the system was equipped with a
recommended RTESP probe. Prior to the AFM measurements,
core materials encapsulated in MCs were dissolved in excessive
methanol solution to yield hollow MCs. Then, hollow MCs were
allowed to air-dry for 48 h on mica discs prior to height analysis
(Ted Pella, Inc., California, USA). Membrane thicknesses of the
air-dried MCs were analyzed using Nanoscope Analysis image
processing software (v1.40, Bruker Corporation). Release profiles
of the MCs were measured according to previously reported
protocols (Cui et al., 2017).

RESULTS AND DISCUSSION

Preparation and Characterization of MCs
Prepared Using Fe3+ and TA
To describe the deposition of metal-polyphenol networks on
the liquid-liquid interface, we used 1,3,5-trimethylbenzene as a
model corematerial because it is a common hydrophobic solvent.
Successful deposition on 1,3,5-trimethylbenzene would provide a
reference for various capsule suspensions used in agrochemicals
and food chemistry, where hydrophobic chemicals are always

FIGURE 2 | Typical transmission electron microscopy images of

1,3,5-trimethylbenzene-loaded MCs prepared with 4 and 8 deposition cycles.

Scale bars represent 200 nm.
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encapsulated. Unlike coating on planar or particulate substrates
(Ejima et al., 2013), we need a suitable emulsifier to fabricate a fine
emulsion with a certain size distribution before the deposition
process. Anionic surfactants, such as calcium lignosulfonate
and sodium lignosulfonate, showed favorable emulsification.
Moreover, the coordination complexes could deposit on the
liquid-liquid interface when using calcium lignosulfonate as the
surfactant.

We have previously reported that when Fe3+ was added first,
the final pyraclostrobin-loadedMCs tend to be relatively smooth,
whereas MCs are prone to agglutinate when TA was first added
(Li B.-X. et al., 2017). Therefore, we used the addition sequence
of Fe3+ + TA + Fe3+ + TA + Fe3+. . . in the current study.
When 1,3,5-trimethylbenzene and calcium lignosulfonate were
used, we obtained a gray and white fine emulsions. Thereafter, the
emulsion became gray after the addition of 1ml of 0.12mol l−1

Fe3+ solution. Meanwhile, addition of Fe3+ shifted the surface
zeta potential (ζ) from −45.4 ± 3.6mV to −35.1± 3.2mV.
Subsequently, the mixture turned blue and then black after the
gradual addition of all of the 2ml TA solution (0.03mol l−1).

Finally, we successfully fabricated solvent-loaded MCs after the
sample was centrifuged at 2,000 r min−1 for 1min, removed the
supernatant and added distilled water to redisperse the remained
MCs. The above process was defined as one cycle. Next, we had
investigated whether multilayered membrane could be deposited
on the liquid phase by repeating the standard process. Another
addition of Fe3+ solution (1ml, 0.12mol l−1) made it 1.5 cycles
and shifted ζ from −42.2 ± 4.1mV to −37.3 ± 3.2mV. Two
cycles finished as soon as 2ml of TA solution (0.03mol l−1) was
added, centrifuged and redispersed. As depicted in Figure S1,
surface ζ varied greatly with deposition cycles although the values
were always negative. Absolute values of zeta potential (|ζ|)
increased as soon as TA was added at 1, 2, 3, 4, 5, 6, 7, and 8
deposition cycles (compared with the former addition of Fe3+),
which was attributed to the acidic nature of the galloyl groups
in TA. However, overall, the gradual decreases in |ζ| could be
apparently observed with the deposition cycles; |ζ| decreased to
approximately 25mV after 5 cycles, significantly lower than that
of the first few cycles (approximately 36mV). In the fundamental
theory of collochemistry, lower |ζ| was demonstrated to yield

FIGURE 3 | Morphology and membrane thickness of 1,3,5-trimethylbenzene-loaded MCs prepared with sequential deposition cycles by using Fe3+-TA system. (a–d)

Typical AFM images of MCs deposited for 2, 4, 6, and 8 cycles. (e–h) Corresponding amplitude error images and (i–l) height analysis profiles of MCs prepared with

different deposition cycles. Scale bars represent 2µm.
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worse colloidal stability (Feng et al., 2010). Therefore, we deduced
that the system became relatively unstable with the increasing
deposition cycles.

The presence of TA and Fe in the membrane was then
confirmed by energy dispersive spectroscopy (EDS). The EDS
spectra of representative 1,3,5-trimethylbenzene-loaded MCs
confirmed the existence of C, O, S, Cl, Ca and Fe (Figure S2A),
and element composition is described in Table S1. The C and
O mainly originated from tannic acid, whereas S and Ca
originated from the calcium lignosulfonate molecules. The Cl
and Fe elements were derived from the addition of the FeCl3
solution. However, X-ray photoelectron spectroscopy (XPS)
only confirmed the presence of O, C and Cl (Figure S2B).
We supposed that the signal of Fe2p was masked due to the
complicated composition of the MCs and smaller penetration
depth of XPS in comparison with EDS. Ejima et al. (2013)
also indicated that the Fe2p signal was weak in a similar
system.

TheMCs deposited for different cycles also showed differences
in physical stability. Figure 1 shows the scanning electron
microscopy (SEM) images of the 1,3,5-trimethylbenzene-loaded
MCs prepared with different numbers of deposition cycles. As
depicted in the images, all of the samples had an average size
of approximately 3µm. It is apparent that no MCs deposited
for 1 cycle could preserve a relatively stable spherical shape.
Additionally, apparent folds and creases could be observed for
nearly all collapsed MCs. The membrane thickness and strength
are prone to increase with sequential deposition, although no
significant improvement was observed until deposition for 4
cycles. Fortunately, nearly all MCs can retain stable spherical
shapes after we implemented 8 deposition cycles, even though
aggregates composed of 2–6 MCs were prevalent in the sample.
This also confirmed our aforementioned hypothesis about
the instability of the system with increased deposition cycles
derived from the variation in the zeta potential. Furthermore,
the membrane surfaces of the MCs were covered with small
protuberances or particles, indicating a disordered deposition of
wall materials.

As was extensively reported, mechanical strength of MCs
shows direct correlation with membrane thickness. In this
research, membrane thickness and the morphology of MCs were
determined by using TEM. SEM images showed that MCs may
maintain stable shapes after deposition for 4 cycles, and we
therefore selected MCs deposited for 4 and 8 cycles as a model
for TEM observation. As illustrated in Figure 2, the surface
of MCs deposited for 4 cycles was smooth, whereas that of
the MCs deposited for 8 cycles appears rough and prone to
agglutination, consistent with SEM images. In addition, many
protuberances were observed in the TEM images of 8 deposition
cycles. Fortunately, the membrane thickness of MCs could be
roughly estimated. For twenty MCs, the membrane thicknesses
of MCs deposited for 4 cycles ranged between 62 and 212 nm
(128 ± 35 nm), whereas that for 8 cycles ranged between 183
and 492 nm (318 ± 87 nm). Clearly, the membrane thicknesses
were much larger than that reported by Ejima et al. (2013) on
polystyrene particles (membrane thickness was approximately
40 nm for MCs at 4 cycles). We suppose that the presence of

calcium lignosulfonate in the current study greatly contributed
in the membrane deposition process and therefore increased the
membrane thickness of the MCs.

Atomic force microscopy (AFM) was extensively reported
to provide high-resolution simulated topographical images by
meticulously analyzing surface height data. In the current study,
methanol was used for dissolution of core materials in the
MCs to yield hollow MCs before the AFM measurements.
Consequently, typical collapses of the MCs were observed in
all AFM images, as depicted in Figures 3a–d. Corresponding
amplitude error images also indicated that the surface of 1,3,5-
trimethylbenzene-loaded MCs was relatively smooth at 2 and 4
deposition cycles, while creases and rough surfaces were observed
for MCs with 6 and 8 deposition cycles (Figures 3e–h). Then,
relatively flat regions of the collapsed MCs in the AFM images
were selected to determine the average membrane thicknesses of

FIGURE 4 | (A) Membrane thicknesses of 1,3,5-trimethylbenzene-loaded

MCs (prepared with Fe3+-TA) by measuring 20 MCs via AFM height analysis.

Data are represented as the mean ± SD. (B) Release profiles of the MCs in

artificial release medium.
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the MCs. Figures 3i–l illustrate the representative height analysis
profiles of MCs prepared with different numbers of deposition
cycles. Membrane thicknesses of 1,3,5-trimethylbenzene-loaded
MCs were measured by examining 20 MCs by AFM height
analysis. The average membrane thicknesses of MCs prepared
with 2, 4, 6 and 8 deposition cycles were determined as 31.3
± 4.6, 92.4 ± 15.0, 175.4 ± 22.1 and 254.8 ± 24.0 nm,
respectively.

As depicted in Figure 4A, the membrane thickness of the
MCs increased linearly with the deposition cycles, yielding
a regression equation of y = 37.67x−49.91 (R2 = 0.995).
We noticed that the membrane thickness values of the MCs
measured by AFM were slightly inconsistent with the values
obtained by TEM observation. We attributed the inconsistence
to the tiny discrepancy in the sampling process. As we have seen
in the SEM and TEM images, a certain amount of agglomerated
MCs are present in the sample. However, we cannot measure
the membrane thicknesses of agglomerated MCs due to the
limitation of the AFM probe. As we had selected tapping
mode for the AFM scans, the recommended AFM probe
of the system was the RTESP probe. The cantilever of the
probe has the thickness of 3.5–4.5µm, length of 115–135µm

and width of 30–40µm. The probe can hardly approach
the surface of the agglomerated MCs because the height
of the agglomerated MCs can easily exceed the thickness
of the probe and thus leads to unsuccessful measurements.
For a next-best option, we measured the thickness of MCs
with relatively better dispersibility. Therefore, membrane
thicknesses of the MCs measured by AFM analysis were
slightly smaller than those measured by TEM observation
because the well-dispersed MCs show fewer or smaller
protuberances. In addition, the existence of the protuberances
might also be the cause of higher standard deviations of the
membrane thicknesses of MCs with larger deposition cycles
(Figure 4A).

Figure 4B displays the release profiles of the MCs in artificial
release medium. Although initial burst releases were observed
for all the tested MCs, sequential deposition revealed significant
advantages in controlled-release of the core material. The
MCs with 8 deposition cycles released 35.5 ± 0.6% of the
active ingredient in initial burst stage, whereas those with 2
deposition cycles dissolved 52.9 ± 1.3% of the active ingredient.
Subsequently, the dissolution data of the core material vs.
time were submitted to fit with zero-order, first-order and

FIGURE 5 | Morphology and membrane thickness of 1,3,5-trimethylbenzene-loaded MCs prepared with sequential deposition cycles by using Ca2+-TA system.

(a–e) Typical AFM images of MCs deposited for 1, 2, 3, 4, and 5 cycles. (f–j) Corresponding amplitude error images, and (k–o) height analysis profiles of MCs

prepared with different deposition cycles. Scale bars represent 2µm.
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Higuchi models. The modeling results suggested that the
release profiles of all the four tested MCs followed Higuchi
kinetics as they yielded the highest determination coefficients
(Table S2).

Preparation and Characterization of MCs
Prepared Using Ca2+ and TA
We had also preliminarily investigated whether the type of
metal ions influenced the deposition process. Thus, we used
the Ca2+-TA network for the deposition on the solvent-
water interface. Subsequently, we obtained a series of MCs
prepared with Ca2+-TA by simply replacing Fe3+ with Ca2+

in the system. AFM height analysis images (Figures 5a–e)
and amplitude error images (Figures 5f–j) indicate that 1,3,5-
Ttrimethylbenzene-loaded MCs deposited with Ca2+-TA were
much smoother than those prepared using the Fe3+-TA system.
Corresponding representative height analysis profiles of MCs
prepared with different numbers of deposition cycles are depicted
in Figures 5k–o. Membrane thicknesses of the MCs were also
measured by examining 20 MCs for each sample. The average
membrane thicknesses of MCs prepared with 1, 2, 3, 4 and 5
deposition cycles were determined as 10.0± 1.1, 22.0± 2.5, 30.5
± 3.3, 43.0 ± 4.5 and 59.7 ± 7.3 nm, respectively. As shown in
Figure S1, the membrane thickness of the MCs also increased
linearly with the sequential deposition cycles, as characterized by
the regression equation of y= 12.02x−3.043 (R2 = 0.986).

CONCLUSIONS

The common solvent 1,3,5-trimethylbenzene was used as a
model solvent for encapsulation using coordination assembly
between metal ions and tannic acid. Zeta potential, energy
dispersive spectroscopy and X-ray photoelectron spectroscopy
demonstrated the deposition of Fe3+-TA complexes on the
solvent-water interface. According to atomic force microscopy

height analysis, membrane thickness of the MCs increased
linearly after sequential deposition. We can easily tune the
membrane thickness of the MCs by adjusting metal ions or
deposition cycles according to the application requirements.
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