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Recently, “Water-in-salt” electrolyte has been reported to extend the working voltage of

aqueous supercapacitor. However, this electrolyte needs the electrode materials possess

some good features such as proper pore structure, high electron and ion conductivity.

Herein, we fabricated the nitrogen-doped multi-scale porous carbon (NMC) by the simple

enriching melamine-resorcinol-formaldehyde xerogels method with integrating triblock

copolymer for micro-pores formation. All the results confirmed that our NMC is provided

with a very high specific surface area (3,170 m2 g−1) and its monoliths are composed

of multi-scale porous structure. By employing the nanostructured NMC as electrode

materials, we have investigated the capability for high-voltage aqueous supercapacitor

applications. The superconcentrated “Water-in-salt” electrolyte expand stability operating

potential window of aqueous symmetric supercapacitor up to 2.4 V with a high energy

density of 33 Wh kg−1 at power density of 0.3 kW kg−1. Our studies indicate that the

NMC is potential materials for high performance over wider voltage range.

Keywords: supercapacitors, aqueous electrolyte, water in salt, porous carbon, high voltage, energy density

INTRODUCTION

For the fast consumption of fossil fuels leads to global severe environmental issues and energy
crisis, exploitation of new energy sources become an urgent issue for humanity. For decades, many
works have been devoted to develop new technologies to use new energy sources from the ambient
or renewable sources like wind, solar, tide, electromagnetic fields, mechanical movement and so
on, and converted to electrical energy in an energy storage device like batteries (Zhao et al., 2017;
Zhang et al., 2018a). However, due to the intermittent nature of these energy sources, batteries will
be charged repeatedly which resulted in rapid decay of their cycle life. In this case, supercapacitors
(SCs) with favorable features of long cycling stability, fast charging/discharging ability and high
power density are generally more suitable than batteries (Jia et al., 2018; Liu et al., 2018b; Qu et al.,
2018). Specifically, since the SCs have high specific power characteristic, it also have been widely
used in a wide variety of applications such as portable electronics, electric or hybrid electric vehicles,
aircraft and smart grids.

Nevertheless, the low energy densities of SCs restrict its widespread applications. According to
the Equation (1), the energy density (E) is related to the capacitance (C) and operating voltage
(V). For increasing the energy stored in SCs, previous works have been widely focused on the
improvement of capacitance which takes advantage of various topical subjects like the selection, the
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construction, and the modification of electrode materials (Zhong
et al., 2015; Dai et al., 2017; Liu et al., 2018a). So far, few researches
focus on the crucial factors correlating to the operating voltage,
even though it is more efficient to increase the energy density
and power density (P), according to the Equation (2) (where R is
the internal resistance) by expanding the operating voltage, since
energy density and power density are directly proportional to the
square of voltage.

E = CV
2/2 (1)

P = V
2/4R (2)

The SCs are usually use three types electrolyte (Zhong et al.,
2015): aqueous, organic and ionic liquid (Kühnel and Balducci,
2014). Using organic or ionic liquid electrolyte can efficiently
expand the potential window, which because of the organic
or ionic liquid electrolyte has a good electrochemical stability
with higher decomposition voltage (2.5–4.5V) than aqueous.
However, a series of undesired features severely limit the wide
application of organic electrolyte. For example, the SCs with
organic and ionic liquid electrolytes often suffer from low
capacitances and power densities due to their large-size ion and
low ionic conductivity nature. In addition, the organic and ionic
liquid electrolytes are not only noxious and flammable result
in environmental and security issues, but also require rigorous
manufacturing procedures. On the contrary, aqueous electrolytes
get more attention due to its inherently safety, low-cost, and easy
operation characters. For the smaller-size ion and faster ionic
conductivity enable aqueous SCs with larger capacitances and
higher power densities (Zao et al., 2016; Hwang et al., 2017; Zeng
et al., 2018a). So, it is urgent to study aqueous SCs with both
high energy and power density fulfilling the application of the
SCs.

The most challenge to obtain high-voltage aqueous SCs
is expanding the electrochemical stability window of water
(1.23V), previous studies have devoted to asymmetry structure
or neutral aqueous electrolytes, and the highest potential window
even beyond 2V (Yang et al., 2017; Zuo et al., 2017; Fu
et al., 2018). Very recently, Yu et al. (2017) summarized
the new insight into the high voltage of aqueous SCs. Many
crucial tactics of expanding the operating voltage have been
studied. Specifically, Xu et al. (Suo et al., 2015) reported
an intriguing breakthrough that a superconcentrated lithium
bis(trifluoromethane sulfonyl)imide (LiTFSI) aqueous solution
named “water-in-salt” electrolyte displays a obviously high
electrochemical stability up to 3V in lithium-ion batteries
applications. Obviously, this “water-in-salt” electrolyte also can
be used in high voltage aqueous SCs (Gambou-Bosca and
Bélanger, 2016; Díez et al., 2017; Reber et al., 2017). For
instance, Hasegawa, et al. (Zhao et al., 2016) fabricates symmetric
SCs using 5M LiTFSI aqueous solution achieved a maximum
stable operating voltage of 2.4V. Nevertheless, although using
the LiTFSI aqueous solution expand the operating voltage of
SCs, it is also suffered the sacrifice of capacitances, which
result in the limited increasing of energy density. Therefore,
it is needed to choose one proper electrode materials for

matching the LiTFSI molecule to maximization the capacitances
as well as expanding the operating voltage. In this case,
multi-scale carbonaceous materials with high good thermal
and chemical stability, good porous network, and satisfactory
electrical conductivity have been widely studied, and it is
very suitable for SCs. (Huang et al., 2012; Fang et al., 2013;
Hasegawa et al., 2016). Moreover, N-doped carbonmaterials have
many attractive functional properties. It also gives more active
sites for electrochemical reactions in double layer capacitors
(Geng et al., 2011; Ci et al., 2012; Zhong et al., 2013; Zhang
et al., 2018b). Furthermore, for the excellent performance of N-
doped carbon, it has been studied in long-term performance
in SCs (Wen et al., 2012; Zhu et al., 2016; Zeng et al.,
2018b).

In this work, Nitrogen-doped multi-scale carbon (NMC)
was fabricated by simple sol-gel reaction with additional CO2

activation. The structure of this material is comprised of a multi-
scaled pore with nano-porous carbon in a network of micron-size
percolated hollow-duct. In particular, the prepared NMC was
utilized as electrode materials to explore high-voltage aqueous
supercapacitors.

EXPERIMENTAL

Materials Synthesis
NMC were fabricated by sol-gel method from a solution
containing resorcinol (R), formaldehyde (F) and melamine (M),
followed by aging, solvent exchange, drying and pyrolysis. In
a typical process, firstly, 1.6 g of triblock copolymer Pluronic
F68 (PEO76-PPO29-PEO76) was dissolved in a small amount of
deionized water and ethanol at 60◦C, followed by adding 7.7 g
of melamine and 18mL of formaldehyde solution (37 wt %),
with vigorous stirring until melamine was completely dissolved.
Then, 6.5 g of resorcinol and 8.7mL of formaldehyde solution
were added into the above mixture solution, and stirring until
resorcinol was completely dissolved. After that, 6mL of NaOH
solution (0.02M) was added into the above mixture using as
catalyst. At last, amount of deinoized water was added to meet
the volume at 50mL. The mixture was stirred at 60◦C for
3min. Hereafter, the mixture was placed in a sealed container
and kept at 60◦C for 72 h to finish the gel process. The M-R-
F hydrogels containing PEO76-PPO29-PEO76 were immersed in
a solution of trifluoroacetic acid and ethanol (3:97 in volume)
at room temperature for 72 h. Afterwards, the residual solvent
was substitute for ethanol for 6 times per 24 h to remove water.
Subsequently, the hydrogels were dried at 60◦C and carbonized
with argon gas flow rate of 100mL min−1 at 800◦C for 4 h. And
this nitrogen-containing porous carbon without CO2 activation
was denoted as NC. In the CO2 activation process, the NC was
heated in a tubular furnace at 950◦Cfor 8 h under a stable CO2

flow (150mL min−1) and then the NMC was obtained. For
comparison, the commercialized active carbon YP-50 (AC) was
purchased from Kuraray chemical co. (Japanese).

Characterization of the Samples
The morphology of the NC and NMC was observed by scanning
electron microscopy (SEM) and high-resolution transmission
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electron microscopy (HRTEM). The crystallographical
information and phase of the samples were investigated by
X-ray powder diffraction (XRD) and Raman spectroscopy.
N2 adsorption/desorption isotherms were tested by an
AUTOSORB-IQ surface area analyzer (Quantachrome
Instrument Corporation) at 77K. The chemical composition of
the NMC was conducted with X-ray photoelectron spectroscopy
(XPS).

Electrochemical Measurements
For electrochemical experiments, the working electrodes were
fabricated with 80 wt% active materials, 10 wt% acetylene black
and 10 wt% polytetrafluoroethylene (PTFE) in ethanol to form
a mixture solution. And the mixture was pressed onto stainless
steel network at 20 MPa with a diameter of 16mm and a
mass of around 2mg. The electrode was tested in two- and
three-electrode cells. The 20mol kg−1 (m) LiTFSI aqueous
solution was used as electrolytes. Two-electrode capacitor was
tested in a CR2032-type coin cell with comparable mass of
active materials, while a piece of sulfonated polypropylene
membrane was employed as separator. In a three electrode cell,
a pair of electrodes was used as working and counter electrode
respectively, and the saturated calomel electrode (SCE) was used
as reference electrode. The galvanostatic charge/discharge tests
(GCD) and cycling performance were tested at LAND instrument
(CT2001, China). Cyclic voltammetry (CV) was tested in
the same range by a CHI 760 electrochemical workstation.
Electrochemical impedance spectroscopy (EIS) measurements
were performed from 100 kHz to 10 mHz.

RESULTS AND DISCUSSION

Morphologies and Crystallographical
Information
Studies on the R-F sol-gel reaction (Al-Muhtaseb and Ritter,
2003), it is known that the resorcinol is react with water to
form hudroxymethyl derivatives (-CH2OH), and a condensation
reaction of the hudroxymethyl derivatives with F to form
methylene (-CH2-) and methylene ether (-CH2OCH2-) bridged
compounds. At the same ambient aqueous condition, a sol-gel
reaction betweenM and Fwere also observed (Raymundo-Pinero
et al., 2002). In this work, we simultaneously put the M, R, F, and
PEO76-PPO29-PEO76 in one react system, condensation reaction
happens among the hydroxymethyl groups between M, R, and F
to form small M-R-F clusters, which act as nucleation sites and
incessantly increase to form a larger colloids. In this procedure,
PEO76-PPO29-PEO76 micelles are coinstantaneous embedded
within the growing colloids, which can stabilize the M–R–F
three dimensional structure. Figure 1A shows the morphological
and structural analysis of NC. It shows that the NC with a
three dimensional structure comprises interconnected carbon
spheres, and contain pores about one micron in size derived
from the decomposition of M-F and PEO76-PPO29-PEO76 (Xu
et al., 2012). The NC shows a foam-like microstructure with
many internal interconnected channels, and this result is well
agreed with other reports (Goldmints et al., 1997; Gutiérrez
et al., 2009; Zhou et al., 2013). After activation at 950◦C for

10 h by CO2 (Figure 1B), the NMC also present a foam-like
structure except that the carbon skeleton becomes smaller and
the size of primary carbon spheres decreases (Lin and Ritter,
2000). This result is owing to CO2 etching effect, so the activation
process lead to carbon loss. In addition, one would expect that
amount of nano-pores are produced in the carbon skeleton by
the CO2 etching effect, which could be further measured by N2

adsorption-desorption test in detail.
It is known that the CO2 activation can produce nano-

pores in carbon materials (Lin and Ritter, 2000; Chang et al.,
2013) and cause different structure formation in nature, however,
these features are hardly detected by SEM images (Figure 1B).
So we further adopt HRTEM imaging, XRD patterns and
Raman spectra to examine these changes of the prepared carbon
materials. Figures 1C,D shows the HRTEM imaging of NC and
NMC. It reveals the structure of NC and NMC is basically
amorphous in nature. Specifically, some partly graphitized
carbon structure can be observed from HRTEM imagines, and
these structures have been reduced after CO2 activation. This
phenomenon is coinciding with the XRD test results shown in
Figure 1E. It shows two broad characteristic diffraction peaks
at 2θ of 23.5◦ (002) and 43.6◦ (101), respectively, which can be
regarded as a partly graphitized carbon. On the other hand, XRD
pattern of the activated NMC displays a broader peak than the
NC due to the decrease of the partly graphitized carbon structure
by the CO2 etching. Moreover, Raman spectra of NC and NMC
(Figure 1F) show two typically broad peaks of D band (around
1350 cm−1) and G band (around 1600 cm−1). Generally, The D
band is related to disordered features of graphitic carbon, while
the G band is the typical characteristics of graphitic crystallites
(Ji and Zhang, 2009). This result is corresponding to previous
reports (Ferrari, 2007; Kicinski et al., 2013; Yi et al., 2017). The
intensity ratio of D band and G band (ID/IG) is the parameter
usually used to analyze defective structures in carbonaceous
materials. Calculated from the Figure 1F, the ID/IG value of
NMC and NC is 0.848 and 0.803, respectively, the increased
value of the NMC indicating that during the CO2 activation, the
overall structure comprises graphite grains with an increasing
amount of structural defects formed. The result well coincide
with the HRTEM and XRD results which reveal the existence of
amorphous carbon structure of NMC and NC.

Textural Properties
One expected that our resulted NMC is a multi-scaled carbon
material including macropores (>50 nm), mesopores (2–50 nm),
and micropores (<2 nm). The nitrogen adsorption/desorption
isotherms can examine in detail these pore properties shown
in Figure 2A. And the related pore size distributions profiles
determined by the density functional theory (DFT) program
are shown in Figure 2B. Corresponding pore properties are
displayed in Table 1. Obviously, both NMC and AC have a
higher absorbed amount than the NC, which reveals that the
NMC and AC possess higher specific surface area and pore
volume than NC (Table 1). In depth, all these isotherms of NC,
NMC and AC possess adsorbed amount at low relative pressure
which exhibit Type I characteristics behavior designating the
existence of micropores. And the distinct increasing of adsorbed
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FIGURE 1 | SEM images (A,B), HRTEM images (C,D), XRD spectra (E), and Raman spectra (F) of the NC and NMC.

amount for the isotherms can be found, which reveals the
increasing amounts of micropores. Another adsorption occurred
at middle relative pressure display Type IV characteristics
demonstrating the existence of mesopores (Long et al., 2008;
Wang et al., 2008). Although, their adsorption curves are mostly
consistent with their desorption curves, but the differences
also exists at mid-/high-relative pressure. These kinds of
isotherms are Type IV curves and Type H4 hysteresis loops,
suggesting the existence of slit-shaped pores. This result can
be further confirmed by the pore size distributions displayed
in Figure 2B. The additional CO2 activation process bring
abundant 2 nm-pores of the NMC, and it possess a high
BET specific surface area of 3,170 m2 g−1 and a total pore
volume of 1.880 cm3 g−1 shown in Table 1. In summary,
NMC possessing high surface area and multi-scale porous
structure was successfully prepared. More mesopores exist in

NMC (Figure 2B) are beneficial to electrochemical performance

in the high-voltage aqueous supercapacitors (Hasegawa et al.,
2016).

XPS Study
XPS was employed to evaluate the surface chemistry in NC
and NMC. As shown in Figure S1, three elements (C, N, O)
exist in both NC and NMC. The total nitrogen heteroatom
doping content was 4.9 at.% in NC and decreased to 3.2
at.% in NMC. The decrease of nitrogen content is owing to
its higher reaction activities than that of carbon during high
temperature activation process (Liu et al., 2012). The high-
resolution spectrum of C1s and N1s are shown in Figure 3.
The C1s spectrum of NC and NMC can be fitted to five peaks
show in Figures 3A,C, respectively. The peak located around
284.4, 285.3, 286.5, and 288, 289.3 eV are attribute to the C–C
or C=C band (C-1), sp3-like defects (C-2), C–N or C–O species
(C-3), C=O band (C-4), and π-π∗ band (C-5), respectively
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FIGURE 2 | Nitrogen adsorption/desorption isotherms (A) and pore size distribution (B) of the NC, AC, and NMC.

TABLE 1 | Corresponding pore parameters of the NC, AC, and NMC.

BET specific surface area

(m2 g−1)

Average pore size

(nm)

Total pore volume

(cm3 g−1)

NC 840 2.77 0.582

AC 1724 2.20 0.948

NMC 3170 2.37 1.880

(Hernández-Fernández et al., 2010; Lim et al., 2012). The analysis
results of C1s spectrum could verify the amorphous structure
of the NC and NMC Analysis high-resolution spectrum of N1s
spectra (Figures 3B,D), four peaks around 398, 400.5, 401.6,
and 402.8 eV, which can be assigned to pyridinic-N (N-6),
pyrrolic-N (N-5), quaternary-N (N-Q), and pyridine-N-oxide
(N-X), respectively (Raymundo-Pinero et al., 2002; Long et al.,
2008; Braghiroli et al., 2012; Horikawa et al., 2012). Figure 4
shows the different types of nitrogen atoms in a carbon matrix.
And the corresponding contents of nitrogen in NC and NMC
are shown in Table 2. Obviously, compared with the NMC
and NC, the nitrogen chemical state is not change even after
CO2 activation process. These N-containing functional groups
should make both NC and NMC more electrochemically active,
indicating it has excellent capacitance properties (Geng et al.,
2011; Lim et al., 2012). To sum up, this change of surface
chemical compositions is good for electrochemical properties of
NMC.

Electrochemical Results
The multi-scale porous features of the electrode is expected to
facilitate the rapid diffusion of electrolyte ion within the electrode
(Qin et al., 2016). To investigate the kinetic stability of NMC
in high voltage aqueous SCs, the electrochemical performances
were evaluated by using two- and three-electrode cells in 20m
LiTFSI aqueous solution. Figure 5A displays the typical CV
curves of the NMC symmetric SCs at the same scan rate
of 5mV s−1 in a different operating voltage window from 1
to 2.4V with stepwise shifting voltage of 0.2 V. It is obvious
that LiTFSI-based aqueous electrolytes possess a high stability
comparing with organic electrolyte (Zhao et al., 2016), revealing

the high adaptability in high voltage cell. Furthermore, the CV
profiles of the NMC electrode are nearly rectangle in shape and
no obvious redox peaks are detected, which is a very common
feature of electrochemical double layer (EDL) capacitor (the
schematic of symmetric two-electrode configuration shown in
Figure S3). Moreover, it is well known that the charge which is
stored within the capacitor may be determined by integrating
the CV. The increased area under the curve with increasing
scan potential range is clearly observed, indicating an increasing
capacitance and high voltage capability of the electrode. This
result is consistent with the GCD measurements shown in
Figure 5B. The GCD curves of the NMC performed at current
density of 0.1 A g−1 in a different operating voltage window
from 1 to 2.4V with stepwise shifting voltage of 0.2 V. It can be
observed all the GCD curves display a similar linear change of the
voltage. With the increasing charge/discharge voltage, the nearly
symmetric relationship between the potential vs. time was also
observed, suggesting the desired fast charging, and discharging
property of the NMC. Slight internal resistance (IR) drops of
NMC electrode are observed for any of the curves, which indicate
high conductivity of our electrode materials. Calculated from the
GCD curves (Figure 5B), the single electrode specific capacitance
(Cs) increase from 120 to 160 F g−1 while the operating voltage
increase from 1 to 2.4V. With the working voltage increased,
more sufficient surface area can be used to form EDL in the
NMC electrode, which mainly attributes to higher Cs. When
the symmetric capacitor operate at a high voltage of 2.4 V in
20m LiTFSI electrolyte, the real potential of the positive and
negative electrodes was separately determined by incorporating
a SCE reference electrode (Figure 5C). The long term cycling
stability applying high voltage of 2.4 V is the critical factor to
appraise the practical applications of electrodes. In order to
explore this, the cycle stability of NMC was further investigated
by repeating the GCD test at a current density of 1A g−1 for
10,000 cycles in 20m LiTFSI electrolyte as shown in Figure 5D.
It was observed that the initial capacitance of NMC electrode
is ∼150 F g−1, and gradually decrease to 120 F g−1 during the
first 1,000 cycles, but nearly no obvious capacitance decrease
during the next thousands cycles. Impressively, even after 10,000
continuous charge/discharge cycles, the NMC electrode retains
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FIGURE 3 | XPS spectra C1s (A,C) and N1s (B,D) of the NC and NMC, respectively.

about 80% of the initial capacitance and exhibits excel lent cycle
stability. In contrast, the specific capacitance of AC electrode
decreases rapidly from 118 to 86 F g−1 during the first 300
cycles, and then gradually decreases to 72 F g−1 (only 61% of
the initial capacitance is retained) after 10,000 cycles. Figure 5E
shows the CV profiles of NMC symmetric SCs at a scan rate
of 5, 10, 20, 50, and 100mV s−1, respectively. The rectangular-
shape of CV profile is moderately distorted with the increasing
scanning rate, which is attributed to the difficult diffusion of
ions from electrolyte to the porous structure at high scan rate.
In addition, the capacitance decrease with the increasing scan
rate, which is consistent with the GCD tests at different current
density (Figure 5F). The calculated Cs of the NMC in 2.4V
is 167, 160, 155, 146, 124, and 112 F g−1 at current densities
of 0.1, 0.2, 0.5, 1, 2, and 5A g−1, respectively, demonstrating
that the specific capacitance decrease with increasing current
density. Furthermore, the retain of capacitance is about 74%
when the current density increase from 0.1 to 5A g−1 in
2.4V.

To further discuss the kinetic stability of the NMC under high
voltage. The CV and GCD tests for NMC, AC and AC from
1 to 2.4V were investigated respectively, as shown in Figure 6

FIGURE 4 | Schematic illustration of different types of nitrogen forms in NMC.

and Figure S2. The observed integrated area increases with NC
< AC < NMC, indicating that the proper multi-scale pore of
NMC is beneficial for the specific capacitance. The Cs of NC,
AC, and NMC is 58, 94, and 120 F g−1 at the operating potential
of 1V, respectively. Whereas, when the operating potential
reaches up to 2.4V, the Cs increases to 73, 114, and 160 F
g−1, respectively. The increased Cs is due to the achievement
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of optimal synergistic effects of multi-scale porous structure
and proper nitrogen contents (Zhang et al., 2016). The results
obtained here are also in consistent with the SEM morphologies
and N2 adsorption-desorption test result, suggesting the NM
C morphology provides good channels fascinating fast charge

TABLE 2 | Nitrogen forms of the NC and NMC.

Sample Nitrogen forms at.%

N-6 N-5 N-Q N-X

NC 26.1 20.7 46.5 6.7

NMC 22.8 19.4 44.1 13.7

intercalation/deintercalation process. As shown in Figure 6C,
Nyquist plots for all these three samples consist of a semicircle
at high frequency value followed by a slant at low frequency
value. The semicircle is ascribed to the charges transfer processes
between the electrode and the electrolyte. It is clear that the
NC and NMC have the smaller radius of semicircle meaning
the smaller charge transfer impedance, which because of the
presence of nitrogen provides good electronic conductivity for
NC and NMC (Liu et al., 2015). In addition, the slant form
Warburg impedance indicates the electrolyte ion diffusion into
the electrode. And the AC electrode shows a higher Warburg
angel meaning lower ion diffusion which is attributed to the
AC have a large number of micropores but lack of micro-
channels for the fast ion diffusion (Díez et al., 2017). Figure 6D

FIGURE 5 | (A) CV profiles (5mV s−1) and (B) GCD curves (0.1 A g−1) of the NMC performed in a symmetric SCs with stepwise shifting of the maximum voltage of

0.2 V. (C) Potential changes of the positive (E+) and negative (E–) NMC electrodes. (D) Cycle performance of the NMC and AC symmetric SCs at 1A g−1 with a

maximum voltage of 2.4 V. (E) CV profiles of the NMC SCs at different scan rates. (F) GCD curve and capacitance of NMC SCs with different current density. (All

above results are tested in 20m LiTFSI).
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FIGURE 6 | CV profiles of the NC, AC, and NMC in 20m LiTFSI performed in a symmetric capacitor at 5mV s−1 with the different maximum operating voltage of 1 V

(A) and 2.4 V (B). (C) Nyquist impedance spectra of the NC, AC, and NMC. (D) The Ragone plots of the NC, AC, NMC, and relative previous works.

shows the relationship between energy density and power density
of the different electrode materials performed in symmetric
capacitor. The specific energy and power were derived from
GCD tests at voltage of 2.4 V evaluated using the Equations (1)
and (2). It is clear that the symmetric capacitor based on NMC
electrodes materials delivered the highest overall energy density
of 33 Wh kg−1 at 0.3 kW kg−1. This result is higher than that
of previous homologous works (Gambou-Bosca and Bélanger,
2016; Hasegawa et al., 2016; Díez et al., 2017). Moreover, it
is worth noting that the NMC can provide 18 Wh kg−1 of
specific energy when the power density reaches up to 12 kW
kg−1. Compared with previous literatures (Hasegawa et al., 2016;
Díez et al., 2017; Reber et al., 2017), our works exhibit better
performance (Figure 6D) in both energy density and power
density.

CONCLUSIONS

N-doped multi-scale porous carbon has been synthesized
by a simple sol-gel method and successfully applied in high
voltage aqueous electrolyte up to 2.4V. Morphological and
textural characterizations show that the NMC exhibit three
dimensional porous channels with a high specific surface
area of 3,170 m2 g−1, large pore volume of 1.880 cm3

g−1, multi-scale pores and suitable contents of nitrogen
functional groups. Electrochemical performances of NMC
was observed for a symmetric electrodes system offering
good capacitive performance, possessing energy density of
33 Wh kg−1 at 0.3 kW kg−1 in 20m LiTFSI electrolyte
and stable cycle performance (about 73%) over 10,000
charge-discharge cycles in high voltage of 2.4 V. The high
performance characteristics of NMC contribute to the synergistic
effect benefiting ion diffusion, transport and adsorption,
and charge accumulation. This work demonstrated this
nitrogen-doped multi-scale porous carbon is a promising
electrode material for high-voltage aqueous electrolyte
applications.
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