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Power transformer is one of the critical and expensive apparatus in high voltage

power system. Hence, using highly efficient gas sensors to real-time monitor the fault

characteristic gases dissolved in transformer oil is in pressing need to ensure the smooth

functionalization of the power system. Till date, as a semiconductor metal oxide, zinc

oxide (ZnO) is considered as the promising resistive-type gas sensing material. However,

the elevated operating temperature, slow response, poor selectivity and stability limit

its extensive applications in the field of dissolved gases monitoring. In this respect,

rigorous efforts have been made to offset the above-mentioned shortcomings by multiple

strategies. In this review, we first introduce the various ZnO hierarchical structures which

possess high surface areas and less aggregation, as well as their corresponding gas

sensing performances. Then, the primary parameters (sensitivity, selectivity and stability)

which affect the performances of ZnO hierarchical structures based gas sensors are

discussed in detail. Muchmore attention is particularly paid to the improvement strategies

of enhancing these parameters, mainly including surface modification, additive doping

and ultraviolet (UV) light activation. We finally review gas sensing mechanism of ZnO

hierarchical structure based gas sensor. Such a detailed study may open up an avenue

to fabricate sensor which achieve high sensitivity, good selectivity and long-term stability,

making it a promising candidate for transformer oil monitor.

Keywords: ZnO, gas sensors, hierarchical structures, sensitivity, selectivity, stability, gas sensing mechanism

INTRODUCTION

Power transformer is one of the most critical and expensive devices in high voltage power
system (Christina et al., 2018). Generally, oil is used inside the transformer for its operation
and can release different fault characteristic gases, such as hydrogen (H2), carbon oxides (CO,
CO2) and hydrocarbons (CH4, C2H2, C2H4, and C2H6). Hence, real-time detection of dissolved
gases in transformer oil is very essential in order to avoid unexpected failures (Mariprasath and
Kirubakaran, 2018). At present, dissolved gas analysis (DGA) remains to be the simplest and
most effective diagnostic method for checking latent faults of oil-immersed power transformers
(Siada and Hmood, 2015; Fan et al., 2018). Therefore, using highly efficient gas sensors to real-
time monitor these dissolved gases in transformer oil is a feasible way to ensure the stability and
reliability of power system (Uddin et al., 2016).
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Different types of gas sensors have already been applied
in the online detection of dissolved gases in transformer oil,
such as resistance-type (Benounis et al., 2008; Sun et al., 2015),
optical-type (Ma et al., 2012) and electrochemical-type (Ding
et al., 2014). Among diverse types of gas sensors, resistance-
based sensors stand out owing to advantages like the small,
cheap, high sensitivity and low power consumption (Bodzenta
et al., 2002; Yang et al., 2011; Zhao et al., 2017; Xu et al.,
2018). With the increasing demand for better gas sensors of
higher sensitivity and selectivity (Sun et al., 2012; Gardon and
Guilemany, 2013), countless endeavors have been poured on
hunting for more suitable sensing nanomaterials. Semiconductor
metal oxides (MOS), such as zinc oxide (ZnO), tin oxide (SnO2),
tungsten oxide (WO3), etc., have received wide research for gas
sensing applications and so on. Among these, the gas sensing
performance of ZnO-based gas sensor was first investigated by
Seiyama et al. (1962). As a typical n-type semiconductor material
with a direct wide band gap (Eg ≈ 3.37 ev) and large excitation
binding energy (∼60 mev), ZnO has got important status in
various MOS nanomaterials due to its high carrier mobility of
conduction electrons, good chemical and thermal stability (Zeng
et al., 2015; Das and Sarkar, 2017; Ganesh et al., 2017).

The gas sensing properties of ZnO greatly depend on
its structure and morphology including surface area, size,
orientation and crystal density (Cho et al., 2011). Therefore,
tailoring the structure and morphology of ZnO is particularly
important to optimize the gas sensing performances
(Liao et al., 2008). In particular, the elaborate design of
unique three-dimensional (3D) hierarchical architectures
can fully achieve this, since such hierarchical structures
possess high surface area and fast gas diffusion as well as
reduce the agglomerated configuration of low dimensional
structures.

ZnO-based gas sensors commonly have the shortcomings of
slow response, poor selectivity and lack of long-term stability,
which limits the wide applications. To acquire an efficient and
reliable dissolved gases sensor, high sensitivity, selectivity, long-
term stability, low response / recovery time, low fabrication
cost are urgently needed (Wang et al., 2012). This review
focuses on the factors that affect the performances (sensitivity,
selectivity and stability), the methods to improve these sensor
parameters and gas sensing mechanism of ZnO-based gas
sensors.

GAS SENSING PERFORMANCES OF
ZnO-BASED GAS SENSOR

Effects of Morphologies About ZnO
Hierarchical Structures on Gas Sensing
Performances
Three-dimensional (3D) hierarchical structures are generally
recognized as the best candidate for gas sensing performances,
compared with low-dimensional structures (Mo et al., 2008;
Guo, 2016). They are defined as those assembled by zero-
dimensional (0D), one-dimensional (1D) and two-dimensional
(2D) components, which can be further classified into the

following sub-sections. (1) Assembly of 0D structures: Li W. Q.
et al. (2015) reported the synthesis of pure ZnOhollow nanofibers
by electrospinning method. The walls of ZnO nanofibers consist
of the aggregation of many individual nanoparticles, as shown
in Figure 1A. The sensor based on ZnO hollow nanofibers
exhibits excellent sensing performance for acetone detection,
which can be attributed to the large aperture and small diameters
provide higher specific surface area for gas adsorption. Chen
H. et al. (2016) synthesized the uniformly monodispersed ZnO
nanospheres via a simply hydrothermal route. In particular,
all the microparticles on the surface are sphere-shapes and
have a rough surface, as shown in Figure 1B. This unique
porous structure exhibits perfect sensing performance toward
ethanol. (2) Assembly of 1D structures: Lin et al. (2015)
reported the hierarchical ZnO microstructures by hydrothermal
method. The morphology of the sample likes a bunch of
flowers which is made of uniform nanorods, as shown in
Figure 1C. The sensor based on the sample shows a good
response. Chen H. et al. (2016) reported the sea-urchin-like
ZnO nanostructures by hydrothermal method. The sample is
composed of many strips and radiates from the center, as
shown in Figure 1D. The sensor based on the ZnO sample
toward ethanol exhibits high sensitivity and quick response. (3)
Assembly of 2D structures: Gu et al. (2011) reported the porous
flower-like ZnO nanostructures by economical hydrothermal
synthesis combined with subsequent calcination. Calcination
of the precursors produced flower-like ZnO nanostructures
which composed of interconnected porous ZnO nanosheets
with high porosity, as shown in Figure 1E. The as-prepared
flower-like ZnO nanostructures are highly promising candidate
for applications of gas sensors. Han et al. (2016) reported
the ZnO hollow spheres with high crystallinity via a simple
template process, as shown in Figure 1F. The surfaces of
these core-shell spheres are rough, suggesting that polystyrene
sphere (PSS) core was coated by ZnO nanoparticles. The
sensor based on ZnO hollow spheres exhibits good sensing
performances.

In this part, the authors make a brief introduction with respect
to the hierarchical structures. Hierarchical hollow or porous ZnO
structures exhibit excellent properties for gas sensor applications
(Guo et al., 2011, 2012, 2013). These unique hollow structures
with large specific surface area and highly porous structures
can provide excellent channel and “surface accessibility” for
the gas transportation, which is very favorable for facilitating
the interaction of ZnO surface with the gas molecules (Gu
et al., 2011). No matter how complicated the hierarchical
structure, it’s all derived from low dimensional nanostructures
as building blocks. Hence, the investigation about regulating
the structure and morphology is a meaningful and challenge
work.

A summary about factors affecting gas sensing performances
of ZnO-based gas sensors and improvement approaches is shown
in Table 1. The details are described in sections Factors affecting
the sensitivity of ZnO hierarchical structure based Gas sensor,
Factors affecting the selectivity of ZnO hierarchical structure
based Gas sensor, and Factors affecting the long-term stability of
ZnO hierarchical structure based Gas sensor as follows.
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FIGURE 1 | ZnO with different 3D hierarchical structures: (A) Nanofibers

assembly by 0D structures. Reprinted with permission from Li X. et al. (2015).

Copyright (2015) Elsevier Science BV. (B) Nanospheres assembly by 0D

structures. Reprinted with permission from Chen H. et al. (2016). Copyright

(2016) Elsevier Science SA. (C) Flower-like microstructure assembly by 1D

structures. Reprinted with permission from Lin et al. (2015). Copyright (2015)

Elsevier Science SA. (D) Sea-urchin-like ZnO nanostructures assembly by 1D

structures. Reprinted with permission from Chen H. et al. (2016). Copyright

(2016) Elsevier Science SA. (E) Porous flower-like ZnO nanostructures

assembly by 2D structures. Reprinted with permission from Gu et al. (2011).

Copyright (2011) Elsevier Science SA. (F) Core-shell hollow spheres assembly

by 2D structures. Reprinted with permission from Han et al. (2016). Copyright

(2016) Elsevier Science SA.

Factors Affecting the Sensitivity of ZnO
Hierarchical Structure Based Gas Sensor
Recently, numerous reports confirmed that ZnO-based
nanomaterials are promising candidates for the fabrication
of gas sensors (Gu et al., 2013; Wang et al., 2014). Given this, a
number of strategies have been proposed for enhancing the gas
sensitivity. It can be introduced from the following four aspects.

• Modulation of the dimensional and the exposed crystal facet
of their constituting building blocks.

Zhang et al. (2009) synthesized brush-like hierarchical ZnO
nanostructures. The FESEM image (Supplementary Figure 1A)
shows that this structure is composed of 6-fold nanorod arrays

TABLE 1 | A summary about factors affecting gas sensing performances of ZnO

hierarchical structure based gas sensors and improvement approaches.

Main characteristic

indexes which reflect

the performances

Influencing factors and

improvement approaches

References

Sensitivity Modulation of the

dimensional and the

exposed crystal facet of

their constituting building

blocks

Zhang et al., 2009

Enhance the porosity of

hierarchical structures

Lei et al., 2017; Song

et al., 2018

Modification by doping with

noble metals and loading

other n-type or p-type MOS

materials

Lin et al., 2015

Control of grain size Mirzaei et al., 2018

Selectivity Dope with noble metals and

p-type metal oxides

Li T. M. et al., 2015

Lower the operating

temperature by activating

the sensing material under

UV illumination

Chen Y. et al., 2016;

Espid and Taghipour,

2017

Long-term stability Calcination/annealing as the

post-processing treatment

Gu et al., 2011

Reduce the working

temperature of gas sensing

element

Chen Y. et al., 2016

Dope noble metal or

synthesis of mixed oxides

Dey, 2018

grown on the side surface of core nanowires. The central stems
provide its six prismatic facets as growth platforms for branching
of multipod units. The sensor based on these structures shows
high sensitivity and fast response.

• Enhance the porosity of hierarchical structures.

Lei et al. (2017) successfully synthesized hierarchical porous
ZnO microspheres assembled from 2D nanosheets. The high
specific surface area and hierarchical pore structure are beneficial
to increase the adsorption capacity (Supplementary Figure 1B).
Song et al. (2018) reported hierarchical porous ZnOmicroflowers
which composed of ultrathin nanosheets. From the SEM image
(Supplementary Figure 1C), we can see that the surface of
nanosheet has lots of pores. The porous structure is favorable
for gas sensor to promote the inward/outward gas diffusion and
improve gas sensitivity.

• Modification by doping with noble metals and loading other
n-type or p-type MOS materials.

It’s known that noble metals, such as Pt (Rout et al., 2006), Pd
(Yang et al., 2010) and Au (Vallejos et al., 2011) are frequently
used in gas sensing materials due to doping can sensitize the
ZnO electronic and structural properties. Lin et al. (2015)
reported that Au nanoparticles were decorated on the surface
of hierarchical flower-like ZnO microstructures, as shown in
Supplementary Figure 1D. After Au nanoparticle-decoration,
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the specific surface area is much higher than that of the
bare ZnO (Figure 1C). Au nanoparticles can act as catalysts
to accelerate the chemisorption process and greatly improve
the sensitivity. So far, heterostructure composites consisting of
two metal oxides, such as (n-n type) SnO2/ZnO (Park et al.,
2013) and (n-p type) NiO/ZnO, AgO/ZnO (Gandomania et al.,
2014) have been successfully prepared and have improved the
sensitivity. Liu et al. (2017) reported the NiO nanoparticles which
were decorated onto the surfaces of well-dispersed ZnO hollow
spheres (Supplementary Figures 1E,F). Such hollow structures
with rough surfaces endow the NiO/ ZnO composites high
surface areas and abundant active sites, which could facilitate the
gas diffusion toward the entire materials and an improvement of
the sensitivity (Lee, 2009).

• Control of grain size.

Previous research found that sensors which consist of fine
particles of MOS tend to exhibit high sensitivity. Thus, one of
the most important factors affecting the sensitivity is grain size
(D) of the sensor materials in conjunction with the thickness of
the space charge layer (L). Supplementary Figure 1G illustrates
three kinds of schematic models for grain-size effects (Shimizu
and Egashira, 1999). When D >> 2L, the conductance is limited
by Schottky barrier at grain boundaries (grain boundary control).
If D ≥ 2L, the conductance is limited by necks between grains
(neck control). When D < 2L, the conductance is controlled by
grains themselves (grain control). Among three models, grain
control is the most sensitive condition (Mirzaei et al., 2018). The
smaller the grain size, the higher the sensitivity of gas sensor. But,
excessive decrease in grain size can reduce structural stability.

Factors Affecting the Selectivity of ZnO
Hierarchical Structure Based Gas Sensor
Selectivity is the ability of gas sensor to recognize the target
gas in a mixture of other gases. Generally, there are two
approaches for enhancing the selectivity of gas sensor. The
first one is to synthesize a material which is selective to the
specific compound and has very low cross-sensitivity for other
compounds. Moreover, the synergistic effect of two component
system is greater than the production effect of the two elements.
In fact, noble metals and p-type metal oxides have been
extensively applied as good catalysts in the two component
systems to promote selectivity of sensors (Li T. M. et al., 2015).
Another approach to improve the selectivity is to combine
with other methods. Recently, some reports have suggested
that lowering the operating temperature can be realized by
activating the sensing material under UV illumination (Helwig
et al., 2009; Lu et al., 2012; Cui et al., 2015). The possible UV-
activated selective photo catalysis plays an important role in the
enhancement of the selectivity at low temperature (Li X. et al.,
2015). It can be explained based on the selective photocatalytic
oxidation. The adsorbed oxygen would be re-activated by the
photon generated electron-hole pairs, which is conductive to
enhancing their reactivity with target gas. After the target gas
reacted with the adsorbed oxygen on ZnO surface, the donated
electrons would thus decrease resistance of the sensor and finally
reduce the operating temperature (Ho et al., 2015). Chen et al.

reported that the mesoporous hollow ZnO microspheres were
applied to detect volatile organic vapors (VOCs) with the help
of UV LED illumination at lower temperatures (Chen Y. et al.,
2016). The sensor with UV activation at 80◦C shows a much
higher response to ethanol (Supplementary Figure 2A). When
the sensor was operated at 220◦C, the UV illumination became
ineffective. It shows almost same response to ethanol and acetone
(Supplementary Figure 2B). This is because the difference about
catalytic conversion of O2− would have negligible toward them at
220◦C. However, the O− possibly indicated higher preference to
ethanol at 80◦C, resulting in the better selectivity. When metal
doped-ZnO was illuminated by UV light, the sensor had an
appreciable selectivity at low temperature, which was attributed
to the heterostructure was in favor of chemical interactions,
adsorption of gases and changes in electronic bind energies in
the composite (Chen et al., 2008). Espid investigated the photo-
responsive behavior of ZnO/ In2O3 composite sensors (Espid
and Taghipour, 2017). When the semiconductor composites are
irradiated with photons emitted from a UV source, the photo-
generated electron/hole pairs will enhance the conductance of the
sensing layer and improve the selectivity.

Factors Affecting the Long-Term Stability
of ZnO Hierarchical Structure Based Gas
Sensor
Stability is a key parameter for the long-term development of gas
sensors, which determines its application state in the real market.
Generally, the long-term stability refers to the attenuation degree
of gas sensing performances (e.g., sensitivity, selectivity, response
and recovery time) during a certain period of time. When the
sensor is in working state, working conditions including high
temperature and toxic gases can reduce the stability. When
the sensor is in normal storage state, changes of humidity,
fluctuations of temperature in the surrounding atmosphere may
also interfere with the stability of sensor. At present, there is
not a recognized method to improve stability of ZnO-based gas
sensors. Stability can be increased to some extent by calcination/
annealing as the post-processing treatment (Gu et al., 2011) and
reducing the working temperature of gas sensing element. Chen
et al. tested the long-term stability of ZnO-based sensor working
at 80◦C with UV activitation (Chen Y. et al., 2016). The sensor
test lasted 1 month (Supplementary Figure 2C). In the first 2
days, the response values dropped significantly, which might
be related to the “pre-aging” effect. In the next few days, the
sensor response became stabilized and showed a good long-term
stability. It might be because the microstructure of the materials
had little change under low temperature with low-powered UV
activation. In addition, doping noble metal or synthesis of mixed
oxides can also increase the stability of the sensors (Dey, 2018).

GAS SENSING MECHANISM OF ZnO
HIERARCHICAL STRUCTURE BASED GAS
SENSOR

By summarizing the methods to improve the gas sensing
performances in section Gas Sensing Performances of ZnO-
Based Gas Sensor, we find that metal doping is an excellent
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method to promote sufficient reaction between sensing material
and target gas.

The gas sensing mechanism of noble metals doped-ZnO
hierarchical structures based gas sensors is explained as an
example. This process mainly involves two effects: chemical
effect and electronic effect (Zhu and Zeng, 2017). Firstly,
the chemical effect is related to spillover process (Nakate
et al., 2016). Oxygen molecules were adsorbed on the surface
and grain boundary of ZnO, forming the oxygen ions. The
sensitization of noble metals increases the quantity of oxygen
species and accelerates the surface reaction, causing an expansion
of charge depletion layer, which results in a higher baseline
resistance (Supplementary Figures 3A,B). When the reducing
gas is introduced, the catalysis of noble metals may give rise to
the dissociation of target gas molecules. The trapped electrons
are released and transmitted to the conduction band, resulting in
a remarkable decrease in depletion layer with a lower resistance.
Secondly, the electric effect is produced by contact resistance of
noble metal modified ZnO gas sensors (Hosseini et al., 2015).
Electrons from the conduction band of ZnO transfer into noble
metals owing to their work functions are different, forming the
Schottky barriers at noble metal-ZnO interface, which leading
to generate the additional depletion region near ZnO surface
(Supplementary Figure 3C).

Therefore, the enhanced sensing performance was ascribed to
the spillover phenomenon, the formation of Schottky barriers at
the interface between noble metals and ZnO, more introduced
surface active sites and effective surface areas (Hosseini et al.,
2015).

CONCLUSION

A study on gas sensing performances of ZnO hierarchical
structures has been shortly summarized in this review.
Firstly, unique 3D hierarchical architectures with high sensing
capabilities are discussed by modifying surface morphologies.
Small grain size, high effective specific surface area and porosity
are favorable to the enhancement of gas sensing performances.
Therefore, the preparation of the desired 3D hierarchical
structure can lay a solid foundation for the development of gas
sensor. Then, factors that affect the sensitivity, selectivity and
stability of ZnO hierarchical structures based gas sensors and
their improvement strategies are summarized separately. Among
these methods, additive doping and UV-light irradiation are

more effective methods to improve gas sensing performances.
The former can increase charge carrier concentration and
decrease activation energy. The latter can promote the catalytic
oxidation reaction between target gases and oxygen ions, thus
reduce the working temperature and power consumption.
Numerous reports indicate that the integration of metal
doped-oxide and UV excitation is one of the most effective
and workable attempts to achieve high sensor performances.
The composite oxides based sensors under UV illumination
have better charge separation, which benefit for the gas
performances enhancement of the sensors. We hope our
work is helpful for further exploration on higher gas sensing
performances of MOS sensing materials for detecting dissolved
fault gases in transformer oil. Finally, gas sensing mechanism
of noble metal sensitized ZnO is illuminated from the point
of view of chemical effect and electronic effect. Nevertheless,
the authors suggest only a few possible ways to improve
the existed oxygen-absorbed model in recent researchers.
Much effort should be made to hunt for an integration of
different models which was used to explain the gas sensing
reaction.
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