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In research and development laboratories, chemical or pharmaceutical analysis has

been carried out by evaluating sample signals obtained from instruments. However,

the qualitative and quantitative determination based on raw signals may not be always

possible due to sample complexity. In such cases, there is a need for powerful signal

processing methodologies that can effectively process raw signals to get correct results.

Wavelet transform is one of the most indispensable and popular signal processing

methods currently used for noise removal, background correction, differentiation, data

smoothing and filtering, data compression and separation of overlapping signals etc.

This review article describes the theoretical aspects of wavelet transform (i.e., discrete,

continuous and fractional) and its characteristic applications in UV spectroscopic analysis

of pharmaceuticals.

Keywords: discrete wavelet transform, continuous wavelet transform, fractional wavelet transform, UV

spectroscopy, pharmaceutical analysis

INTRODUCTION

In experimental studies, instruments or devices can provide signals (or graphs) in different
formats e.g., spectrum, chromatogram, voltammogram, and electroferogram etc. The analysis of
chemicals and pharmaceuticals in various samples is based upon the utilization of the measured
signals of substances of interest. In practice, such an analysis for a multicomponent mixture
may not be determined without a prior separation step due to spectral overlapping. Therefore,
high performance liquid chromatography (HPLC) is one of the most commonly used techniques
for quantitative estimation in the quality control of raw materials and commercial products in
laboratories. In some cases, chromatographic determination could not be possible due to not only
similar physicochemical behavior of analytes but also time- and solvent-consumption for optimal
experimental conditions.

In practice, UV spectroscopic methods are widely used in chemical and pharmaceutical
analysis. As compared to chromatographic ones, the use of spectroscopic methods provides a
rapid analysis with low-cost and acceptable results. However, multicomponent analysis may not
be possible with a traditional UV spectrophotometric approach due to spectral interferences of
both active and inactive ingredients in samples. In some cases, derivative spectrophotometry
(O’Haver and Green, 1976; O’Haver, 1979; Levillain and Fompeydie, 1986; Ragno et al., 2006)
and its improved versions e.g., ratio spectra-derivative spectrophotometry (Salinas et al., 1990),
ratio spectra-derivative spectrophotometry-zero crossing (Berzas Nevado et al., 1992; Dinç and
Onur, 1998; Dinç, 1999), and double-divisior-ratio spectra-derivative spectrophotometry (Dinç
and Onur, 1998; Dinç, 1999; Gohel et al., 2014; Shokry et al., 2014) could be used in place of
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conventional UV spectrophotometric method for analysis of
binary and ternary mixtures without using a separation step.
However, these spectral approaches may not always yield
successful data due to severely overlapping spectral bands,
spectral noise and baseline variation. Additionally, high-order
differentiation of spectra may lead to spectral deterioration i.e., a
decrease in signal intensity and signal-to-noise ratio. As a result,
a number of mathematical manipulations (or signal processing
methods) are often required to make instrumental signals more
meaningful for analysis purpose.

Generally speaking, transform (i.e., Fourier, Hilbert, short-
time Fourier, Wigner distribution, Radon, and wavelet) is a
very suitable technique in the pre-treatment step to simplify
signals. Fourier transform (FT) is the first method to modify
chemical signal (Griffiths, 1977; Cooper, 1978; Griffiths and De
Haseth, 1986; Ernst, 1989) with the mathematical essence such as
filtering, convolution/deconvolution etc. FT analysis can localize
signal in frequency domain very well, but not so much in time
domain. In contrast, wavelet transform (WT) has the advantage
of localizing signals both in time (position) and frequency (scale)
domains, making it a preferable mathematical tool to replace FT
in the study of the local property of a signal and the removal of the
perturbation of measuring error in spectral analysis. Nowadays,
WT is one of the most signal analysis algorithms commonly used
in the different fields of chemistry and engineering, providing
alternative ways or opportunities to resolve complex spectral
bands or diverse data types of signals.

For readers interested in learning the general theory of
wavelets, more details can be found in the literature (Mallat,
1988; Chui, 1992; Daubechies, 1992; Newland, 1993; Byrnes et al.,
1994; Chui et al., 1994; Vetterli and Kovačević, 1995; Strang and
Nguyen, 1996).

In the signal smoothing and de-noising of spectral peaks,
the elimination of noise requires an application of appropriate
filters to the raw spectral data such as some conventional
signal filters Savitzky–Golay, Fourier and Kalman (Brown et al.,
1994, 1996). The use of WT in signal analysis is two-fold:
(i) to detect the singularities of a signal very likely caused by
high-frequency noise and (ii) to separate the signal frequencies
at different scales (Palavajjhala et al., 1994; Yan-Fang, 2013;
Li and Chen, 2014). To illustrate this, Barclay et al. (1997)
performed a comparative study in de-noising and smoothing
of Gaussian peak by using wavelet, Fourier and Savitzky–Golay
filters i.e., smoothing eliminates high-frequency components
of the transformed signal irrespective of their amplitudes,
while de-noising eliminates small-amplitude components of the
transformed signal irrespective of their frequencies.

Historically, WT principal applications in chemistry were first
explored by Walczak and Massart (1997a), who presented an
approach based on the application of wavelet packet transform
(WPT) to the best-basis selection for the compression and de-
noising of a set of signals in time-frequency domain. In their
paper, the proposed technique was compared to Wickerhauser’s
approach (Wickerhauser, 1994) of fast approximate principal
component analysis (PCA). These authors also published two
more papers on the application of wavelets for data processing
i.e., the introduction of WPT for noise suppression and signal

compression (Walczak and Massart, 1997b) and the use of
WT for signal compression and denoising, image processing,
data compression and multivariate data modeling in analytical
chemistry (Walczak and Massart, 1997c). On the other hand,
Alsberg et al. (1997) tried to introduce WT to chemometricians
by suggesting the short-time FT technique as a resolution to
obtain information about frequency changes over time as well
as the WT for de-noising, baseline removal, determination of
derivative zero crossings and signal compression. In 1997, WT
application in chemical analysis was also confirmed by Wang
et al. (1997) and Depczynski et al. (1997). Up to date, WT
processing of the different types of raw signals has been reported
for liquid chromatography (Shao et al., 1997, 1998a,b,c) and
NMR spectroscopy (Neue, 1996; Barache et al., 1997), Raman
spectra (Cai et al., 2001; Ehrentreich and Summchen, 2001),
and voltammetry (Chen et al., 1996; Fang and Chen, 1997;
Zheng et al., 1998; Zhong et al., 1998; Aballe et al., 1999;
Zheng and Mo, 1999) IR and Raman spectroscopy (Shao and
Zhuang, 2004; Hwang et al., 2005; Chalus et al., 2007; Jun-fang
et al., 2007; Lai et al., 2011). In this context, as in the various
fields of mathematics and engineering, the implementations
of WT in analytical chemistry and neighbor disciplines has
become increasingly attractive as an alternative way to analyze
complex mixtures previously unresolved by traditional analytical
techniques.

With reference to the above-mentioned review, the aim of
this paper is to describe the fundamentals of WT methodologies
and its typical implementations for UV spectroscopic analysis of
pharmaceuticals.

BRIEF HISTORY OF WAVELETS

In the literature, the first study was related to the Haar Wavelet
transform. This family was suggested by the mathematician
Alfred Haar in 1909. However, the word “wavelet” was not used
in the period of Haar. In fact, the word “wavelet” was invented by
Morlet and the physicist Alex Grossman in 1984. After the first
orthogonal Haar wavelet, the second orthogonal wavelet known
as “Meyer wavelet” was formulated by the mathematician Yves
Meyer in 1985. In 1988, Stephane Mallat and Meyer elaborated
the concept of multiresolution. In the same year, a systematical
method to construct compactly supported continuous wavelets
was found by Ingrid Daubechies. Afterwards, Mallat proposed
the fast wavelet transform. The emergence of this algorithm
increased the implementations of theWT in the signal processing
field.

In other words, the history of the wavelet families could be
given in the following chronological order: Haar families in 1910,
Morlet wavelet concept in 1981, Morlet and Grossman, “wavelet”
in 1984, Meyer, “orthogonal wavelet” in 1985, Mallat and Meyer,
multiresolution analysis in 1988, Daubechies, compact support
orthogonal wavelet in 1988 and Mallat, fast wavelet transform in
1989 (c.f. Chun-Lin, 2010).

Basically, WT can be mainly classified into discrete wavelet
transform (DWT) and continuous wavelet transform (CWT) in
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the signal analysis. The theory and implementations of wavelets
in chemistry and related fields were well documented as review
papers (Leung et al., 1998; Dinç and Baleanu, 2007b; Dinç, 2013;
Li and Chen, 2014; Medhat, 2015) and reference books (Walczak
and Massart, 2000a,b; Walczak and Radomski, 2000; Brereton,
2003, 2008; Chau et al., 2004; Danzer, 2007; Mark andWorkman,
2007; Dubrovkin, 2018).

WAVELET TRANSFORM ALGORITHMS

FT is based upon the decomposition of a signal into a set of
trigonometric (sine and cosine) functions i.e., FT represents a
signal in terms of sinusoids. The representation of FT of a signal
from time mode to frequency mode is illustrated in Figure 1. For
the determination of a local information in the FT, it is required
to use an analyzing function ψ having localization properties in
both frequency and time domains. This ψ function is named as a
wavelet and it must be wave of finite duration.

WT contains the decomposition of a signal into a set of
basic functions (wavelets). Basis functions of WT are small
waves detected in different times. On the contrary to FT, WT
gives information on both time and frequency, making it as an
alternative approach to eliminate the resolution problem in signal
analysis.

By definition, wavelets are the mathematical methods that
convert the data into various coefficients and then analyze each
coefficient at a resolution corresponding to its scale. Projection
of a signal onto wavelet basic functions is called the wavelet
transform. In other words, wavelets are mathematical functions
generated from a mother wavelet Ψ (x) by the scaling parameter
(dilatation) and shifting parameter (translation) i.e., the signal
is expanded on a set of the dilatation (scaling parameter) of
functions

ψ

(

x− a

b

)

(1)

The scaling parameter has a significant role for the variation of
time and frequency resolution when processing the signal.

For a given mother wavelet (Daubechies, 1992) ψ (x) by
the scaling parameter and shifting parameter o fψ (x), a set of
functions expressed by ψa,b (x) is obtained from the following

equation.

ψa,b (x) =
1√
|a|

ψ

(

x− b

a

)

, a 6= 0, a, b ∈ R (2)

where a is the scaling parameter, b is the shifting parameter and
R is domain of real number. The mathematical expression of a
CWT on a function f (x) is given below

CWT
{

f (x) ; a, b
}

=
∞
∫

−∞

f (x)ψ∗
a,b(x)dx = 〈f (x),ψa,b〉 (3)

here the superscript ∗ is related to the complex conjugate and
〈f (x),ψa,b〉 represents the inner product of function f(x) onto the
wavelet function ψa,b(x).

The original signal can be completely reconstructed by a
sampled version of the CWT. Usually, the exemplar is follows as

a = 2−mand b = n2−m (4)

Here a and b denote scale and dilatation parameters, respectively,
and R is the real number. The expression of DWT can be given as

DWT =
∫ +∞

−∞
f (X) ψ∗

m, n (x) dt (5)

Where ψ∗
m, n (X) = 2−m ψ (2m x− n) is the dilated and

translated version of the mother wavelet. In the application of
the DWT, only outputs from the low-pass filter are processed
by WT. However, in the wavelet packet decomposition of
signals, both outputs from the low-pass and high-pass filters are
manipulated by WT (Strang and Nguyen, 1996). Multiresolution
decomposition with wavelets is an interesting topic for signal and
image analysis (Mallat, 1988; Daubechies, 1992).

Some families of wavelets with names and their coding list are
illustrated in Table 1.

For signal processing, there is also another WT approach
i.e., fractional wavelet transform (FWT) specifically designed for
rectification of the limitations of the WT and fractional FT (Blu
and Unser, 2000, 2002; Unser and Blu, 2000). FWT is based on
the fractional B-splines. As it is already known, the splines play
an important role on the early development of the theory of WT.

FIGURE 1 | Representation of Fourier transform of a signal from time domain to frequency domain.

Frontiers in Chemistry | www.frontiersin.org 3 October 2018 | Volume 6 | Article 503

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Dinç and Yazan Wavelets for the UV Spectroscopic Analysis of Pharmaceuticals

TABLE 1 | Families of wavelets with names and their coding list.

Wavelet families Coding

Haar haar

Daubechies db

Symlets sym

Coiflets coif

BiorSplines bior

ReverseBior rbio

Meyer meyr

Dmeyer dmey

Gaussian gaus

Mexican hat function mexh

Morlet morl

Complex Gaussian cgau

Shannon shan

Frequency B-Spline fbsp

Complex Morlet cmor

A B-spline is generalization of the Beziers curve. Let a vector
known as the knot be defined by T = {t0, t1, . . . , tm} where T is a
non-decreasing sequence with ti ǫ [0, 1], and define control point
P0, Pn. The knots t0, t1, . . . , tm is called internal knots. If p = m -
n - 1 denotes the degree, the basis function is defined as follows:

Ni, 0(t) = f (x) =
{

1, if ti ≤ t < ti+1 and ti+1

0 otherwise
(6)

and

Ni, p (t) =
t − ti

ti+p − ti
Ni, p−1 (t)+

t i+p+1 − t

ti+p + 1 − ti+1
Ni+1, p−1 (t)

(7)
Therefore, the curve defined by

C (t) =
∑n

i=0
Pi Ni, p (t) (8)

is a B-spline
Fractional B-spline: The fractional B-spline is defined as

βα+ (x) =

∑+∞
k=0 (−1)k

(

α + 1
k

)

(

x− k
)α

+

Ŵ (α + 1)
(9)

where Euler’s Gamma function is obtained by

Ŵ (α + 1) =
∫ +α

0
xα e−x dx (10)

and

(x− k)+α = max (x− k, 0)α (11)

The forward fractional finite difference operator of order α is
defined as

1α+ f (x) =
∑+∞

k=0
(−1)k (αk ) f

(

x− k
)

, (12)

where
(α

k

)

= Ŵ (α + 1)

Ŵ
(

k+ 1
) (

α − k+ 1
) (13)

B-splines fulfill the convolution property, namely

βα1+ ∗βα2+ = βα1+α2+ (14)

The centered fractional B-splines of degree α is defined as

βα∗ (x) =
1

Ŵ (α + 1)

∑

k∈Z
(−1)k

∣

∣

∣

∣

α + 1

k

∣

∣

∣

∣

∣

∣x− k
∣

∣

α
∗ (15)

where

|x|α− =







| x|α
−2 sin ( π2 α)

, α not even

X log x

(−1)1+n π
, α even

(16)

The fractional B-spline wavelet is defined as

ψα+
(x

2

)

=
∑

kǫZ

(−1)k

2α
∑

1ǫZ

(

α + 1
1

)

β2α+1
∗

(

1+ k− 1
)

βα+ (x− k) (17)

We mention that the fractional splines wavelets of degree obey
the following

∫ +∞

−∞
Xn ψα+ (x) dx = 0, . . . , [α] (18)

and the Fourier transform fulfills the following relations

ψ̂α+ (̟) = C (j̟ )α+1, as̟ → 0 (19)

and

ψ̂α∗ (̟) = C (j̟ )α+1, as̟ → 0 (20)

where ψ̂α+ (̟) is symmetric. The fractional spline wavelet
behaves like a fractional derivative operator.

STRATEGIES IN CWT APPLICATIONS TO
UV SPECTROSCOPY ANALYSIS OF
MULTICOMPONENT MIXTURES

For the past 15 years, the potential application of CWT in
chemistry, especially in combination with other mathematical
methods, leads us to a conclusion that WT has interestingly
became a useful algorithm for UV quantitative analysis of
pharmaceuticals. Four different models [i.e., continuous wavelet
transform-zero crossing (CWT-ZC), ratio spectra-continuous
wavelet transform (RS-CWT), ratio spectra-continuous wavelet
transform-zero crossing (RS-CWT-ZC), and double divisor
ratio spectra-continuous wavelet transform (DDRS-CWT)] were
described in the implementation of CWT to UV spectroscopic
data for the resolution of overlapping spectra to quantify drugs
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in different types of samples. The modeling of CWT—UV
spectroscopic approaches are detailed below. Fundamentally,
these approached can be successfully applied to the UV
spectroscopic analysis of binary and ternary mixtures, provided
that the law of additivity of absorbance is obeyed.

CONTINUOUS WAVELET
TRANSFORM-ZERO CROSSING

The application of CWT-ZC approach to UV spectroscopic
signals was first proposed by Dinç and Baleanu (2003a).

If a mixture of two analytes (M and N) is considered
(see Figure 2A) and the absorbance of this binary mixture is
measured at λi, we can have the following equation (Charlotte
Grinter and Threlfall, 1992):

Amix, λi = αM, λiCM + βN, λiCN (21)

FIGURE 2 | (A) Absorption spectra and (B) CWT spectra of M (–) and N (–)
compounds and their mixture (–).

where Amλi is the absorbance of the binary mixture at
wavelength λi, and the coefficients are the absorptivities of M and
N, respectively. CM and CN represent the concentrations of M
and N, respectively.

If CWT is applied to Equation (21), the following function can
be obtained as

ψ(a.b), MIX, λi = ψ(a.b),M, λi CM + ψ(a.b), N, λi CN (22)

If ψ(a.b),N,λiCN = 0, then we obtain the following equation

ψ(a.b), MIX, λi = ψ(a.b), M, λi CM (23)

Equation (23) shows that CWT (ψ(a.b), M, λi CM) amplitudes of

M in the binary mixture are dependent only on CM regardless of
CN (see Figure 2B).

RATIO SPECTRA-CONTINUOUS WAVELET
TRANSFORM

Apart from CWT-ZC approach, overlapping spectral bands in a
binary mixture could be solved by the application of a combined
hybrid approach i.e., RS-CWT (Dinç and Baleanu, 2004a,c).

The absorption spectra of M and N compounds, and their
mixture are indicated in Figure 3A. By being divided by the
standard spectrum (AN,λi = βλi C

o
N) of one of the compounds

in the binary mixture, Equation (21) becomes

Am,λi

βλi CN
o = αλi CM

βλi CN
o + βλi CN

βλi CN
o (24)

Figure 3B shows the ratio spectra of analytes and their binary
mixture. If CWT is applied to Equation (24), the following
equation can be obtained

CWT

[

Am,λi

βλi C
o
N

]

= CWT

[

αλi

βλi

]

CM

Co
N

+ CWT

[

βλi

βλi

]

CN

Co
N
(25)

If CWT
[

βλi
βλi

]

CN
Co
N
= 0, then we obtain

CWT

[

Am,λi

βλi Co
N

]

= CWT

[

αλi

βλi

]

CM

Co
N

(26)

The ratio-CWT amplitudes of the binary mixture given in
Equation (26) depend only on CM and CN

o regardless of CN (e.g.,
see Figure 3C).

RATIO SPECTRA-CONTINUOUS WAVELET
TRANSFORM-ZERO CROSSING

In RS-CWT-ZC approach (Dinç et al., 2005a), if a mixture of
three analytes (X, Y, and Z) is considered and the absorbance
of this ternary mixture is measured at λi, the following
mathematical expression (Charlotte Grinter and Threlfall, 1992)
would be given

Amix, λi = αX, λiCX + βY , λiCY + γZ, λiCZ (27)
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FIGURE 3 | (A) Absorption spectra, (B) ratio spectra, and (C) Haar CWT spectra of M and N compounds and their binary mixture.

Where Amix, λi is the absorbance of the ternary mixture at
wavelength λi, and coefficients αX, λi, βY , λi, and γZ, λi denote
the absorptivities of X, Y, and Z, respectively. CX, CY, and CZ

represent the concentrations of X, Y, and Z, respectively.
If Equation (27) is divided by the spectrum of a standard

solution (Co
X) of one of the compounds in the ternary mixture,

we have the following equation:

Amix, λi

αX, λiCX
o = αX, λiCX

αX, λiCX
o +

βY , λiCY

αX, λiCo
X

+
γ Z, λiCZ

αX, λiCo
X

(28)

If CWT is applied to Equation (28), the following equation can
be obtained

CWT

[

Amix, λi

αX, λiCo
X

]

= CWT

[

βY, λiCY

αX, λiCo
X

]

+ CWT

[

γ Z, λiCZ

αX, λiCo
X

]

(29)
Equation (29) indicates that the CWT amplitudes of the ratio
spectra of the ternary mixture are dependent only on CZ and CX

o

regardless of the concentrations of other compounds.

DOUBLE DIVISOR RATIO
SPECTRA-CONTINUOUS WAVELET
TRANSFORM

In addition to RS-CWT-ZC approach, the spectral resolution
of ternary mixtures could be effectively done by DDRS-CWT
approach (Dinç and Baleanu, 2008a) as follows.

When two compounds in the ternary mixture is used as a
double divisor, we have

Ao
mix, λi = αX, λiC

o
X + βY, λi C

o
Y (30)

By dividing Equation (27) and (30), we obtain as follows

Amix, λi

αX, λiCo
X + βY, λi Co

Y

= αX, λiCX

αX, λiCo
X + βY, λi Co

Y

+ βY, λiCY

αX, λiCo
X + βY, λi Co

Y

+ γZ, λiCZ

αX, λiCo
X + βY, λi Co

Y

(31)
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TABLE 2 | Applications of the continuous wavelet transform-zero crossing technique to UV spectroscopic analysis of pharmaceuticals.

Pharmaceuticals Method Wavelet Families Type of data References

Thiamine HCl, pyridoxine
HCl

CWT-zero crossing Daubechies, Biorthogonal UV absorption spectra Dinç and Baleanu, 2003a

Hydrochlorothiazide,
spironolactone

CWT-zero crossing Daubechies, Biorthogonal UV absorption spectra Dinç et al., 2003

Thiamine HCl; pyridoxine
HCl

CWT-zero crossing Mexican hat function, Meyer UV absorption spectra Dinç and Baleanu, 2003b

Thiamine HCl, pyridoxine
HCl

CWT-zero crossing Gaussian1, Gaussian2 UV absorption spectra Dinç and Baleanu, 2004a

Caffeine, propyphenazone DWT-CWT-zero crossing Mexican and Haar UV absorption spectra Dinç et al., 2004a

Benazepril,
hydrochlorothiazide

DWT-CWT-zero crossing Coiflets2 and Gaussian2 UV absorption spectra Dinç and Baleanu, 2004b

Hydrochlorothiazide,
Spironolactone

CWT-zero crossing Haar, Mexican hat function UV absorption spectra Dinç et al., 2004c

Benazepril,
hydrochlorothiazide

CWT-zero crossing Mexican, Haar, Daubechies3 UV absorption spectra Dinç and Baleanu, 2004c

Ascorbic acid, acetylsalicylic
acid

CWT-zero crossing Mexican hat function UV absorption spectra Dinç et al., 2005b

Diminazene aceturate and
phenazone

CWT-zero crossing Reverse Biorthogonal UV absorption spectra Dinç et al., 2005c

Quinapril,
hydrochlorothiazide

CWT-zero crossing Mexican hat wavelet function UV absorption spectra Dinç and Baleanu, 2007a

Oxfendazole and
oxyclozanide

CWT-zero crossing Mexican hat function UV absorption spectra Dinç and Baleanu, 2007c

Levodopa, benserazide CWT-zero crossing Symlets UV absorption spectra Dinç et al., 2007d

Chlortetracycline,
benzocaine

CWT-zero crossing Coiflets UV absorption spectra Dinç et al., 2007c

Pyridoxine hydrochloride,
isoniazide

CWT-zero crossing Mexican hat function UV absorption spectra Üstündag et al., 2008

Risedronate sodium CWT-zero crossing Morlet, Biorthogonal UV absorption spectra Ugurlu et al., 2008

ampicillin sodium,
sulbactam sodium

CWT-zero crossing Mexican hat function, Symtles UV absorption spectra Dinç and Baleanu, 2009a

Paracetamol, chloroxozone CWT-zero crossing Mexican hat function,
Daubechies, Symplets, Coiflets,
Biortogonal, Gaussian

UV absorption spectra Dinç et al., 2009a

Levamisole, triclabendazole CWT-zero crossing Biorthogonal UV absorption spectra Dinç et al., 2009b

Telmisartan,
hydrochlorothiazide

CWT-zero crossing Gaussian, Biorthogonal UV absorption spectra Dinç and Baleanu, 2009b

Perindopril, indapamide CWT-zero crossing Haar and Biorthogonal1.5 UV absorption spectra Pektaş et al., 2009

Valsartan, amlodipine CWT-zero crossing Daubechies, Dmeyer UV absorption spectra Dinç and Baleanu, 2010a

Metformin hydrochloride,
glibenclamide

DWT-CWT-zero crossing Daubechies, Reverse
Biorthogonal, Gaussian

UV absorption spectra Sohrabi et al., 2011

Trimethoprim,
sulphamethoxazole

CWT-zero crossing Biorthogonal, Coiflets,
Daubechies, Haar

UV absorption spectra Dinç et al., 2011b

Amlodipine, atorvastatine CWT-zero crossing Mexican hat function UV absorption spectra Shariati-Rad et al., 2012

Estradiol valerate,
cyproterone acetate

CWT-zero crossing Symlets UV absorption spectra Dinç et al., 2013a

Lamivudine, zidovudine CWT-zero crossing Mexican hat wavelet, Symlets,
Daubechies

UV absorption spectra Dinç et al., 2013b

Diphenhydramine
hydrochloride

CWT-zero crossing Biorthogonal UV absorption spectra Devrim et al., 2014

Ambroxol hydrochloride,
doxycycline

CWT-zero crossing Haar wavelet function UV absorption spectra Darwish et al., 2014

Oxfendazole, oxyclozanide MOFrFT-CWT-zero-
crossing

Mexican hat UV absorption spectra Dinç et al., 2015

Atenolol, chlorthalidone CWT-zero crossing Coiflet, Mexican Hat function UV absorption spectra Dinç et al., 2017b

Valsartan,
hydrochlorothiazide

CWT-zero crossing Mexican hat function,
Daubechies

UV absorption spectra Dinç et al., 2017a
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Equation (31) can be simplified to

Amix, λi

αX, λiCX
o + βY, λi CY

o = k+ γZ, λiCZ

αX, λiCX
o + βY, λi CY

o (32)

Where k = αX, λiCX+ βY, λiCY
αX, λiC

o
X+ βY, λi C

o
Y
represents a constant for a given

concentration range with respect to λi in a certain region or point
of wavelength.

A typical case is when CX
o and CY

o are the same or very close
to each other, namely CX

o = CY
o or ∼= CX

o ∼= CY
o. Therefore,

we obtain

αX, λiC
o
X + βY, λi C

o
Y = Co

X (αX, λi + βY, λi) (33)

and Equation (32) can be written as

Amix, λi

αX, λiCo
X + βY, λi Co

Y

= k+ γZ, λiCZ

Co
X

(

αX, λi + βY, λi
) (34)

After applying CWT to Equation (31), we have

CWT(a,b)

(

Amix, λi

αX, λi + βY, λi

)

1

Co
X

= CWT(a,b)

(

γZ, λiCZ
(

αX, λi + βY, λi
)

)

1

Co
X

(35)
or

CWT(a,b)

(

Amix, λi

αX, λi + βY, λi

)

= CWT(a,b)

(

γZ, λi
(

αX, λi + βY, λi
)

)

CZ

(36)
In Equation (36), CZ is to proportional to the coefficients,

CWT(a,b)

(

Amix, λi
αX, λi+ βY, λi

)

, at λi. If this procedure is separately

applied for pure Z and its ternary mixture, the CWT(a,b)

coefficients are coincided at some characteristic point or region
of wavelength, independent upon both CX and CY.

WAVELET TRANSFORM-BASED UV
SPECTROSCOPIC ANALYSIS OF
PHARMACEUTICALS

Typical applications of CWT and FWT algorithms for UV
spectroscopic analysis of pharmaceuticals are displayed in
Tables 2–5. It is worth mentioning that WT could be solely
applied to raw spectra and ratio spectra (as above-specified) as
well as utilized as a hybrid approach (FWT-derivative, FWT-
CWT-zero crossing,WT combined withmultivariate calibration)
for the simultaneous determination of analytes in pharmaceutical
binary and ternarymixtures. It was shown that wavelet analysis of
UV spectroscopic data was performed by using Wavelet Toolbox
and m-file in MATLAB software. The numerous works provided
by Dinç and co-workers have clearly highlighted the success
of WT-based UV spectroscopic analysis for multicomponent
synthetic mixtures, veterinary and pharmaceutical dosage forms
as well as different types of test (e.g., assay, in vitro dissolution,
stability indicating). Most studies proved it to be suitable for
the routine analysis of dosage forms with good precision and
accuracy, comparable to HPLC.

CONCLUSIONS

In the point of view of UV spectroscopic analysis of
multicomponent mixtures, CWT-based UV spectroscopic

TABLE 3 | Applications of the wavelet transform-multivariate approaches to UV spectroscopic analysis of pharmaceuticals.

Pharmaceuticals Method Families Type of data References

Tetramethrin, propoxur; piperonil butoxide CWT-PCR, CWT-PLS Mexican hat function UV absorption spectra Dinç et al., 2004b

Paracetamol, ascorbic acid, acetylsalicylic acid DWT-CLS, DWT-PLS Haar UV absorption spectra Dinç et al., 2006a

TABLE 4 | Applications of the ratio spectra-continuous wavelet transform, ratio spectra- continuous wavelet transform-zero crossing approaches to UV spectroscopic
analysis of pharmaceuticals.

Pharmaceuticals Method Families Type of data References

Paracetamol, acetylsalicylic acid,
caffeine

Ratio spectra-CWT-ZC Mexican hat function UV ratio spectra Dinç et al., 2005a

Diminazene aceturate and phenazone Ratio spectra-CWT Reverse Biorthogonal UV ratio spectra Dinç et al., 2005c

Paracetamol, metamizol, caffeine Ratio spectra-CWT-ZC Mexican hat function,
Reverse biorthogonal,
Biorthogonal

UV ratio spectra Dinç et al., 2006b

Levamizol, oxycloanide Ratio spectra-CWT Daubechies UV ratio spectra Dinç et al., 2007a

oxfendazole and oxyclozanide Ratio spectra-CWT Morlet UV ratio spectra Dinç and Baleanu, 2007c

Ascorbic acid, acetylsalicylic acid and
paracetamol

Double divisor-ratio
spectra-CWT

Haar, Mexican hat function UV- double divisor-ratio
spectra

Dinç and Baleanu, 2008a

vitamin C, aspirin Ratio spectra-CWT Biorthogonal UV ratio spectra Dinç and Baleanu, 2008b

valsartan and hydrochlorothiazide Ratio spectra-CWT Mexican hat function,
Coiflets

UV ratio spectra Dinç et al., 2017a
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TABLE 5 | Applications of the fractional wavelet transform and its combination with other chemometric techniques to UV spectroscopic analysis of pharmaceuticals.

Pharmaceuticals Method Families Type of data References

Ampicillin, sulbactam FWT-derivative method – UV absorption data Dinç and Baleanu, 2006

Lacidipine and its photodegradation product FWT-CWT Mexican hat function UV absorption data Dinç et al., 2006c

Cilazapril, hydrochlorothiazide FWT-PLS – UV absorption data Dinç et al., 2007b

Paracetamol, propiphenazone, caffeine and
thiamine

FWT-PCR, FWT-PLS,
FWT-ANN

– UV absorption data Dinç et al., 2008

Amlodipine, valsartan FWT-PLS1, FWT-PLS2 – UV absorption data Çelebier et al., 2010

Trimethoprim, sulfachloropyridazine sodium FWT-derivative method – UV absorption data Kanbur et al., 2010

Atorvastatin, amlodipine FWT-CWT Mexican wavelet hat
function

UV absorption data Dinç and Baleanu, 2010b

Trimethoprim, sulphamethoxazole FWT-PCR, FWT-PLS – UV absorption data Dinç et al., 2010

of oxytetracycline and flunixin megluminein FWT-PCR, FWT-PLS – UV absorption data Kambur et al., 2011

Olmesartan modoxomil, hydrochlorothiazide FWT-CWT Mexican wavelet hat
function

UV absorption data Dinç et al., 2011a

Thiamine HCl, pyridoxine HCl, lidocaine HCl FWT-PCR, FWT-PLS, – UV absorption data Dinç and Baleanu, 2012

FWT-CWT-PCR,
FWT-CWT-PLS

Melatonin and its photodegradation FWT-CWT Biorthogonal, symplets UV absorption data Dinç et al., 2012

methods have outperformed both conventional and derivative
UV spectroscopy in resolving spectrally binary and ternary
mixtures. Nevertheless, wavelet analysis may not also
have a sufficient power to resolve overlapping spectra of
analytes in samples due to similarity of molecular structures
and signal frequencies in some cases. They may not give
desirable results for a complex mixture containing more
than three compounds and/or a significant difference in
ratios of active ingredients. In such a case, the use of WT
coupled with chemometric PLS and PCR calibrations is
advisable. Undoubtedly, however, wavelets can still be used as

a mathematical prism for signal analysis because they can offer
many possibilities such as baseline correction, noise removal
and resolution of overlapping peaks, when the frequencies
of analyzed components are significantly different from each
other.
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