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Linkers play major roles in conjugation chemistry toward the advancement of drug

discovery. Two different series of fluorinated linkers were introduced to the backbone

of a model peptide using solid phase peptide synthesis. These fluorinated linkers have

the potential to conjugate two asymmetrical groups. This has not been done using other

fluorinated linkers. This study deals with application of linkers with S, N, and O terminals

and reports on the investigation of their chemoselectivity and activity for branching

peptide backbones using a chosen model peptide. These fluorinated linkers have unique

properties that will make it possible for a large diversity of bioconjugated chemicals for

different bioapplications to be designed and synthesized.
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INTRODUCTION

Conjugation of molecules is a chemical tool with increasing interest in several scientific areas, such
as pharmaceuticals or materials. Several techniques have been reported in the literature, but many
of them have drawbacks associated with chemoselectivity, tunability, and/or synthetic practicality
(Schilling et al., 2011). On the other hand, the presence of fluorine in a molecule is key for fine-
tuning its properties. The high electronegativity of fluorine has a number of obvious advantages
leading to polarization and imparting a less covalent and more electrostatic character to the
C–F bond. This leads to a relatively large dipole, which interacts with other dipoles in its vicinity,
resulting in a conformational change (O’Hagan, 2008). Furthermore, the presence of fluorine in
the backbone of an organic compound results in some changes such as omniphobicity/lipophilicity
and electrostatic interactions that can dramatically influence its chemical reactivity (O’Hagan, 2008;
Wang et al., 2014). Furthermore, one of the important effects of fluorination is the alteration of
acidity and basicity of the parent compounds (Kobzev et al., 1989; van Niel et al., 1999; Rowley
et al., 2001; Morgenthaler et al., 2007). In the pharmaceutical field, this can intensely influence
binding affinity, pharmacokinetic properties, and bioavailability of a given drug candidate. More
importantly, it must be emphasized that fluorine provides significant impact in pharmaceuticals in
general, not only on fluorinated drugs but also in various health care products. Fluorine scanning
is currently a routine approach for the development of novel fluorinated drug candidates. It is quite
remarkable that three out of the five top-selling pharmaceuticals contain a fluorine atom in its
structure (Wang et al., 2014).
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SCHEME 1 | (A) Perfluoro aromatic linkers that has been previously investigated (B) Types of SNAr nucleophilic reactions (C) Present work.

Pentelute and co-workers have extensively studied the use of
perfluororoaryl linkers for different applications in the peptide
field, such as macrocyclization and/or peptide stapling as well
as site-selective bioconjugation (Spokoyny et al., 2013; Zhang
et al., 2013, 2014, 2016; Zou et al., 2014; Dai et al., 2016;
Lautrette et al., 2016; Lühmann et al., 2016; Evans and Pentelute,
2018). Scheme 1A shows some examples of fluorine containing
linkers such as perfluorobenzene (1), perfluorobiphenyl (2), and
other fluorinated linkers that have been applied and studied in
bioconjugation chemistry (Hynes and Peach, 1986; Spokoyny
et al., 2013; Zhang et al., 2013, 2014; Zou et al., 2014; Dai et al.,
2016; Lautrette et al., 2016; Kalhor-Monfared et al., 2017; Evans
and Pentelute, 2018).

All of the linkers previously described are symmetric
(Scheme 1B), which might limit their application to some extent.
To the best of our knowledge, all of the reported fluorine-
based linkers are connecting mainly through S and in much less
extension N nucleophiles in their/two sides. Finally, all fluorine
based conjugation has been carried out in solution, which could

be less selective and require tedious purification of the final
products (Spokoyny et al., 2013; Zhang et al., 2013, 2014; Zou
et al., 2014; Dai et al., 2016; Lautrette et al., 2016; Kalhor-
Monfared et al., 2017; Evans and Pentelute, 2018). Herein, we
report on the investigation of unsymmetrical fluorine based
linkers in solid phase that enable peptides to be coupled to N,
O, and S containing substituents (Scheme 1C).

This study investigates the reactivity and site specificity
of two new generation of perfluoroaromatic linkers, 2–
6-pentafluoroacetic acid and 2–6-pentafluorothiophenol
anchored to the model peptide H-Gly-Phe-Leu-NH-resin
(Scheme 1C). Both linkers are commercially available, which
could facilitate its use by the scientific community. The
reactivity of these novel scaffolds/linkers under SNAr with
three types of soft-hard nucleophiles such as amines, thiols
and alcohols was studied, which represent the functionality
found in peptides and other biomolecules. Overall, an
unsymmetrical substitution in these fluorine containing linkers is
illustrated.
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SCHEME 2 | Scheme for the preparation of the short peptide and two different linkers L1 and L2.

RESULTS AND DISCUSSION

In addition to the pentafluoro system, the first bidentate linker
contains a carboxylic acid, while the second a thiol (Scheme 2),
which results in diversity in the conjugation. In the first
instance, the short peptide H-Gly-Phe-Leu-NH-Resin was built
up using solid-phase peptide synthesis (SPPS) methodology. 2–
6-Pentafluorobenzoic acid was safely coupled to the tripeptidyl
resin using DIC and OxymaPure to form L1. On the other hand,
2–6-pentafluorothiophenol was incorporated to the iodoacetyl
derivative of the tripeptidyl resin in the absence of any extra
reagent to form L2 (Scheme 2). L1 contained a carboxamide
which is an electron withdrawing group and L2 an alkylthio S
which is an electron donating.

The reactivity of these two series of peptidyl resins in
SNAr reactions with different nucleophiles were investigated.
Both peptidyl resins were left to react with thiols, amines,

phenols, and alcohols, which are the nucleophiles present in the
biomolecules. Firstly, using butylamine, which has a moderate
reactivity in comparison to S nucleophiles, solvent optimization
was studied using N,N’-diisopropylethylamine (DIEA) as a base
and L1 as substrate. The use of polar solvents such N,N-
dimethylformamide (DMF) and N-methylpyrrolidone (NMP)
results in a higher yield when compared to less polar solvents
such as dichloromethane (DCM) and/or toluene (Table 1). This
is possibly due to stabilization of the Meinsheimer complex
formed during the SNAr (Alapour et al., 2015). The best yield
obtained during solvent optimization was 35% in NMP (#2,
Table 1). This can be considered mediocre. Poor conversion was
also experienced when Tris was used as a base. However, use of
the non-nucleophilic DBU, a stronger base thanDIEA, resulted in
yields of 99%. Thus, the optimized conditions were identified as
using NMP as a solvent and DBU as a base with a relatively short
reaction time of 1 h (#6,Table 1). In all cases, 19FNMR confirmed
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TABLE 1 | Investigation of Optimized condition.

# Solvent Base Reaction condition Yielda (%)

1 DMF DIEA RT 30

2 NMP DIEA RT 35

3 DCM DIEA RT 5

4 Toluene DIEA RT –

5 NMP Tris RT 20

6 NMP DBU RT 99

aThe yields are calculated using HPLC.

TABLE 2 | Application of the optimized conditions in nucleophilic reactions.

# Peptide Nucleophile Substitution Yield Reaction time (h)

1 99 1

2 99 1

3 99 1

4 99 1

5 99 1

6 99 1

7 99 24

8 99 24

9 – No

reaction
48

10 – No

reaction
48

(Continued)
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TABLE 2 | Continued

# Peptide Nucleophile Substitution Yield Reaction time (h)

11 99 1

12 99 1

13 99 1

14 99 1

Reagents and base are added 10 times in excess.

that the regioisomer para to the carboxamide group was the only
product obtained (Table 2, Figure 1A).

The same conditions (NMP as a solvent and DBU as a
base) were used for L2 with the same high yields (#2, Table 2).
Piperidine and piperazine as nucleophiles also showed excellent
conversion in all cases in just 1 h (Table 2, #1–6). Selectivity
of the reaction toward para substitution was not affected when
a secondary amine was used (Table 2, #3–6). Furthermore,
when the bis-amine (piperazine) was used, cross-linking was not
detected (Table 2, #5–6).

The reaction with phenol was slower as full conversion was
only reached after 24 h. In both cases, only the substitution in
para position was detected (Table 2, #7 and 8). On the other
hand, no product was observed with aliphatic alcohols (ROH),
even after 48 h (Table 2, #9 and 10).

Finally, both aliphatic and aromatic S containing nucleophiles
resulted in triple substitutions in both ortho and para positions
(Table 2, #11–14). Stabilization of the Meisenheimer complex
through resonance of the negative charge at the sulfur on the para
position of the thioether moiety enhanced reactivity of the linker-
peptide complex to nucleophilic substitution (Birchall et al., 1967;
Langille and Peach, 1972; Zou et al., 2014; Alapour et al., 2018). In

this case, this reactivity was observed by substitution up to three
positions in both groups of I and II.

A milder base, DIEA was also applied in the investigation of
the reaction of 3-methylbutan-1-thiol and L1 for S substitution.
However, a mixture of mono-ortho, mono-para and di-para
and ortho products were obtained. This was confirmed via
19F NMR and LCMS and can be seen in Figure 1B and
Figure 1C, respectively. Using a stronger base, DBU, only a
single trisubstituted product at the ortho and para positions were
observed (Figure 1B). However, the use of DIEA as a weak base
for this fast SNAr allowed us to have a better understanding of
the present sequence in this reaction. According to the HPLC
profile, it seems that strong nucleophiles such as RSH starts
with monosubstitution at either the para or ortho positions, and
proceeds to disubstitution at the ortho and para positions as
the reaction continues. The absence of a trisubstituted product
indicates that DIEA is not strong enough to facilitate triple
substitution. This reaction also monitored without using any
base, however no product was detected in absence of base.

Based on the report by Pentalute et al. having a S group
can activate the para position and increase the reactivity of
the fluorolinker for further substitution (Lühmann et al., 2016).
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FIGURE 1 | (A) Comparison of the 19F NMR of the product of the reaction between piperidine and benzenethiol as a reactant with the peptide linker L1 using DBU as

a base and NMP as solvent (room temp., 1 h) and the starting material L1; (B). Comparison of 19F NMR of the product of the reaction of 3-methyl-1-butanethiol with

starting material L1 in two different bases (DBU and DIEA) using NMP as a solvent (room temp., 1 h); (C). LC-MS of the reaction of methyl-1-butanethiol with the

starting material L1 in NMP and DIEA as a base (acetonitrile:water step gradient from 30 to 95% in 15min and held at 95% acetonitrile in water for 5min, then flushed

with 30% acetonitrile in water for 5min).
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SCHEME 3 | The reactivity of different nucleophiles.

However, based on our experiments, the same reactivity
was observed with both L1 and L2, indicating that electron
withdrawing groups such as the carbonyl group or electron
donating groups such as thiols do not affect the reactivity
or selectivity of the reaction. According to the mechanism
(Scheme 3), the Meisenheimer complex can be stabilized by the
delocation of the negative charge on either S in L1 or oxygen of
the carbonyl group in L2. This explains why both L1 and L2 show
the same reactivity toward different nucleophiles.

THEORETICAL CALCULATIONS

To elucidate the electronic effect on perfluorobenzene (Group I)
and perfluorobiphenyl (Group II) conjugated on the tripeptide
during the different nucleophilic substitution reactions, a density
functional theory (DFT) geometry optimization calculation
performed in the Gas phase was carried out. DFT in the
Gaussian09 program package (Frisch et al., 2009) employing
the B3LYP (Becke three parameters Lee–Yang–Parr) exchange
correlation functional, which combines the hybrid exchange
functional of Becke (1988) with the gradient-correlation
functional of Lee et al. (1988) and the 6-31G(d) basis set was used.
The frequency calculations afforded no negative Eigen values
indicating stability of the molecule. After optimization of the
molecules, their atomic charges were calculated using natural
bond orbital (NBO) analysis, another efficient tool for studying
hyperconjugative interactions, intermolecular charge transfer,
and electron density transfer (EDT), which are fundamentally
linked for calculations of atomic charges (Drissi et al., 2015; Md
Abdur Rauf et al., 2015; El-Faham et al., 2016; Kouakou Nobel
et al., 2017).

In the present work, NBO analysis was performed on all
derivatives including one nucleophilic substitution on Group I
and II, and comparison was made on the basis of the charge
carried by the fluorine atom (Supplementary Data). Table 3

shows the electronic charges present on fluorine in all molecules.
As seen fromTable 3, the fluorine atom inGroup I and II carries a
negative charge due to high electronegativity of the fluorine atom
and are quite similar upon comparison of Group I and II, which
indicates identical reactivity toward nucleophilic substitution at
the para position (as confirmed by 19F NMR).

Due to the multiple substitution at the ortho and para
positions in case of thiol, comparison of charge carried by
fluorine after the first substitution was also studied (Table 3).
To ease the explanation, the fluorine atom in the molecule was
labeled as 1-F, 2-F, 3-F, 4-F, and 5-F. As explained by NMR
studies, the substitution of 3-F by nucleophiles was observed
which changed the atomic charges on remaining fluorine atoms
in both cases. It was observed that after substitution by amines
as nucleophile in the case of Group I and II, the charges carried
by remaining fluorine atoms attain a more negative value i.e.,
∼-0.320 to −0.330 from that of −0.304 to −0.322, which may
be the reason for making the next substitution difficult under
the same reaction conditions leading to the formation of only
mono-substituted product.

On the other hand, when phenol was used as a nucleophile, a
similar increase of charge on fluorine was witnessed (as explained
above), and hence explained the mono-substituted product. In
the case of substitution by thiol at the para position, the charge
carried by the rest of the fluorine atoms (# 6, 7, 13, and 14) is
still comparable to that of Group I and II (# 1 and 8) especially
for 1-F and 5-F, respectively, explaining the formation of the
three substituted products (#6, 7, 13, and 14), irrespective of the
nucleophile being aliphatic or aromatic as a similar conclusion
was drawn in both cases.

CONCLUSION

Using a solid phase approach, the reactivity and chemoselectivity
of fluorine containing linkers for peptide conjugation was
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TABLE 3 | Charges carried by the fluorine atoms in molecules calculated using NBO calculations.

X = -CO-Gly-Phe-Leu-NH2, Group I

X = -S-CH2-CO-Gly-Phe-Leu-NH2, Group II

Entry 1-F

(1-C)

2-F

(2-C)

3-F

(3-C)

4-F

(4-C)

5-F

(5-C)

–

(6-C)

1 Group I −0.317

(0.371)

−0.306

(0.297)

−0.301

(0.319)

−0.304

(0.299)

−0.304

(0.393)

–

(−0.255)

2 −0.322

(0.376)

−0.330

(0.312)

–

(0.081)

−0.325

(0.308)

−0.309

(0.404)

–

(−0.283)

3 −0.323

(0.371)

−0.321

(0.337)

–

(0.072)

−0.322

(0.323)

−0.310

(0.396)

–

(−0.267)

4 −0.323

(0.371)

−0.321

(0.337)

–

(0.071)

−0.322

(0.324)

−0.310

(0.396)

–

(−0.265)

5 −0.319

(0.369)

−0.307

(0.333)

–

(0.197)

−0.307

(0.323)

−0.307

(0.390)

–

(−0.254)

6 −0.320

(0.369)

−0.309

(0.363)

–

(−0.318)

−0.316

(0.358)

−0.308

(0.389)

–

(−0.241)

7 −0.320

(0.368)

−0.310

(0.359)

–

(−0.321)

−0.308

(0.364)

−0.308

(0.389)

–

(−0.241)

8 Group II −0.314

(0.360)

−0.306

(0.298)

−0.302

(0.316)

−0.305

(0.299)

−0.305

(0.368)

–

(−0.347)

9 −0.319

(0.371)

−0.326

(0.306)

–

(0.080)

−0.330

(0.314)

−0.311

(0.374)

–

(−0.372)

10 −0.320

(0.360)

−0.321

(0.338)

–

(0.069)

−0.323

(0.324)

−0.311

(0.371)

–

(−0.355)

11 −0.320

(0.361)

−0.321

(0.339)

–

(0.068)

−0.323

(0.324)

−0.311

(0.371)

–

(−0.354)

12 −0.316

(0.358)

−0.307

(0.334)

–

(0.193)

−0.308

(0.326)

−0.308

(0.365)

–

(−0.343)

13 −0.318

(0.356)

−0.310

(0.364)

–

(−0.322)

−0.316

(0.359)

−0.309

(0.363)

–

(−0.332)

14 −0.318

(0.355)

−0.311

(0.361)

–

(−0.323)

−0.310

(0.367)

−0.309

(0.363)

–

(−0.331)

studied. Using DBU as a base and NMP as solvent, primary
and secondary amines and phenols render the mono substituted
product in the para position in both linkers. On the other
hand, when thiols are used as the nucleophile, the tri-substituted

product (at the ortho and para positions) takes place. Using
thiols in the presence of a weaker base such as DIEA, a
mixture of the mono- (ortho or para) and di-substituted
(ortho and para) were obtained. The experimental data was
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corroborated further with theoretical calculations. Natural
atomic charges were calculated and were also found to be
consistent in explaining the experimental results. These two
linkers could be used for the conjugation of amines and
phenols and for the preparation of dendrimers in the case of
thiols.
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