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(±)-Peniorthoesters A and B (±1 and ±2), two pairs of unprecedented spiro-orthoester

enantiomers with a 1,4,6-trioxaspiro[4. 5]decane-7-one unit, were obtained from

Penicillium minioluteum. Their structures were determined by spectroscopic methods,

X-ray diffraction analyses, and ECD calculations. (±)-Peniorthoesters A and B are the first

examples of spiro-orthoester enantiomers, and they represent the first spiro-orthoesters

originating from fungi. All compounds showed potential inhibitory activities comparable to

dexamethasone against NO production with IC50 values ranging from 14.2 to 34.5µM.
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INTRODUCTION

Orthoesters, a special functional group characterized by three alkoxy groups attached to a single
carbon atom, are unusual structural subunits in natural products (Liao et al., 2009). Natural
occurring orthoesters include several major types, such as daphnane diterpenoid orthoesters (He
et al., 2002), limonoid orthoesters (Roy and Saraf, 2006), steroid orthoesters (Steyn and van
Heerden, 1998), and coumarinoid orthoesters (Santana et al., 2004). In our previous study on
the plant Wikstroemia chamaedaphne, three new daphnane type diterpenoids with orthoester
group were isolated (Guo et al., 2015). A literature investigation revealed that most of these
orthoesters originate from plants, and only a few originate from fungi, such as novofumigatonin,
a meroterpenoid orthoester from Aspergillus novofumigatus (Rank et al., 2008). As a special class
of natural products, orthoesters have attracted great attention due to their diverse structures and
biological properties (Liao et al., 2009; Bourjot et al., 2014; Li et al., 2015; Liu et al., 2017).

Fungi have historically played an important role in drug discovery. The genus Penicillium has
been shown to be a rich source of structurally unique and biologically active secondary metabolites
(Meng et al., 2016; Sun et al., 2016; Luo et al., 2017) and many metabolites from Penicillium
are clinically used drugs with penicillin as a representative compound. Previous studies on the
secondary metabolites of Penicillium minioluteum have resulted in the identification of scores
of bioactive metabolites, including isomeric furanones with cytotoxic activities against HeLa cell
lines (Tang et al., 2015), sesquiterpene-conjugated amino acids with cytotoxic activities against
HepG2 cells (Ngokpol et al., 2015), and hybrid polyketide-terpenoids (Iida et al., 2008). This fungus
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was also used to produce clovane derivatives, which are the
raw materials for the synthesis of rumphellclovane A (Gontijo
de Souza et al., 2012), and an enzyme from this fungus was
used in the bioconversion (Kmiecik and Zymanczyk-Duda,
2017). During our ongoing search for structurally unique and
biologically interesting constituents from fungi (Zhu et al., 2015;
Chen et al., 2017; Zhou et al., 2017), P. minioluteum, obtained
from China General Micro-biological Culture Collection Center
(CGMCC), was phytochemically investigated, and two pairs of
new orthoesters (Figure 1, compounds±1 and±2) were isolated
along with their biosynthetic intermediate, sclerotinin A (3)
(Xiao et al., 2009). The structures and absolute configurations
of (±)-1 and (±)-2 were determined by a combination of
spectroscopic methods, X-ray diffraction analyses, and ECD
calculations. (±)-Peniorthoesters A (±1) and B (±2) are the first
examples of spiro-orthoester enantiomers and represent the first
spiro-orthoesters originating from fungi.

MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were determined in acetonitrile
and dichloromethane on a PerkinElmer 341 polarimeter.
UV spectra were obtained on Varian Cary 50 spectrometer. ECD
spectra were obtained with a JASCO J-810 spectrometer. IR
spectra were acquired on a Bruker Vertex 70 instrument. NMR
spectra were recorded on Bruker AM-400 spectrometers, and
the 1H and 13C NMR chemical shifts were referenced to the
solvent or solvent impurity peaks for CD3Cl at δH 7.26 and δC
77.20. HRESIMS data were acquired in the positive-ion mode
on a Thermo Fisher LC-LTQ-Orbitrap XL spectrometer. The
crystallographic experiments were performed on a Bruker APEX
DUO diffractometer equipped with graphite-monochromated
Cu Kα radiation (λ = 1.541 78 Å). Semi-preparative HPLC was
carried out on an instrument consisting of an Agilent 1,220
controller, an Agilent 1,220 pump, an Agilent UV detector, with
a reversed-phased C18 column (5µm, 10 × 250mm, Welch
Ultimate XB-C18), an Ultimate SiO2 column (5µm, 10 ×

250mm, Welch Materials, Inc.), and a Chiralpak IC column
(5µm, 4.6 × 250mm, Daicel Chiral Technologies Co., Ltd.,
China). Chromatography coloums (CC) were performed on
silica gel (200–300 mesh; Qingdao Marine Chemical, Inc.,
Qingdao, China), Sephadex LH-20 (40–70µm, Amersham
Pharmacia Biotech AB, Uppsala, Sweden), and ODS (50µm,
Merck, Germany). Thin-layer chromatographies (TLC) was
performed with RP-C18 F254 plates (Merck, Germany) and silica
gel 60 F254 (Yantai Chemical Industry Research Institute).

Fungal Material and Fermentation
The strain in this work was bought from China General Micro-
biological Culture Collection Center (CGMCC). A voucher
Specimen was preserved in the herbarium of Huazhong
University of Science and Technology, China. The fungal strain
was cultured on potato dextrose agar (PDA) at 28◦C for 8 days
to prepare the seed culture. Then the strain was inoculated into
200 Erlenmeyer flasks (1 L each) which had previously been
sterilized by autoclaving. Each flask contained 250 g rice and

200mL distilled water. The flasks were incubated at 20◦C for 26
days.

Extraction and Isolation
The fermented rice substrate was extracted six times in
95% aqueous EtOH at room temperature. The 95% aqueous
EtOH extracts were concentrated under vacuum to afford
a residue (1.5 kg). The residue was suspended in H2O and
successively partitioned with petroleum ether and EtOAc. The
EtOAc partition fraction (630.0 g) was subjected to a silica gel
chromatograph column (CC) using petroleum ether–EtOAc and
EtOAc–MeOH gradient elution to give five fractions. Fraction
2 (20.0 g) was chromatographed on C18 reversed phase (RP-
18) silica gel CC (gradient elution of MeOH–H2O, 20:80–
100:0) to give seven subfractions, named Fr. 2A−2G. Fr.2F was
successively separated via Sephadex LH-20 CC (CH2Cl2-MeOH,
1:1) and further purified by RP-C18 HPLC to afford compounds 1
and 2 (MeCN–H2O, 45:55, 3.5 ml/min, 1 at tR 53.2min, 6.0mg;
2 at tR 56.7min, 5.1mg). Subsequently, the separation of 1 by
chiral HPLC using a Daicel IC column eluting with isopropanol–
n-hexane (5:95) afforded (+)-1 (tR 28.0min, 2.1mg) and (–)-1
(tR 30.1min, 2.0mg). The enantiomers (+)-2 (tR 8.2min, 1.6mg)
and (–)-2 (tR 11.1min, 2.7mg) were also obtained by chiral
HPLC using a Daicel IC column eluting with isopropanol–n-
hexane (10:90).

Compounds (±)-1: white powder; [α] ±0 (c 0.4, MeCN); UV
(MeCN) λmax (log ε) 216 (4.50), 259 (4.23), 329 (4.04) nm; IR
(KBr) νmax 3,435, 2,982, 2,936, 1,661, 1,612, 1,456, 1,420, 1,383,
1,341, 921, 883, 809, 753 cm−1; 1HNMR (CDCl3, 400MHz) and
13C NMR (CDCl3, 100 MHz) data, see Table 1; HRESIMS m/z
307.1538 [M+H]+ (calcd for C17H23O5, 307.1545).
(+)-1: white amorphous powder; [α]25D +37 (c 0.1, CH2Cl2);
ECD (MeCN) 229 (1ε +1.63), 254 (1ε +4.75), 325 (1ε −0.99)
nm.
(–)-1: white amorphous powder; [α]25D −36 (c 0.1, CH2Cl2);
ECD (MeCN) 229 (1ε −1.66), 254 (1ε −4.34), 325 (1ε +1.23)
nm.
Compounds (±)-2: white powder; [α]25D ±0 (c 0.3, MeCN); UV
(MeCN) λmax (log ε) 216 (4.60), 259 (3.99), 329 (3.71) nm; IR
(KBr) νmax 3,435, 2,980, 2,932, 1,669, 1,612, 1,456, 1,421, 1,379,
1,339, 920, 881, 810, 763 cm−1; 1H NMR (CDCl3, 400 MHz)
and 13C NMR (CDCl3, 100MHz) data, see Table 1; HRESIMS
m/z 307.1534 [M+H]+ (calcd for C17H23O5, 307.1545).
(+)-2: white amorphous powder; [α]25D +30 (c 0.1, CH2Cl2);
ECD (MeCN) 224 (1ε +2.37), 258 (1ε +4.64), 319 (1ε −0.84)
nm.
(–)-2: white amorphous powder; [α]25D −30 (c 0.1, CH2Cl2);
ECD (MeCN) 224 (1ε −2.42), 258 (1ε −6.58), 319 (1ε +1.60)
nm.

Computational Details
The crystal structure of 9R,10S,11S-1, and 9R,10R,11R-2 were
optimized at the B3LYP/6-31G(d) level in acetonitrile with
the IEFPCM solvation model using Gaussian 09 program.
The harmonic vibrational frequencies were calculated to
confirm the stability of the optimized structure. The electronic

Frontiers in Chemistry | www.frontiersin.org 2 December 2018 | Volume 6 | Article 605

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Liu et al. (±)-Peniorthoesters A and B

FIGURE 1 | Structures of (±)-peniorthoesters A (±1) and B (±2).

circular dichroism (ECD) spectrum were calculated using the
TDDFT methodology at the LC-wPBE/6-311++G(d,p) level
with acetonitrile as solvent by the IEFPCM solvation model
implemented in Gaussian 09 program. The ECD spectra was
simulated using a Gaussian function with a bandwidth σ of
0.3 eV. The UV correction was applied to generate the final
spectra (Zhu, 2015).

Single-Crystal X-ray Diffraction Analysis
and Crystallographic Data
Crystallographic data of compound 1 (CCDC 1840165):
C17H22O5, M = 306.34, monoclinic, T = 297(2) K, λ = 1.54178
Å, colorless platelet (crystallized from distilled water at room
temperature), size 0.12 × 0.10 × 0.10 mm3, a = 11.7937(4) Å,
b = 32.5593(12) Å, c = 8.1659(3) Å, α = 90.00◦, β = 91.95(2)◦,
γ = 90.00◦, V = 3,133.84(19) Å3, space group P21/c, Z = 8, Dc
= 1.299 g/cm3, µ(CuKα) = 0.782 mm−1, F(000) = 1312, 48082
reflections and 5,729 independent reflections (Rint = 0.0528)
were collected in the θ range of 2.71◦ ≤ θ ≤ 69.99◦ with index
ranges of h(−14/14), k(−39/39), l(−9/9), completeness θmax =
98%, data/restraints/parameters 5,729/0/412. Largest difference
peak and hole = 0.257 and −0.184 e Å−3. The final R1 values
were 0.0489 (I > 2σ (I)). The finalwR(F2) values were 0.1364 (I >

2σ (I)). The finalR1 values were 0.0521 (all data). The finalwR(F2)
values were 0.1381 (all data). The goodness of fit on F2 was 1.045.

Crystallographic data of compound 2 (CCDC 1840166):
C17H22O5, M = 306.34, monoclinic, T = 297(2) K, λ = 1.54178
Å, colorless platelet (crystallized from distilled water at room
temperature), size 0.12 × 0.10 × 0.10 mm3, a = 7.4709(2) Å, b
= 8.9377(12) Å, c = 13.5720(3) Å, α = 92.43◦, β = 100.25(2)◦,
γ = 113.76◦, V = 809.60(19) Å3, space group P-1, Z = 2, Dc
= 1.257 g/cm3, µ(CuKα) = 0.757 mm−1, F(000) = 328, 14,855
reflections and 2,814 independent reflections (Rint = 0.0374)
were collected in the θ range of 5.45◦ ≤ θ ≤ 70.86◦ with index
ranges of h(−8/7), k(−10/10), l(−16/16), completeness θmax =
95%, data/restraints/parameters 2,814/0/207. Largest difference
peak and hole = 0.232 and −0.241 e Å−3. The final R1 values
were 0.0588 (I > 2σ (I)). The finalwR(F2) values were 0.1750 (I >

2σ (I)). The finalR1 values were 0.0647 (all data). The finalwR(F2)
values were 0.1855 (all data). The goodness of fit on F2 was 1.076.

Determination of No Production
RAW 264.7 cells were obtained from the Boster Biological
Technology Co., Ltd (Wuhan, China) and maintained in DMEM
containing 10% heat-inactived fetal bovine serum (FBS) (Gibco
BRL Co, Grand Island, NY, United States) at 37◦C in humidified
incubator containing 5% CO2. All tested compounds were
dissolved in DMSO (the final concentration of DMSO was

Frontiers in Chemistry | www.frontiersin.org 3 December 2018 | Volume 6 | Article 605

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Liu et al. (±)-Peniorthoesters A and B

TABLE 1 | 1H and 13C NMR Spectroscopic Data for 1 and 2 (in CDCl3).

No. 1 2

δC type δH (mult., J in Hz) δC type δH (mult., J in Hz)

1 137.8 C 137.6 C

2 123.5 C 123.6 C

3 145.7 C 145.7 C

4 123.7 C 123.8 C

5 158.8 C 158.7 C

6 103.5 C 103.7 C

7 170.3 C 170.2 C

8 124.0 C 124.0 C

9 38.4 CH 3.31 q (7.1) 38.5 CH 3.33 q (7.0)

10 81.7a CH 3.91 dq (8.5, 6.1)a 81.1a CH 3.84 dq (8.1, 6.2)a

11 79.3a CH 4.18 dq (8.5, 6.1)a 79.8a CH 4.36 dq (8.1, 6.2)a

12 14.7 CH3 2.17 s 14.6 CH3 2.17 s

13 17.5 CH3 2.25 s 17.4 CH3 2.24 s

14 11.9 CH3 2.20 s 11.9 CH3 2.20 s

15 16.9 CH3 1.30 d (7.1) 17.2 CH3 1.30 brd (6.3)

16 16.7a CH3 1.47 d (6.1)a 16.7a CH3 1.30 brd (6.1)a

17 18.4a CH3 1.25 d (6.1)a 18.6a CH3 1.39 d (6.1)a

HO-5 11.41 s 11.41 s

a Interchangeable assignments between the two CHCH3 groups.

FIGURE 2 | Key 1H−1H COSY and HMBC correlations of 1.

<0.25% in assay). RAW 264.7 cells were seeded into 48-well
plates (1 × 105cells/well) for 24 h and then pretreated with
different concentrations (1–40 µM) of test compounds. After
being incubated for 3 h, the cells were stimulated with 100 ng/ml
LPS (final concentration) for another 24 h. Dexamethasone was
used as the positive control in the experiment. NO content
in the supernatant was measured using Griess reagent. The
absorbance at 540 nm was measured on a microplate reader. All
the experiments were performed in three independent replicates.

Cytotoxic Activity
Cell lines were cultured in RPMI-1640 or DMEM medium
(HyClone, USA), supplemented with 10% fetal bovine serum

(HyClone, USA) at 37◦C in a humidified atmosphere with 5%
CO2. For cell viability assay, cells were plated into 96-well plates
in 50 µl of medium and then compounds were serially diluted
in medium and delivered to the cells as 2 × solutions in 50 µl
of medium. After 48 h, cell viability was detected by a CCK-8 Kit
(Dojindo,Japan) according to the instruction. Growth relative to
untreated cells was calculated (positive control, anticancer drug
VP16), and this data was used for the dose-response curve, the
IC50 (50% inhibiting concentration) of compounds to each cell
lines were calculated by SPSS.

RESULTS AND DISCUSSIONS

Compound 1 was isolated as a white powder. Its UV spectrum
exhibited absorption maxima at 216 and 260 nm. Its IR spectrum
indicated the presence of an OH functionality (3,435 cm−1),
a conjugated carbonyl group (1,661 cm−1), and an aromatic
ring (1,612 and 1,456 cm−1). The molecular formula of 1 was
determined to be C17H22O5 by HRESIMS with an [M+H]+ ion
peak at m/z 307.1538 (calcd for C17H23O5, 307.1545), implying
seven degrees of unsaturation. The 1H NMR spectroscopic data
of 1 (Table 1) revealed the presence of two oxygenated methines
[δH 4.18 (1H, dq, J = 8.5, 6.1Hz, H-11) and 3.91 (1H, dq, J = 8.5,
6.1Hz, H-10)], one sp3 methine [δH 3.31, 1H, q, J = 7.1Hz, H-9],
and six methyl groups [δH 1.47 (d, J = 6.1Hz, H3-16), 1.30 (d, J
= 7.1Hz, H3-15), 1.25 (d, J = 6.1Hz, H3-17), 2.17 (s, H3-12),
2.20 (s, H3-14), and 2.25 (s, H3-13)]. The 13C NMR spectrum
of 1 exhibited signals assignable to a conjugated carbonyl (δC
170.3), a hexa-substituted benzene ring [δC 158.8, 145.7, 137.8,
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123.7, 123.5, and 103.5], one oxygenated quaternary carbon (δC
124.0), six methyl groups and three methines (including two
oxygenated ones). The above analyses confirmed the presence
of an ester carbonyl group and a hexa-substituted benzene ring,
which account for five degrees of unsaturation, indicating the
presence of two additional rings. With the aid of the HSQC
spectrum, all protons were unambiguously assigned to their
respective carbons.

The planar structure of 1was elucidated on the basis of 1H–1H
COSY and HMBC experiments (Figure 2). The HMBC spectrum
of 1 displayed correlations fromH3-14 to C-3, C-4, and C-5; from
H3-13 to C-2, C-3, and C-4; from H3-12 to C-1, C-2, and C-3;
and from H-9 to C-1, and C-6, which together with the HMBC
correlations from the OH to C-4, C-5, and C-6 constructed the
hexa-substituted benzene ring. In addition, two spin systems of
H3-17/H-11/H-10/H3-16 and H-9/H3-15 were established from
the 1H–1H COSY spectrum. Therefore, the HMBC correlations
from H-9 to C-1, C-6, and C-8 and from H3-15 to C-1, C-8,
and C-9 suggested the C-15/C-9/C-8 fragment was connected
to the benzene ring via C-9. Moreover, the ester carbonyl (δC
170.3) was connected to C-6 based on the chemical shifts of C-
6 (δC 103.5), C-1 (δC 137.8), and C-3 (δC 145.7). Combined
with the chemical shifts of C-10 (δC 81.7) and C-11 (δC 79.3),
the C-17/C-11/C-10/C-16 fragment was proposed to be a 2,3-
butanediol unit, which should be linked with C-8 and form a
4,5-dimethyl-1,3-dioxolane moiety. Finally, a lactone ring was
proposed between C-7 and C-8 to satisfy the above deduced
tricyclic ring system as well as the chemical shift of C-8 (δC 124.0).
This planar structure satisfied all of the correlations observed in
the 2D NMR spectra and the chemical shifts in the 1D NMR
spectra.

ANOESY experiment was performed on 1, but no interactions
useful for determining the relative configuration were observed.
Unfortunately, the relative configuration of H-10 and H-11 could
also not be determined from their coupling constants because
they were located on a five-membered ring. To confidently
assign the configuration of 1, we tried to crystallize it so
we could use X-ray single-crystal analysis. After a number of
attempts, a high-quality single-crystal of 1 was finally obtained
from a mixture of methyl alcohol and water. The X-ray
crystallography data (CCDC 1840165) obtained with Cu Kα

radiation confirmed the structure of 1 (Figure 3). However,
because it has a centrosymmetric monoclinic space group of
chiral P21/c, indicating the crystal is racemic, the absolute
configuration of 1 could not be determined. After analyses by
using various types of chiral columns, the racemic nature of this
solution was further confirmed by the presence of two peaks
in the HPLC chromatogram acquired using a chiral Daicel IC
column (Figure 4). Finally, compounds (+)-1 and (–)-1 were
successfully obtained, and they showed specific rotations with
opposite signs {(+)-1: [α]20D +37 (c 0.1, CH2Cl2); (–)-1: [α]20D -36
(c 0.1, CH2Cl2)}. In addition, the ECD spectra of (+)-1 and (–)-1
displayed similar signal intensities but mirror-image Cotton
effects (Figure 5).

The absolute configurations of the two enantiomers of (±)-
1 were further determined by comparing their experimental
ECD spectra with those predicted by time-dependent density

FIGURE 3 | X-ray structures of 1 and 2.

FIGURE 4 | Chiral HPLC separation profiles of (±)-1 and (±)-2.

functional theory (TDDFT) calculations at the B3LYP/6-31G(d)
level. As shown in Figure 5, the calculated ECD curve of
9R,10S,11S-1 displayed good agreement with the experimental
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FIGURE 5 | The experimental ECD spectra of (±)-1 and (±)-2 and the cal-culated ECD curves.

FIGURE 6 | Proposed biosynthetic pathway of 1 and 2.
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curve of (–)-1. Therefore, the absolute configurations of (+)-
1 and (–)-1 were elucidated as 9S,10R,11R and 9R,10S,11S,
respectively.

Compound 2, obtained as a white powder, possesses the same
molecular formula (C17H22O5) as that of compound 1 based
on its HRESIMS data with an [M + H]+ ion peak at m/z
307.1534 (calcd for C17H23O5, 307.1545). A detailed comparison
of its NMR spectroscopic data with those of 1 indicated that
the main differences between 1 and 2 were tiny changes in
the chemical shifts of C-10 and C-11 as well as their protons
[δC 81.1 (C-10), 79.8 (C-11); δH 3.84 (1H, dq, J = 8.1, 6.2Hz,
H-10), 4.36 (1H, dq, J = 8.1, 6.2Hz, H-11) in 2; δC 81.7
(C-10), 79.3(C-11); δH 3.91 (1H, dq, J = 8.5, 6.1Hz, H-10),
4.18 (1H, dq, J = 8.5, 6.1Hz, H-11) in 1]. These findings,
combined with the 2D NMR data, implied that 2 has the same
planar structure as 1, and it should be a stereoisomer of 1. The
planar structure of 2 was further confirmed by analyses of its
1H–1H COSY and HMBC spectra. Unfortunately, the NOESY
experiment of 2 also did not show any NOESY correlations
useful in for the elucidation of the relative configuration of
compound 2.

Similarly, after many attempts, we finally determined the
relative configuration of compound 2 by X-ray crystallography
analysis with Cu Kα radiation (Figure 3, CCDC 1840166). This
single-crystal is triclinic with space group of chiral P-1, also
indicating it is racemic. Compound 2 was then separated into a
pair of enantiomers by a method similar to what was used for
compound 1 (Figure 4), and the enantiomers showed opposite
optical rotations {(+)-2: [α]20D +30 (c 0.1, CH2Cl2); (–)-2: [α]20D -
30 (c 0.1, CH2Cl2)} and mirror image ECD curves (Figure 5).
The absolute configurations of the two enantiomers of 2 were
further determined by ECD calculations. As shown in Figure 5,
the calculated ECD curve of 9R,10R,11R-2 closely resembled the
experimental curve of (–)-2, and the absolute configurations of
(+)-2 and (–)-2 were elucidated as 9S,10S,11S and 9R,10R,11R,
respectively.

To the best of our knowledge, (±)-1 and (±)-2 are the
first examples of spiro-orthoester enantiomers with an unusual
1,4,6-trioxaspiro[4.5]decane-7-one unit, and they represent the
first spiro-orthoesters originating from fungi. The proposed
biosynthetic pathway of 1 and 2 was outlined in Figure 6.
First, the condensation of acetyl-CoA and four molecules
of malonyl-CoA by a polyketide synthase formed i, which
underwent cycloaddition and methylations to form precursor
sclerotinin A (3). Then, sclerotinin A underwent isomerization
and hydrolytic cleavage to afford iv, which further formed
vi by a H+ mediated double bond isomerization. After that,
intermediate vii was produced by an aldol condensation,
which further generated the key intermediates viii and x via
an esterification reaction with 2R,3R-butanediol and 2S,3S-
butanediol (Ji et al., 2011), respectively. Finally, compounds
(±)-1 and (±)-2were formed via condensation and lactonization
reactions.

Compounds (±)-1 and (±)-2 were tested for their inhibitory
activities against NO production in lipopolysaccharide
(LPS)-induced RAW264.7 cells. The results revealed that (+)-1,
(–)-1, (+)-2, and (–)-2 exhibited potential inhibitory activities

TABLE 2 | Inhibition of LPS-Induced NO Production.

Compound IC50 (µM)

(+)-1 34.5

(–)-1 29.6

(+)-2 23.5

(–)-2 14.2

Dexamethasone 27.1

with IC50 values of 34.5, 29.6, 23.5, and 15.2 µM, respectively
(Table 2). Interestingly, for both pairs of enantiomers, the
levorotatory compounds (–1 and –2) showed better inhibitory
effects than the dextrorotatory compounds (+1 and +2).
Moreover, both (+)-2 and (–)-2 showed better inhibitory effects
than those of (+)-1 and (–)-1 as well as the positive control,
dexamethasone. We also tested cytotoxicity of these compounds,
but even at the concentration of 40µM, none of them showed
cytotoxicity activity.

CONCLUSION

In conclusion, two pairs of new spiro-orthoester enantiomers,
(±)-peniorthoesters A and B (±1 and ±2), were isolated
from P. minioluteum. These compounds, characterized by
an unexpected 1,4,6-trioxaspi-ro[4.5]decane-7-one unit, are
the first examples of spiro-orthoester enantiomers, and they
represent the first spiro-orthoesters originating from fungi.
All of them showed potential inhibitory activities against NO
production in activated macrophages with IC50 values ranging
from 14.2 to 34.5 µM, which are comparable to the positive
control, dexamethasone. Their highly functionalized structures
and promising biological activities will attract considerable
attention from the pharmacological, synthetic, and biosynthetic
communities.
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