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Light-Harvesting Fullerene-Free
Organic Solar Cells
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Sung Cheol Yoon™, Sung-Yeon Jang?* and In Hwan Jung?*

" Division of Advanced Materials, Korea Research Institute of Chemical Technology, Dagjeon, South Korea, ? Department of
Chemistry, Kookmin University, Seoul, South Korea

The development of n-type porphyrin acceptors is challenging in organic solar cells. In
this work, we synthesized a novel n-type porphyrin acceptor, Pz,-TNI, via the introduction
of the electron withdrawing naphthalene imide (NI) moiety at the meso position of zinc
porphyrin (Pzn). Pzn-TNI has excellent thermal stability and unique bimodal absorption
with a strong Soret band (300-600 nm) and weak Q-band (600-800 nm). The weak
long-wavelength absorption of Pz,-TNI was completely covered by combining the low
bandgap polymer donor, PTB7-Th, which realized the well-balanced panchromatic
photon-to-current conversion in the range of 300-800 nm. Notably, the one-step reaction
of the NI moiety from a commercially available source leads to the cheap and simple
n-type porphyrin synthesis. The substitution of four Nis in Pz, ring induced sufficient
n-type characteristics with proper HOMO and LUMO energy levels for efficient charge
transport with PTB7-Th. Fullerene-free organic solar cells based-on PTB7-Th:Pz,-TNI
were investigated and showed a promising PCE of 5.07 % without any additive treatment.
To the best of our knowledge, this is the highest PCE in the porphyrin-based acceptors
without utilization of the perylene diimide accepting unit.

Keywords: porphyrin acceptors, n-type porphyrins, organic solar cells, non-fullerene acceptors, panchromatic
absorption

INTRODUCTION

For decades, organic solar cells (OSCs) have been studied as a portable and low-cost power
generator due to their unique advantages: light-weight, use of earth-abundant organic materials,
solution-processability and flexibility. The power conversion efficiency (PCE) of OSCs, an
important parameter to determine the performance of the OSCs, has been continuously improved
by optimization of light-harvesting in active layers and hole/electron charge transport pathways
(Zhan et al., 2015; Zhao J. et al., 2016; Lin et al., 2017; Che et al., 2018; Hou et al., 2018). In the 2000s,
low-bandgap polymer donors and n-type fullerene acceptors blended OSCs were developed to
make broad absorption in the active layer. Polymer donors showing a strong absorption coefficient
were responsible for light-harvesting and exciton generation, while the n-type fullerenes effectively
separate and transfer the electrons to the electrode (Kim et al., 2006; Liang et al., 2010; Li et al., 2012;
Liao et al.,, 2013). However, this was not enough to cover all the visible band by blending polymer
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donors and fullerene acceptors. In the 2010s, new types of OSCs
replaced the fullerenes with strong light-harvesting organic non-
fullerene acceptors (NFAs). The active layer was composed of
organic donors and NFAs, called fullerene-free OSCs (Cheng
et al., 2017; Lin et al., 2017; Tang et al., 2018; Yan et al., 2018).
Due to the strong absorption of both NFAs and organic donors in
the visible area, their complementary absorption is important to
achieve panchromatic photon-to-current conversion in the active
layer. There are several successful strategies for panchromatic
absorption in the visible and near infra-red area. The most
common approach is mixing wide-bandgap donors and low-
bandgap small-molecule NFAs such as ITIC (Zhao W. et al,
2016, 2017; Lin et al,, 2017; Yao et al, 2017; Zhao F. et al,
2017). Another approach is mixing low-bandgap donors and
wide-bandgap NFAs (e.g., blending of PTB7-Th and perylene-
diimide (PDI)-based acceptor) (Wu et al., 2016; Duan et al., 2017;
Liang et al., 2017; Eom et al., 2018). The red-dye PDIs enable a
strong absorption in the short-wavelength area of 400-600 nm,
while showing effective n-type characteristics.

As a new approach for panchromatic absorption in an active
layer, utilization of a nature-inspired porphyrin dye has recently
emerged in OSCs.(Gao et al.,, 2015; Li et al, 2016; Hadmojo
etal., 2018) The porphyrin dyes have peculiar bimodal absorption
characteristics composed of Soret and Q bands; strong transition
from ground state (SO) to second excited state (S2) yields the
Soret band, while the weak transition from SO to first excited
state (S1) provides the Q-band. Thus, the strong Soret absorption
of porphyrin dyes enables efficient short-wavelength absorption
in the 400-600 nm, which can be blended with low-bandgap
donors having a dominant absorption in the 600-800nm
for panchromatic absorption. In addition, the long-wavelength
absorption of the Q-band intensifies the light harvesting in the
low bandgap area where abundant solar flux exists. However,
most of the developed artificial porphyrin derivatives are p-type
materials and only a few porphyrin derivatives currently show n-
type characteristics with a promising PCEs over 5% (Hadmojo
et al., 2017; Zhang et al., 2017). Exploring new structures for
n-type porphyrin materials is challenging in fullerene-free OSCs.

In this study, we synthesized a novel porphyrin acceptor,
Pz,-TNI, via Sonogashira coupling of 5,10,15,20-tetrakis-ethynyl
porphyrin Zinc (II) (Pz,) and 4-bromo-N-(2-ethylhexyl)-
1,8-naphthalimide (NI). NI is easily synthesized from the
commercially available 4-bromo-1,8-naphthalic anhydride. This
one-step reaction is beneficial in terms of time and cost for
synthesizing the star-shape molecules that require an excess of
NIs. Since the NI has n-type characteristics, the substitution of
NIs to the four meso positions of Pz, enables the excellent n-
type properties as an electron acceptor. The ethyne wt-bridge unit
is incorporated between NI and Pz, to increase the backbone
planarity. The synthesized Pz,-TNI showed excellent thermal
stability with 5% weight loss temperature of 412°C and showed
unique bimodal absorption behavior with maximum peaks at
479 nm and 719 nm. The uncovered UV-Vis absorption spectrum
from Pz,-TNI is completely covered by the blending of a
polymer donor, PTB7-Th, which resulted in the panchromatic
photon-to-current conversion from 300 to 800 nm in OSCs. The
planar backbone structure of Pz,-TNI assists the sizable face-on

orientation in the PTB7-Th:Pz,-TNI blend film without additive
treatment, which resulted in the highest PCE of 5.07% (Voc
= 0.72V, Jsc = 13.84mA cm~2, and fill factor = 0.51) in the
additive-free OSCs. The excessive ordering of PTB7-Th:Pz,-
TNI film via pyridine additive rather reduced the photovoltaic
performances. Our successful utilization of NI moiety in the
Py, core will broaden and diversify the synthetic approaches for
developing high-efficiency porphyrin acceptors.

EXPERIMENTAL

Synthesis

5,10,15,20-tetrakis-ethynyl porphyrin Zinc (II) (3): Macrocyclic
porphyrin  compound 1 was synthesized according
to the reported general procedure (Yen et al, 2006).
Compound 1 (0.90g, 1.29 mmol) and zinc acetate (2.4g,
13.1 mmol) were dissolved in the co-solvent (200ml) of
dichloromethane:methanol = 9:1 v/v%. The resulting mixture
was refluxed at 65°C for 24 h. After removing the solvents, the
remaining solid was rinsed with dichloromethane (300 mL)
to give a purple solid compound 2 (0.65g, yield: 62%).
Without further purification, compound 2 was directly used
to make compound 3. Compound 2 (0.60g, 0.79 mmol) was
dissolved in 100 mL anhydrous tetrahydrofuran (THF). Tetra-
n-butylammonium fluoride solution 1.0 M in THF (3.6 ml, 3.6
mmol) was slowly added to the reaction mixture. The resulting
mixture was stirred at room temperature for 4 h. After removing
the solvents, the crude solid product was rinsed sequentially
with methanol, dichloromethane, water and acetone. After
drying the dark purple solid product 3 (180 mg, yield: 49%), it
was immediately used in the next step to prevent the coupling
reaction between the two terminal alkynes. '"H NMR (THF-ds,
400 MHz, ppm): 8 9.60 (s, 2H), 5.37 (s, 1H),

N,N’-(2-hexyldecyl) 4-bromo naphthalene imide (4):
2-Hexyldecyl amine (2.4g, 9.93 mmol) was added to the
suspension of 4-bromo-1,8-naphthalic anhydride (2.5g, 9.03
mmol) in dry ethanol (50mL). The reaction mixture was
refluxed overnight at 110°C, and then cooled down to room
temperature. After evaporating the solvents, the remaining crude
solid was purified using column chromatography on silica gel
with an eluent of CH,Cly:n-hexane = 4:1 to give a yellow solid
compound 4 (3.0g, 66%). 'H NMR (CDCls, 400 MHz, ppm): 3
8.65 (d, ] = 6.4Hz, 1H), 8.56 (d, ] = 7.6 Hz, 1H), 8.40 (d, ] =
8.0Hz, 1H), 8.03 (d, ] = 7.6 Hz, 1H), 7.82 (m, 1H), 4.14 (t, ] =
8.0 Hz, 2H), 1.70 (m, 1H), 1.24 (br, 27H), 0.87 (t, ] = 7.2 Hz, 3H).

Pz,-TNI: Compound 3 (100 mg, 0.212 mmol), compound 4
(1.06 g, 2.12 mmol), Pd,(dba)s (40 mg, 0.044 mmol) and AsPhs
(100 mg, 0.33 mmol) were dissolved in dry THF (15mL) and
triethylamine (15 mL). The reaction mixture was stirred at 65°C
for 4 days under N, atmosphere, and then quenched by distilled
water. The organic layer was extracted using dichloromethane
and water, and then the moisture in the organic solution was
removed by NaySOy. After evaporating the solvents, the solid
residue was purified by column chromatography using an eluent
of CH,Cly:n-hexane = 4:1. Then it was further purified using
recycling size exclusion chromatography to give a deep green
solid Pz,-TNI (290mg, 75%). 'H NMR (THF-ds, 400 MHz,
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SCHEME 1 | Synthetic route for n-type porphyrin acceptor, Pzn-TNI.

ppm): 8 9.02 (br, 2H), 8.85 (br, 1H), 8.40 (d, ] = 4.8 Hz, 1H), 8.28  electron withdrawing NI unit is highly beneficial in terms of
(d, J = 5.6 Hz, 1H), 8.19 (br, 1H), 7.88 (br, 1H), 4.24 (m, 2H), time and cost for achieving the n-type porphyrins. The final
1.92 (m, 1H), 1.39 (br, 27H), 0.96 (m, 3H). '3C NMR (THF-  porphyrin acceptor, Pz,-TNI, was achieved via Sonogashira
ds, 100 MHz, ppm): § 163.58, 163.32, 149.75, 131.61, 131.49,  coupling with Pz, compound 3 and excess of NI compound
130.46, 130.18, 128.58, 128.35, 127.90, 124.02, 123.05, 102.08, 4, which was identified by 'H-NMR and matrix assisted
101.88, 96.30,41.51, 33.14, 31.09, 31.05, 31.02, 30.99, 30.92, 30.87,  laser desorption/ionization time-of-flight mass spectrometry
30.61,29.22,28.66,23.82,14.71. MALDI-TOF-MS: m/z: caled. for ~ (MALDI-TOEF-MS) (Figures S1-S4). The synthesized Pyz,-TNI

Ci140H160NsOsZn: 2145.17 [M] T; found 2145.994. showed excellent solubility in common organic solvents such
as tetrahydrofuran (THF), dichloromethane (DCM), and
RESULTS AND DISCUSSION chloroform (CF). In addition, it has excellent thermal stability,

which was determined by thermal gravimetric analysis (TGA),
The synthetic procedure of Pz,-TNI was recorded in  with a 5% weight loss temperature (Tsq) of 412°C under an N,
Scheme 1 and in the Supporting Information (SI) in detail. — atmosphere (Figure S5).
The porphyrin ring 1 was synthesized from pyrrole and Absorption spectra of Pz,-TNI were measured in solution
3-(trimethylsilyl)propiolaldehyde in the presence of BF;-Et,O  and the film state, as shown in Figure 1. Pz,-TNI exhibited
followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-  clear bimodal absorption composed of the Soret band (300 -
benzoquinone (DDQ). The zinc porphyrin (Pz,) compound  600nm) and Q-bands (600-800 nm); the maximum absorption
2 was obtained using Zn(OAc),. The deprotection of TMS  peaks of Pz,-TNI were 479 and 713nm in solution, and
group by tetra-n-butylammonium fluoride (TBAF) was 478 and 719nm in the film. The absorption of Pz,-TNI was
performed immediately before synthesizing the final acceptor, ~complementary to that of the low-bandgap donor polymer,
Pzy-TNIL 4-Bromo-1,8-naphthalic anhydride purchased from  PTB7-Th, which induced a well-balanced short- and long-
Sigma-Aldrich was alkylated with 2-hexyldexylamine to  wavelength absorption in the entire wavelength of 300-800 nm
give a compound 4. This one-step reaction to prepare the (Figure 2B). Notably, the film of Pz,-TNI showed broadened
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FIGURE 1 | Absorption spectra of PZn-TNI (A) in chloroform and in the film on the quartz plate, and (B) on ITO glass with or without pyridine additive. (C) Cyclic
voltammogram of PZn-TNI, and (D) energy diagram of the PTB7-Th:PZn-TNI device.

0315
Pz,-TNI film onto ITO glass
0.2 — w/o pyridine
—— w/ pyridine

0.1

Absorption (a.u.)

0.0 ; T T T
400 500 600 700 800 900
Wavelength (nm)
-3.19

-3.60 -3.62 Elumo, cv

D ELUMO, a%

ELUMO, uv

-3.87 Elumo, uv

s
I = —
o E Zno
-l w & =
- a e ITO
N
D a
@
e —
w MoOx
-5.12

-5.50

and red-shifted Q-band absorption spectra compared to that in
solution, indicating the enhanced intermolecular -7 stacking in
the film state. Since the planar NIs and Pz, are connected by
an sp-hybridized ethyne w-bridge, Pz,-TNI possesses a highly
planar conjugated backbone for efficient intermolecular stacking.
The optical bandgap (E;pt) of Pyz,-TNI was 1.63 eV, which was
calculated from the absorption onset wavelength of 761 nm in
the film. We previously reported the pyridine additive effect
on the molecular ordering of porphyrin derivatives; pyridine
enhances the intermolecular ordering of porphyrin derivatives
via coordination to the zinc (Hadmojo et al., 2017). As shown
in Figure 1B, the absorption of Pz,-TNI was significantly
broadened and red-shifted compared to that without pyridine
treatment, resulting in the bathochromic shift of 42nm in the
Soret band and 15 nm in the Q-band. This supports our previous
hypothesis for the pyridine effect on the molecular ordering and
confirms that pyridine enhances the intermolecular ordering of
Pz,-TNI in the film states.

To evaluate the energy levels of Pz,-TNI, the highest
occupied molecular orbital (HOMO) energy levels and the
lowest unoccupied molecular orbital (LUMO) energy levels were
measured using cyclic voltammetry. The oxidation and reduction
onset potentials of Pz,-TNI were 1.07 and —0.80 V, respectively,
which corresponds to HOMO levels (Egomo,cv) and LUMO

levels (Erumo,cv) of —5.50 and —3.62eV, respectively. The
optical LUMO energy level (ELumo,uv) was calculated to
be —3.87eV from Epomo,cv and E;pt of Py,-TNI. The
energy diagram of the PTB7-Th and Pz,-TNI was shown
in Figure 1D, and the EHOMO,CVa ELUMO,CV, and ELUMO,UV
of polymer donor (PTB7-Th) were taken from our previous
measurement (Zhang et al., 2015; Hadmojo et al., 2016).
The LUMO energy level of Py,-TNI is suitable for electron
transport from PTB7-Th to Pz,-TNI, while the HOMO of
Pz,-TNI is appropriate for hole transport from Pz,-TNI to
PTB7-Th (Marcus, 1963; Clarke and Durrant, 2010). The optical
and electrochemical properties of Pz,-TNI are summarized in
Table 1.

Porphyrin acceptor-based fullerene-free OSCs were fabricated
by blending PTB7-Th and Pz,-TNI (Figure 2A). The current
density-voltage (J-V) characteristic of PTB7-Th:Pz,-TNI devices
was investigated via changing the weight ratio between PTB7-Th
and Pz,-TNI, and the photovoltaic performance was optimized
at the weight ratio of 1:1.5 w/w. The photovoltaic properties are
summarized in Figure 2C, Figure S6, and Table 2. The best PCE
of 5.07% was achieved with a Voc of 0.72V, a Jsc of 13.84 mA
cm~2, and FF of 0.51 (Figure 2C). As shown in Figure 2D, the
external quantum efficiency (EQE) spectra of PTB7-Th:PZn-
TNI devices cover the entire visible area of 300-800 nm and
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TABLE 1 | Optical and electrochemical properties of Pz,-TNI.

UV-Vis absorption Cyclic voltammetry
asolution bFilm
Amax ("M)  max (hM)  Aonset (NM) CEL’,"‘ (eV) Eox(V)  Ered )  9Enomo,cv(€V)  ELumo,cv (€V)  ®ELumo, uv (€V)
Pzn-TNI 479, 713 478,719 761 1.63 1.07 —0.80 —5.50 -3.62 -3.87
aChloroform solution.
bFiim on a quartz plate.
°Bandgap calculated from the film-state absorption onset wavelength (\onset)-
9IHOMO levels determined from Eoy of the first oxidation potential of Pz,-TNI.
eLUMO levels calculated from Erowo. cv and Eg” t,
A B 5 PTB7-Th:P, _-TNI w/o pyridine
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FIGURE 2 | (A) Device structure of PTB7-Th:Pz,-TNI based OSCs, (B) absorption spectra of PTB7-Th:Pz,-TNI active layer, (C) J-V characteristics of additive-free
OSCs depending on the weight ratio between PTB7-Th and Pz,-TNlI, and the J-V curve of pyridine-treated OSCs at the weight ratio of PTB7-Th:PZn-TNI = 1:1.5
w/w. (D) the EQE spectra of PTB7-Th:Pz,-TNI devices.

showed the panchromatic photon-to-current conversion due
to the complementary solar flux absorption between PTB7-Th
and PZn-TNI Notably, the additive-free film-formation process
provided superior photovoltaic performance compared to the
pyridine-assisted one as shown in Figure2C. As shown in
Figure 2D, the EQE was increased in the entire wavelength,
which indicates that hole/electron transport properties of both
PTB7-Th and Pyz,-TNI are improved in the additive-free
devices.

To understand the charge recombination mechanisms of
PTB7-Th:Pz,-TNI devices in the presence and absence of
pyridine additive, the J-V characteristics were investigated as a
function of the illumination intensity. The power law dependence

of Jsc on the illumination intensity is generally expressed as Jsc
oo I*, where I is the light intensity and « is an exponential factor
(Figure 3A) (Blom et al,, 2007; Azmi et al., 2016). The o value
of the PTB7-Th:Pz,-TNI devices was close to unity regardless
of additive treatment, indicating the negligible bimolecular
recombination in PTB7-Th:Py,-TNI devices. However, the V¢
vs. illumination intensity was highly affected by the pyridine
treatment. Assuming there is no trap-assisted recombination
under an open-circuit condition, the slope of Voc vs. the
illumination intensity produces 1.00 kT/q (Mihailetchi et al.,
2006). The higher value of kT/q indicates the more probability
of trap-assisted recombination under an open-circuit condition
(Mandoc et al., 2007; Azmi et al., 2016). As shown in Figure 3B,
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TABLE 2 | Photovoltaic properties of PTB7-Th:Pz,-TNI devices.

PTB7-Th:Pz,-TNI up (em2 v-1.s-1) pe (cm?2 v-1.s-1) Voc (V) Jsc (mA cm—2) FF PCE (PCEave)?(%)
No additives 1:1 - - 0.73 11.25 0.52 4.29 (3.97)
1:1.5 29 x 1074 25 x 1076 0.72 13.84 0.51 5.07 (4.85)
1:2 - - 0.71 13.81 0.49 4.82 (4.59)
1% (v/v) pyridine 1:1.5 2.4 x 1074 1.3 x 1076 0.78 6.76 0.34 1.82 (1.61)
aAverage PCEs more than 10 devices.
A (o] D
Pzn-TNI >3 PTB7-Th:P,-TNI | . {PTB7-Th:P, -TNI {PTB7-Th:P, -TNI
« No Additive « No Additive ‘£ 10’ —No Additive 10— No Additive
« 1 vIv% pyridine 0.80 « 1 viv% pyridine 3] ~———1 VvIv% pyridine ———1 vIv% pyridine
—~ 10 <, 10°
& £ 10”4 3
5 >
1
< 10" 10"y
£ S Trap-Free |
8 e 10°4 Region (10”3 Trap-Free
) 5 Region
by £ 10"+ 107+
=
o
T r r 107 . —d10" y T
10 ;oo 25 50 75100 01 1 0.1 1
Light Intensity (mW cm™) Light Intensity (mW cm'z) Voltage (V) Voltage (V)

FIGURE 3 | (A) Jsc and (B) V¢ as a function of the illumination intensity. SCLC mobility of (C) hole-only and (D) electron-only devices.

7.5°

Height 1.0 pm 1.0 ym

FIGURE 4 | AFM (A,C) height and (B,D) phase image of PTB7-Th:PZn-TNI; (A,B) in

15.0 nm

Height Tomm

the absence of pyridine and (C,D) in the presence of pyridine.

PTB7-Th:Pz,-TNI devices with and without additives show
the slope of 2.63 and 1.93 kT/q, respectively. This implies
that PTB7-Th:Pz,-TNI devices in the absence of additives
have the lowest trap-assisted recombination in anopen-circuit
condition. The hole and electron transport properties of PTB7-
Th:Pz,-TNI devices were measured by a space-charge-limited-
current (SCLC) analysis (Figures 3C,D) (Mihailetchi et al,
2005). The electron- and hole-only devices were fabricated
with a structure of ITO/ZnO/PTB7-Th:Py,-TNI/ZnO/Al and
ITO/PEDOT:PSS/PTB7-Th:Pz,-TNI/MoOy/Ag, respectively. In
the presence of pyridine additive, the hole and electron
mobilities of PTB7-Th:Pz,-TNI were 2.4 x 107* and 1.3
x 107¢ ¢cm? V~l.s71, respectively, whereas, in the absence
of additives, the hole and electron mobilities were increased
to 29 x 107% and 2.5 x 107% cm? V~l.s71, respectively.
Thus, it is expected that the pyridine additive worsens the

nanomorphology of PTB7-Th:Pz,-TNI devices via excessive
intermolecular aggregation.

The morphology of the PTB7-Th:Pz,-TNI active layer was
investigated by atomic force microscopy (AFM) (Figure 4) and
two-dimensional grazing incidence X-ray diffraction (2D-GIXD)
analyses (Figure 5). In AFM images, PTB7-Th:Pz,-TNI blended
film possesses bicontinuous crystalline domains in the absence
of additives (Figures 4A,B), whereas the addition of pyridine
additive intensifies the intermolecular ordering of Pz,-TNI
domains, leading to severe phase segregation between PTB7-Th
and Pz, -TNI (Figures 4C,D). The 2D-GIXD results also support
the AFM analysis. Additive-free PTB7-Th:Py,-TNI film showed
clear m-7 stacking orientation (010) peak at ~1.6 A~! along
the q, axis, which indicates the face-on orientation with a d-
spacing of ~3.9 A (Figures 5B,C). However, the pyridine-treated
PTB7-Th:Pz,-TNI film showed the increased m-m stacking
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interaction and induced the phase aggregation (Figure 5C). The
(010) peak in the blend film is assigned to the orientation of
PTB7-Th domains (Figure 5A), which implies that the decrease
in the photovoltaic performances in presence of pyridine is
probably due to the aggregation of the PTB7-Th domains in
the PTB7-Th:Py,-TNI blend film. As a result, the Py,-TNI
having highly planar molecular structure possesses the sizable
m-m intermolecular stacking and crystalline nanomorphology
in the additive-free solvent system, which means that no more
post-treatment is required in PTB7-Th:PZn-TNI blend system.
In addition, the additive-free system can prevent undesirable
morphological change and photo-oxidation degradation by
additives in the active layer (Li et al., 2017).

CONCLUSIONS

We have synthesized a novel porphyrin acceptor, Pz,-TNI, by
incorporating four naphthalene imide (NI) units at the meso
position of the Pz, core. Pyz,-TNI showed unique bimodal
absorption with a strong Soret band and a weak Q-band.
The insufficient long-wavelength absorption of Pyz,-TNI was
covered by a low-bandgap donor, PTB7-Th. As a result, bulk
heterojunction fullerene-free OSCs composed of Pz,-TNI and
PTB7-Th showed panchromatic photon-to-current conversion
covering entire area of 300-800nm. The PTB7-Th:Pz,-TNI
devices exhibited a promising PCE of 5.07%, which is the highest
and the first promising PCE in the porphyrin-based acceptors
except for those utilizing the PDI units. Notably, the additive-
free solution process provided the best photovoltaic performance,
whereas the pyridine additive had a negative effect on the
nanomorphology by the excessive molecular aggregation of the

PTB7-Th:Pz,-TNI film. The planar backbone structure of Pz,-
TNI assists the sizable molecular ordering in the PTB7-Th:Pyz,-
TNI film without additive treatment, which is favorable for
practical applications.
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