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An exploratory analysis of a large representative dataset obtained in a fluidized bed drying

process of a pharmaceutical powder has revealed a significant correlation of spectral

intensity with granulate humidity in the whole studied range of 1091.8–2106.5 nm. This

effect was explained by the dependence of powder refractive properties, and hence light

penetration depth, on the water content. The phenomenon exhibited a close spectral

similarity to the well-known stochastic variation of spectral intensities caused by the

process turbulence (the so-called “scatter effect”). Therefore, any traditional scatter-

corrective preprocessing incidentally eliminates moisture-correlated variance from the

data. To preserve this additional information for a more precise moisture calibration, a

time-domain averaging of spectral variables has been suggested. Its application resulted

in a distinct improvement of prediction accuracy, as compared to the scatter-corrected

data. Further improvement of the model performance was achieved by the application of

a dynamic focusing strategy when adjusting the model to a drying process stage. Probe

fouling was shown to have a minor effect on prediction accuracy. The study resulted in

a considerable reduction of the root-mean-square error of in-line moisture monitoring

to 0.1%, which is close to the reference method’s reproducibility and significantly better

than previously reported results.

Keywords: fluidized bed drying, moisture monitoring, NIR spectroscopy, light scatter, scatter correction,

lighthouse probe, process analytical technology

INTRODUCTION

Fluidized bed drying is a common unit operation routinely performed in the pharmaceutical
production of solid dosage forms. In a typical batch granulation process, the drying stage
immediately follows either the fluidized bed or high-shear granulation stage. It is often considered
as one of the most critical steps for achieving stable product quality, i.e., for obtaining granules
with desired properties at their minimal variability. Therefore, a close monitoring of the residual
moisture content in the process medium is necessary for any quality assurance system in granulate
production.

In modern industrial practice, moisture is commonly analyzed in isolated samples. Karl Fischer
titration is a classic water analysis technique that has been widely used for decades. A viable
alternative accepted by pharmacopeias is thermogravimetric analysis with a drying balance that
determines moisture content in the sample as percentage weight loss on drying (LOD). At present,
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both techniques are realized as compact desktop devices enabling
the at-line analysis of samples taken from a running process.

For the process type studied here, the at-line analysis
of granulate moisture content typically takes 20–30min,
representing a good alternative to off-line laboratory analysis of
the final product. However, such operability is insufficient to
carry out real-time process control, for example by generating
alarms on abnormal process states and performing timely
corrections. For the same reason, at-line analysis is hardly
suitable for accurately determining the process end-point—
the time point at which the product reaches its optimal
properties. Therefore, instant in-line monitoring of the moisture
content in fluidized bed drying is strongly desired to provide a
necessary level of process control and to meet growing quality
requirements.

Near-infrared (NIR) spectroscopy is an undoubted favorite
among real-time sensor systems for moisture monitoring in the
production of solids, specifically, in the drying step (Roggo et al.,
2007; Burggraeve et al., 2013; Da Silva et al., 2014). In such
systems, the diffuse reflectance spectra of the process material
are typically measured through an immersion probe. The key
advantages of NIR spectroscopy as an in-line analytical technique
include the suitability for measurements in media of highly
variable bulk density, nondestructiveness, and the capability to
place the probe into an appropriate position within the process
space while keeping it connected to a remote spectrometer
through a fiber optic cable.

The classic NIR spectroscopic moisture analysis relies on
two intensive water absorption bands around 1,440 and
1,930 nm, enabling quantitative determination of the moisture
in a wide concentration range. In low-selective NIR spectra,
the component bands are essentially overlapped and their
quantitative analysis requires the application of multivariate
modeling, also known as chemometrics. In particular, the partial
least-squares (PLS) regression algorithm (Sjöström et al., 1983) is
widely accepted in process chemometrics (Bogomolov, 2011).

Over the last decades, the practical acceptance of NIR
spectroscopy for in-line moisture monitoring in fluidized bed
processing of powders and solids have been constantly growing.
Published works (Frake et al., 1997; Rantanen et al., 2000; Zhou
et al., 2003; Green et al., 2005; Nieuwmeyer et al., 2007; Skibsted
et al., 2007; Luukkonen et al., 2008; Mantanus et al., 2009;
Alcalà et al., 2010; Corredor et al., 2011; Peinado et al., 2011;
Burggraeve et al., 2012; Demers et al., 2012; Möltgen et al., 2012;
Obregón et al., 2013) have focused on the general feasibility of
the analysis or on the investigation of specific experimental or
modeling aspects (e.g., important process influences, sampling,
control strategy, and model transfer). At the same time, the
resulting models are typically built and validated on relatively
small sets of samples and batches, which can be accounted for
by the technical complexity of industrial experiments. Hence,
the accuracy estimates reported for similar process setups and
conditions are very diverse (Zhou et al., 2003; Green et al.,
2005; Nieuwmeyer et al., 2007; Skibsted et al., 2007; Mantanus
et al., 2009; Alcalà et al., 2010; Corredor et al., 2011; Peinado
et al., 2011; Burggraeve et al., 2012; Demers et al., 2012; Möltgen
et al., 2012) and the “ultimate” moisture determination accuracy

by in-line NIR spectroscopy under widely variable process
conditions remains unknown. Therefore, despite significant
progress, the method can hardly be regarded as completely
established yet.

In-depth considerations of NIR spectroscopic analysis in
terms of light propagation in the complex fluidized bed process
medium are rare (Rantanen et al., 2000; Luukkonen et al., 2008;
Burggraeve et al., 2013). One of the main obstacles complicating
the NIR spectroscopic monitoring of fluidized bed drying is
related to process turbulence. A highly variable density of the
material around the probe, and consequently the quantity of light
reaching the detector, causes intensive random fluctuations of
the overall intensity of in-line spectra that are often referred to
as the “scatter effect.” The problem is commonly resolved by
preprocessing the spectra prior to the modeling step. The three
most-used scatter correction methods are multiplicative scatter
correction (MSC), standard normal variate (SNV), and spectral
derivatives (Rinnan et al., 2009). The application of a scatter
correction method to in-line process NIR spectra is ubiquitous;
no exception has been found in the literature. In most cases, the
choice of the preprocessing method is empirical or arbitrary.

In some publications, it was noticed that the NIR spectra
expressed in the logarithmic reflectance units (lg(1/R)) exhibited
a significant downward shift of the background as the drying
progressed (Frake et al., 1997; Rantanen et al., 2000; Zhou et al.,
2003; Luukkonen et al., 2008; Burggraeve et al., 2012). Two
plausible explanations were suggested, both related to the altering
of light scatter conditions in the course of drying. On one hand,
the uniform decrease in spectral intensities could be caused
by an increase in scattering particle size; this explanation was
given by Burggraeve et al. (2012) and Frake et al. (1997). On
the other hand, the presence of water on crystal surfaces affects
the reflective properties of the granulated powder, resulting in a
deeper light penetration and a subsequent higher absorbance of
wetter samples (Rantanen et al., 2000; Luukkonen et al., 2008).
Rantanen et al. (2000) provided an experimental evidence of
the latter phenomenon by using the pharmaceutical excipient
(microcrystalline cellulose) as well as inorganic glass beads
(“ballotini”) with a known size distribution.

The present work aims at building an accurate and
robust functional prediction model for in-line moisture
content monitoring in fluidized bed drying based on a large
representative set of designed process data. Both experimental
and modeling factors have been scrutinized to improve the
performance of the prediction model. A thorough exploratory
data analysis has been applied to help understand the process
multivariate trajectory delivered by in-line diffuse-reflectance
NIR spectroscopy better. In this study, we focus on efficiently
using of the whole spectral information, including both
absorption and scatter-related effects of water, to improve the
performance of in-line moisture monitoring.

MATERIALS AND METHODS

Twenty-five pilot-scale fluidized bed drying batches of a
pharmaceutical powder mixture were studied by using a 256-
pixel diode-array TIDAS 1121 SSG NIR spectrophotometer with
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a wavelength range of 1091.8–2106.5 nm (J&M Analytik AG,
Germany) that was equipped with the Lighthouse ProbeTM

(LHP) from GEA Pharma Systems nv – Collette, Belgium
(Engler et al., 2009) immersed into the process medium. The
LHP was periodically cleaned and recalibrated without process
interruption (see section S1.4 of Supplementary Material). The
total number of cleaning cycles in all batches was 19.

The data of each batch included from 396 to 1,213 NIR
spectra collected at 5-s intervals (16,303 spectra in total).
In the course of the process, 301 samples of about 5 g
(between 5 and 26 samples from each batch) were isolated
and analyzed for moisture content as weight loss on drying
using a HR73 halogen moisture analyzer (Mettler Toledo GmbH,
Switzerland). Reproducibility checks for three LOD analyzers
performed during the whole study showed that the measurement
standard deviation error does not exceed 0.06% (section S1.2 of
Supplementary Material).

The main process and the sample information are
summarized in Table S-1. Out of the 301 samples, three
were rejected from further analysis as evident outliers (section
S2.3.1 of Supplementary Material).

Individual batch conditions were set in accordance with
a developed experimental design to cover the whole range
of practical process variability. Moisture content in the
selected samples varied between 2.38 and 25.92%. The active
pharmaceutical ingredient (API) was present in four assay
levels: 0 (placebo), 0.1, 1.0, and 10.0mg. The range of process
temperatures was 30.5–49.7◦C. Eight batches (88 reference
samples) formed a validation subset that was representative
of the process conditions and used for model validation; the
other 17 batches were used as the calibration set in that case
(Table S-1).

A subset of 101 experimental samples were additionally
analyzed off-line by using an MPA Fourier-transform (FT-)
IR spectrometer (Bruker, Germany) with an integrating sphere
(section S1.5 of Supplementary Material).

Principal component analysis (PCA) and PLS regression
are multivariate data analysis algorithms described in the
literature (Sjöström et al., 1983; Wold et al., 1987). The
multivariate spaces, namely, PCA model principal components
(PCs) and PLS latent variables (LVs) represented by their
score (t) and loading (p) vectors, were used for exploratory
data analysis. Conventional data preprocessing methods
employed were MSC, SNV, and first-derivative using the
Savitzky–Golay smoothing filter, as described by Rinnan et al.
(2009).

Three validation techniques were applied with each
regression model: leave-one(-sample)-out (LOO), a.k.a.
full cross-validation (CV), leave-a-batch-out (LBO) CV,
and validation by a preselected set (Table S-1). The
performance of the models was characterized by root-
mean-square errors (RMSE) of calibration, validation, and
prediction, as well as corresponding determination coefficients
R2.

A detailed description of data acquisition and analysis is given
in section S1 of Supplementary Material.

RESULTS AND DISCUSSION

Exploratory Analysis of In-line Spectral
Data
Figure 1 presents a set of 1,213 in-line NIR spectra obtained
in batch B03 (Table S-1). An expected intensity reduction of
the main water band in the 1,920–1,940 nm range during the
process is clearly observed. Another distinct feature is the high
variability of spectral intensities over the whole wavelength range
(the so-called “scatter effect”), caused by strong instant density
fluctuations of the granulate (and its spatial distribution) around
the probe.

At the same time, the overall spectral intensity tends to fall
gradually during the process, generally following the dynamics
of water reduction. This trend can be illustrated by the
time dependencies of the spectral intensity at two separate
wavelengths: 1932.0 nm at the maximum of the main water band
and 1708.1 nm where no noticeable water absorption is expected.
Both intensities strongly correlate with the reference moisture
content (Figure 2A). Data smoothing along the time scale makes
this correlation even more distinct.

The moisture- and time-dependent changes in the batch
processes can be effectively visualized by using data animation
(section S2.1 and Video S-1, Supplementary Material).
Animated spectral data reveal the same trends, namely
water band reduction and stochastic background variation
accompanied by a gradual fall of the spectrum intensity in the
whole range.

In this situation, preprocessing is desirable, but it should be
applied to the data variable vectors, i.e., along the time scale, as
shown in Figure 2A. As the turbulence effect is supposed to be
pure noise, the smoothing of variables is a straightforward way to
eliminate it with a minimal loss of the informative variance.
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FIGURE 1 | In-line NIR spectra in batch B03.
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FIGURE 2 | Exploratory analysis of B03 data: (A) raw (gray line) and smoothed (red line) spectral intensities at the two selected wavelengths and reference moisture

content (crosses) vs. process time; and (B) correlation coefficients between the moisture content and spectral intensities at individual wavelengths for raw (gray circles)

and smoothed (red squares) data; vertical lines at 1,708 and 1,932 nm correspond to the dependencies presented in (A); data were smoothed with a 47-point window.

One of the simplest smoothing techniques, the moving
window averaging algorithm, has been used to preprocess the
matrix of spectral data X. In this method, each element xij in
X, where i and j are respectively the object (spectrum) and
variable (wavelength) indices, is replaced by a corrected value xsij
calculated as a mean of the surrounding points within a window
having the width defined by an odd number k (Equation 1):

xsij =

∑i=i+(k−1)/2
i=i−(k−1)/2 xij

k
(1)

The transformation is performed for each variable in X. (k – 1)/2
end-points on each side of the variable vector were smoothed
with a reduced window of (l – 1) . 2 + 1 points, where l is the
point ordinal number from either spectrum end.

Data averaging within a selected time window is similar
to a respective enhancement of the spectrum acquisition time,
thus enlarging the virtual sample size captured by a single
measurement. However, in contrast to the measurement time
adjustment, the mathematical averaging does not place any limit
on the time step of data acquisition, i.e., it can be performed with
a time window that is much wider than the physical step size.
A positive effect of the variable smoothing for the modeling of
a fermentation process data has been reported (Skibsted et al.,
2001).

Pair-wise correlations between the LOD values and the
intensities at individual variables in the corresponding (closest
to the sampling times) in-line spectra were analyzed in the
whole wavelength range. Figure 2B presents linear correlation
coefficients (r) as a function of wavelength in B03. All spectral
variables exhibit a strong intensity correlation with the moisture
content, even in the raw data. Eliminating the process noise
using the suggested averaging method (Equation 1) results
in a dramatic enhancement of r. It also looks natural that
correlation maxima are observed around major water bands.
However, even beyond the water absorbance regions, this

correlation is very high. Thus, the lowest r observed in B03 at
the short-wave end of the spectral region is still greater than
0.8 (Figure 2B); after the smoothing, this value increases to
0.98. Similar dependencies were observed for all the 25 studied
batches.

A high correlation of lg(1/R) with the moisture content
in the whole studied NIR range is in agreement with some
published observations. This phenomenon can be explained by
altering the refractive properties of the granulate (Rantanen
et al., 2000). Indeed, in the course of drying, the liquid
bridges holding the primary particles together (Burggraeve
et al., 2013) are replaced by air. The crystal–air interface is
characterized by a higher difference of refractive indices than
the crystal–water pair. Thus, drying leads to a higher scatter—
and hence an increased quantity of diffusely reflected light
reaching the detector—that corresponds to a decrease in the
spectral intensity expressed in absorbance type of units. For
relatively large particles constituting the granules, this effect
should be wavelength-independent. An intuitive illustration of
the particle wetting effect and its uncomplicated explanation
using the representative layer theory was given by Dahm (2013).
A similar correlation of the Raman spectral background with
the moisture content was observed in our earlier studies on
pellet coating (Bogomolov et al., 2010) and granulation process
monitoring (Bogomolov, 2011), and was also explained by the
effect of moisture on the light propagation conditions in the
process medium. Considering the strength of the spectrum
variable correlation with the moisture content observed in
the whole range of process conditions studied, an earlier
explanation of the phenomenon in terms of changing particle
size distribution during the drying course (Frake et al., 1997;
Burggraeve et al., 2012) has not been confirmed. This hypothesis
does not agree with the complex shape of the correlation curve
in Figure 2B. Particle size distribution can be a minor water-
correlated factor affecting the spectra of the drying process,
though.
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The effect of humidity on the light penetration depth in
porous materials can be compared to the watermark technique
commonly used for banknote authentication. The very name of
watermarks comes from the visual similarity of paper thickness
variation and its wetting effects, both resulting in a decrease
in the back-scattered light. Darkening of wetted powders (e.g.,
sand) is another manifestation of the same phenomenon that is
not limited to the visible light and should be inherent in any
material with a highly developed surface. The spectral variance
related to the changing refractive properties of the powder
is also expected to be present in the in-line process spectra.
However, being wavelength-independent, the moisture-related
spectral changes are masked by the stochastic “scatter effect” and
then eliminated by any scatter correction. Earlier studies on in-
line moisture analysis by using NIR spectroscopy neither paid
any significant attention to the analytical information hidden in
the “watermarks” nor attempted to use it in the modeling.

A deeper insight into the data structure and its modification
by adopting different preprocessing methods was obtained
by the PCA of augmented process data (section S2.2 of
Supplementary Material) that makes possible the investigation
of process trajectories of individual batches in the same
multivariate factor space.

As one can see from the scores of batch B10 taken as an
example here (Figure 3 and Figure S-3), the first PC (95.49%
of X-variance) of the raw-data model (Figure 3A) is strongly
associated with the moisture content, while PC2 (4.23%) basically
describes the process turbulence. A remarkable similarity of the
first two loadings (Figure S-4a) with the correlation coefficient r
= 0.998 is a confirmation of a close spectral affinity of these two
phenomena. A scatter-driven correlation of spectral intensities
with the moisture content is confirmed by the uniformly positive
p1. A simultaneous presence of the water absorption peaks in this
plot implies that PC1 tends to capture the whole variance due to
the moisture reduction, related to both absorbance and scatter
phenomena.

Although the process noise is basically described by PC2,
it strongly pollutes PC1 and all further components in the
raw-data model. The suggested smoothing method effectively
eliminates this noise from the model scores (Figures 3B,C and
Figures S-3b,c) without any essential change to the loadings
(Figures S-4b,c). In contrast, the SNV, MSC, and first derivative
(Figures S-4d-f)) strongly modify the whole factor space; they
essentially remove random fluctuations from the first two
score vectors (less noisy for the first derivative) but further
PCs stay very noisy (Figures 3D–F). The smoothed data is
suitable for exploring the process trajectories in the PCA
factor space. Most of the minor features revealed in the
refined scores t2-t7 (Figures 3B–F) can be assigned to certain
process events, i.e., to changing process phases or LHP cleaning
cycles. The PCA score plots for all batches can be found in
Figure S-3.

X-variances captured by individual PCs (Table S-3 in
section S2.2.2 of Supplementary Material) indicate at least six
significant factors for all preprocessing methods, while the
PC8–PC10 are definitely negligible. The PC7 seems to be a
boundary case, and its significance should be proved by using
other criteria. Considering spectrum-like loadings (Figure S-4)

and process-reflecting scores, in particular in the time-wise
averaged data (Figure 3C), seven PCs are likely to be relevant.
Additional considerations helping to deduce a number of PCs
in the augmented process data are considered in section S2.2 of
Supplementary Material.

In general, the low variances captured by minor principal
components PC2-PC7 (Table S-3) illustrate a much higher
sensitivity of NIR spectroscopy to water than to other chemical
or physical variability sources in the drying process medium.
Nevertheless, a thorough study of the complete PCA model
resulted in some practically important observations. Thus, LHP
fouling and cleaning during the process has a minor effect on the
observed in-line spectra, in particular, at the final process stage
(section S2.2.1 of Supplementary Material).

An exploratory data analysis performed has revealed an
essential correlation of all spectral variables with the moisture
content. The PCA analysis of the united dataset (16,303 spectra)
has shown that this effect is overlaid with a variation on
the stochastic spectrum intensity caused by the process noise.
Since both scatter-driven effects have similar spectral signatures,
the application of conventional normalization or derivative
preprocessingmethods of scatter correction incidentally removes
useful information contained in the spectrum background.
Instead, it was suggested to perform the smoothing of spectral
variables along the time domain, e.g., using a moving window
average.

Building an Accurate PLS Regression
Model of Moisture Content
For efficiently using the additional moisture-related information
contained in the spectral variables, the dependence of model
accuracy on averaging window width (WW= k points) has been
studied. PLS models for all possible odd k values between 3 and
101 in different moisture ranges were compared (section S2.3.2 in
Supplementary Material). Since the in-line smoothing of time
dependencies results in a delay of 2k – 1 trajectory points (half
WW) between the process and analysis times (Bogomolov, 2011),
light smoothing is technically preferred. WW = 15 was found to
be optimal in all cases as it provided an essential improvement
of the model accuracy with a reasonable delay of 35 s. The full
WW of 70 s approximately corresponds to a material circulation
period in this process and dryer type. Thus, each portion of the
granulate has a good chance of being exposed to spectroscopic
measurement during this time. Due to the averaging, a virtual
sample size captured by spectroscopic measurement, and hence
the level of scrutiny of analysis, is extended. From this point
of view, an optimal WW should correspond to an averaged
spectrum that is representative of the bulk material volume, while
remaining a nearly instant measurement compared to the total
process time. This principle can be suggested as a rule of thumb
for optimal data averaging in the drying process analysis and
similar applications. A 47-point averaging was found to be a
“global” optimum in our case; stronger smoothing does not lead
to any significant gain. Based on these observations, 15- and
47-point smoothing windows have been chosen as benchmarks
for model comparison (the respective preprocessing methods
are designated as S15 and S47). Table 1 presents a summary
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FIGURE 3 | PCA scores (vertical axis, arbitrary units) vs. process time (horizontal axis, process time from 1,130 to 4,331 s, with the tick at 2,000 s) for batch B10. The

plots in a line present individual scores t1-t7 (left to right) for different data preprocessing methods: (A) none; (B,C) variable smoothing with 15- and 47-point

windows, respectively; (D) MSC; (E) SNV; and (F) first derivative using the Savitzky–Golay smoothing filter. Process parameters are shown overlaid: moisture content

in reference samples (crosses); drying air temperature (black line), product and exhaust air temperatures (light and dark blue lines, respectively); exhaust air humidity

(violet line); and LHP cleaning start/end points (vertical green lines).

of full-spectrum modeling results for different moisture ranges,
preprocessing techniques, and validation methods.

The data covers a wide range of moisture contents from 2
to 26% (Table S-1). As the prediction error may be nonuniform
depending on the drying stages (Mantanus et al., 2009), several
PLS models were built corresponding to moisture LOD ranges
<20% (D20), <15% (D15), and <10% (D10), in addition to the
full-data (D) models. The abundance of measurement points
makes possible the use of this data reduction without a significant
impact to the model quality. The upper value of moisture content
noticeably reduces the RMSE (e.g., for LBO CV, it falls from
0.21 in D to 0.13 in D10), keeping R2 at the same high level
of 0.997–0.998 (Table 1). A strong error dependence on the
moisture content can be practically employed to improve the

performance of moisture monitoring in general. Thus, prediction
software can switch to a more precise model as soon as a
certain moisture content level is reached, providing an automatic
model “focusing” in the process course. By this way, the most
critical final stage of drying can be monitored with the highest
accuracy.

A number of LVs to be kept in PLSmodels was estimated from
the RMSE of different validationmethods and from the explained
X- and y-variances (Table S-4). Figure 4 compares the LBO CV
RMSE dependencies on the number of LVs for the models in
different moisture ranges (Figure 4A) and data averaging degrees
(Figure 4B). Their common trend is that the validation error
reaches a plateau starting from the seventh LV; faint minima at
higher factor numbers do not seem significant. Note that LBO
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TABLE 1 | PLS regression statistics for in-line moisture content determination: model comparison for different moisture ranges and preprocessing techniques using

different validation methods; all models were built with 7 LVs.

Dataa nSb PPc Calibrationd LOO CVe LBO CVf Validation setg

RMSE R2 RMSE R2 RMSE R2 RMSE R2

D 298 None 0.207 0.9981 0.222 0.9979 0.236 0.9976 0.246 0.9977

S15h 0.181 0.9986 0.194 0.9984 0.209 0.9981 0.198 0.9984

S47i 0.178 0.9986 0.191 0.9984 0.210 0.9981 0.197 0.9984

MSC 0.264 0.9970 0.292 0.9963 0.341 0.9950 0.290 0.9969

SNV 0.312 0.9958 0.342 0.9949 0.395 0.9933 0.334 0.9961

1D2.15j 0.203 0.9982 0.221 0.9979 0.251 0.9973 0.256 0.9977

D20 289 None 0.190 0.9979 0.205 0.9976 0.216 0.9973 0.269 0.9967

S15 0.169 0.9983 0.182 0.9981 0.195 0.9978 0.208 0.9979

S47 0.166 0.9984 0.178 0.9982 0.190 0.9979 0.211 0.9979

D15 268 None 0.152 0.9978 0.161 0.9975 0.170 0.9973 0.146 0.9979

S15 0.146 0.9980 0.155 0.9977 0.163 0.9975 0.137 0.9981

S47 0.139 0.9982 0.147 0.9979 0.155 0.9977 0.129 0.9984

MSC 0.175 0.9971 0.188 0.9967 0.210 0.9958 0.209 0.9963

SNV 0.175 0.9971 0.191 0.9965 0.215 0.9957 0.184 0.9970

1D2.15 0.153 0.9978 0.164 0.9974 0.181 0.9969 0.158 0.9976

D10 213 None 0.116 0.9967 0.124 0.9962 0.141 0.9951 0.129 0.9946

S15 0.109 0.9971 0.116 0.9967 0.132 0.9957 0.122 0.9950

S47 0.109 0.9971 0.116 0.9967 0.137 0.9954 0.121 0.9952

aDataset used: D – full dataset, D20, D15, and D10 – datasets limited to LOD moisture content below 20, 15, and 10%, respectively; bthe number of samples without outliers (see

section S2.3 of Supplementary Information); cpreprocessing applied; dcalibration statistics; efull cross-validation statistics; f leave-a-batch-out cross-validation statistics; gvalidation

set (Table 1) prediction statistics; hvariable averaging with 15-point window; ivariable averaging with 47-point window; jSavitzky–Golay first derivative with second-order polynomial and

15-point smoothing window.

CV is generally themost conservative (i.e., resulting in the highest
errors) validationmethod inTable 1. Data scatter correction does
not result in any model simplification as expected. Figure 4B
shows that the validation RMSE for MSC-preprocessed D15

data is even higher than the RMSEV of the model obtained
after moderate (S15) data smoothing. This effect is observed for
any number of LVs higher than one. Starting from the sixth
LV, the prediction error after MSC becomes even worse than
in the raw-data model. This behavior agrees with the earlier
PCA-based conclusion that conventional scatter correction
refines only the two first factors of the multivariate space,
transferring the process noise into higher yet significant model
dimensions.

The analysis of the captured X- and y-variances (Table S-4)
exhibited similar trends. It was also shown that seemingly
insignificant variances captured by the seventh LV in the
calibration data are still in agreement with the respective
precisions of the NIR spectrometer and the LOD analyzer
(section S2.3.3 of Supplementary Material).

The first two PLS loadings (Figure S-6) are almost identical
to those in the augmented PCA (Figure S-4); therefore,
both multivariate modeling spaces are essentially the same.
Meaningful shapes of the first seven loadings, which are similar
in PCA (Figure S-4) and PLS models (Figure S-6) as well as
PCA scores (Figure 3), provide an additional justification of the
chosen model’s complexity. The noticeable positive offset of p1
in raw and smoothed data models (Figures S-6a-c) indicates

that PLS regression makes use of both absorbance and scatter-
correlated variances for moisture calibration. The loadings p3 to
p7 still exhibit similar (as in PCA) interpretable spectrum-like
features. Therefore, seven LVs were found to be optimal for all
moisture ranges and data preprocessingmethods, consistent with
the earlier PCA result for all spectral data. This number is also
reasonable, considering the physical and chemical complexity of
the process as well as the anticipated nonlinearity of spectral
responses. It is also acceptable from the point of view of
calibration set size.

Table S-4 also confirms the efficiency of variable smoothing.
Cumulative y-variances grow with the averaging WW, reducing
a misbalance between the X- and y-variances for any number
of LVs, in particular, for LV1. Starting from LV3, the y-variance
captured in smoothed data becomes higher than that in the
models preceded by scatter correction (e.g., MSC). In detail, the
problem of deducing the optimal number of LVs is considered in
section S2.3.3 (Supplementary Material).

Validation statistics presented in Table 1 evidences that the
suggested data averaging approach is advantageous as compared
to the MSC, SNV, and first derivative using the Savitzky–Golay
smoothing filter. It is remarkable that any scatter correction
(most essentially, MSC or SNV) leads to higher calibration
and validation errors than those for raw spectral data (This
comparison is provided for D and D15, but it holds for all
datasets). Figure 5 illustrates the model performance achieved in
D15.
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FIGURE 4 | RMSE dependencies (LBO CV) on the number of LVs in PLS models: (A) for nonpreprocessed data in different moisture content ranges: D (squares), D20

(diamonds), D15 (circles), and D10 (triangles); and (B) D15 data with different smoothing degrees: none (solid), S15 (dashed), and S47 (dash-dotted), as well as for

MSC preprocessing (red dotted, filled markers).
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FIGURE 5 | PLS predicted (7 LVs) vs. measured moisture content for D15 with

15-point smoothing; calibration and validation samples are presented by

hollow and red-filled markers, respectively.

A subset of 101 process samples was additionally analyzed
off-line by using a high-resolution FT-NIR spectrometer (section
S2.3.5 of Supplementary Material). The integration sphere
applied in this case excluded any scatter-related stochastic
variation of spectral intensities. Nevertheless, all spectral
variables (including the background signal) exhibited the
same strong correlation with the sample moisture content
(Figures S-9, S-10), as in the case of in-line spectra (Figure 2).
This fact confirms our previously given explanation of this

effect in terms of changing light propagation conditions.
Moreover, the performance of the PLS model built on 96
off-line spectra (samples with LOD > 15% were used) was
found to be essentially the same (cross-validation RMSE =

0.108) as in the model built on respective averaged in-line
spectra (S15) of the same process samples (Table S-6). This
remarkable result provides an additional confirmation of the
efficiency of the suggested method. For more details on the
off-line analysis results, see Supplementary Material, section
S2.3.5.

The time dependencies of the predicted moisture content
in B12 (Figure S-7) illustrate the additional advantages of the
suggested preprocessing technique. Variable smoothing most
efficiently eliminates the noise contained in process trajectories at
the beginning of the drying process, when the moisture content
is greater than 15%. It also helps avoid prediction artifacts related
to probe cleaning during the “wet” process stage. Section S2.3.4
in Supplementary Material provides a detailed discussion of the
predicted drying trajectories.

In numerous publications on in-line diffuse-reflectance NIR
monitoring of fluidized bed drying and similar processes, data
analysis is always prefaced by MSC, SNV, or derivatives without
exception. A mandatory application of corrective preprocessing
may only be justified in preliminary feasibility studies, when the
small calibration/validation dataset does not allow for building
models of adequate complexity. The results reported here could
be used as evidence for the destructiveness of scatter correction
for the moisture calibration, as it eliminates a significant portion
of the useful variance. Similar ideas have been formulated in the
literature (Chen and Thennadil, 2012), where the information
content of MSC coefficients was analyzed. The PLS capability of
employing the quantitative information delivered by the scatter
has earlier been illustrated in other applications, in particular
in particle size analysis (Nieuwmeyer et al., 2007) and the
quantitative determination of fat and protein inmilk (Bogomolov

Frontiers in Chemistry | www.frontiersin.org 8 October 2018 | Volume 6 | Article 388

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Bogomolov et al. Accurate In-line NIR-Spectroscopic Monitoring of Moisture

et al., 2012). In these cases, the predictive models built on raw
data exhibited a noticeably better performance, as compared to
those in which any scatter-correction was applied. For in-line
process data, the suggested smoothing approach, performed in
a time rather than spectral domain, presents a viable alternative
to the classic scatter correction of spectra, to eliminate noise
while preserving useful information contained in the spectral
variables.

CONCLUSIONS

In light of our presented results, the following recommendations
to practical NIR spectroscopic monitoring of moisture content in
fluidized bed drying and similar process types can be formulated.
A very common practice of a priori scatter correction of in-
line process spectra prior to the multivariate calibration is
generally discouraged, because it may eliminate an essential
part of the water-related variance from the data and thus
deteriorate the resulting prediction model. To avoid this,
quantitative modeling should be prefaced by an exploratory
analysis of the raw data to investigate the relevance of both
absorbance and scatter-related effects of moisture by using a
sufficiently large representative set of designed samples and
process conditions. These considerations are equally valid in
cases when water content is not directly determined, but it
should be taken into account by an accurate multivariate model
as an important process factor. Process noise, i.e., stochastic
background and intensity variations of in-line spectra, can be
efficiently eliminated with a minimal loss of useful information
by means of data smoothing along the time scale. The parameters
of smoothing strengths should be adjusted depending on the
process scale and dynamics. Building accurate quantitative
models should rely on a methodically determined number

of latent variables. A deliberate application of less LVs than
their optimal number following from the model diagnostics—
sometimes done by researchers to guarantee an avoidance of
overfitting—is not always justified. An underfitting may often be
more undesirable for model prediction accuracy.
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