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Carbon monoxide (CO) is a highly toxic gas to many living organisms. However, some

microorganisms are able to use this molecule as the sole source of carbon and energy.

Soil bacteria such as the aerobic Oligotropha carboxidovorans are responsible for

the annual removal of about 2x108 tons of CO from the atmosphere. Detoxification

through oxidation of CO to CO2 is enabled by the MoCu-dependent CO-dehydrogenase

enzyme (MoCu-CODH) which—differently from other enzyme classes with similar

function—retains its catalytic activity in the presence of atmospheric O2. In the last

few years, targeted advancements have been described in the field of bioengineering

and biomimetics, which is functional for future technological exploitation of the catalytic

properties of MoCu-CODH and for the reproduction of its reactivity in synthetic

complexes. Notably, a growing interest for the quantum chemical investigation of this

enzyme has recently also emerged. This mini-review compiles the current knowledge of

the MoCu-CODH catalytic cycle, with a specific focus on the outcomes of theoretical

studies on this enzyme class. Rather controversial aspects from different theoretical

studies will be highlighted, thus illustrating the challenges posed by this system as far

as the application of density functional theory and hybrid quantum-classical methods

are concerned.
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Carbon monoxide (CO) is a fatal gas to many living organisms as well as an indirect greenhouse
gas in the atmosphere (Liu et al., 2018). Global CO emissions derive both from anthropogenic and
natural sources (Choi et al., 2017). One of the main sinks of atmospheric CO is constituted by
the soil, in which it is consumed in large amounts by microbial oxidation (Liu et al., 2018). One
example of these important soil microorganisms is represented by the aerobic bacteria Oligotropha
carboxidovorans. The latter is able to grow using CO as its sole source of carbon and energy (Hille
et al., 2015). This metabolism is ascribed to the air-stable Mo/Cu-dependent CO dehydrogenase
(MoCu-CODH) enzyme that catalyzes the oxidation of CO to CO2 (Zhang et al., 2010).

This enzyme contains a unique active site composed by a molybdenum/copper bimetallic center
(see Figure 1A). The molybdenum ion is found in a square-pyramidal geometry with one apical
oxo ligand, a dithiolene ligand from the molybdopterin cytosine dinucleotide (MCD) cofactor, an
equatorial oxo ligand and a sulfido ligand. The latter bridges to the copper center, which links the
active site to the protein matrix by coordinating the sulfur atom of Cys388. Moreover, Cu is also
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coordinated to a weakly bound water molecule (Gnida et al.,
2003; Rokhsana et al., 2016), and can coordinate not only CO
(i.e., the physiologic substrate) but also H2. In fact, the MoCu-
CODH enzyme has the ability to catalyze dihydrogen oxidation,
even though such hydrogenase activity is rather low (Santiago
and Meyer, 1996; Wilcoxen and Hille, 2013).

The protonation state of the active site has been object of
debate. In fact, experimental X-ray diffraction (XRD) results

FIGURE 1 | (A) Representation of the MoCu-CODH enzyme and of the active site in the Mo(VI)Cu(I) resting state. (B) QM model used by Hofmann et al. (2005) and by

Stein and Kirk (2014); (C) QM model used by Siegbahn and Shestakov (2005) and by Breglia et al. (2017); (D) larger QM model used by Siegbahn and Shestakov

(2005); (E) QM model used by Rokhsana et al. (2016); (F) QM region of the hybrid QM/MM model used by Xu and Hirao (2018). Color code of atoms in the active site:

cyan, molybdenum; orange, copper; yellow, sulfur; red, oxygen; gray, carbon; white, hydrogen.

were interpreted as indicative of a Mo(=O)OH state both for
the oxidized and the reduced forms of the enzyme (Dobbek
et al., 2002). Differently, extended X-ray absorption fine structure
(EXAFS) spectroscopy suggested the presence of a MoVI(=O)O
unit and a MoIV (=O)OH2 unit for the oxidized and reduced
states, respectively (Gnida et al., 2003). Recent data in support of
the EXAFS-based hypothesis came from electron paramagnetic
resonance (EPR) analysis of theMoV analog and from theoretical
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calculations (Zhang et al., 2010; Rokhsana et al., 2016). As far
as the oxidation state of the Cu ion is concerned, it maintains
the +1 state throughout the enzymatic catalytic cycle (Dobbek
et al., 2002; Gnida et al., 2003). In fact, CO oxidation occurs
directly at the Cu center (Shanmugam et al., 2013), and the two-
electron transfer to Mo at each catalytic cycle is allowed by the
highly delocalized nature of the Mo(µ-S)Cu unit (Gourlay et al.,
2006). Key second-sphere amino acid residues are conserved
in MoCu-CODH enzymes and in homologues with different
activity, i.e., xanthine oxidases (Hille, 2013). In particular, a
conserved glutamate residue (Glu763) is found in proximity to
the equatorial oxo ligand of Mo and is considered to act as a
base to facilitate deprotonation events (Wilcoxen and Hille, 2013;
Hille et al., 2015). Moreover, the aromatic ring of a phenylalanine
residue (Phe390), located in front of the CuI ion, is thought to
have relevance for the correct positioning of the substrate within
the active site (Rokhsana et al., 2016).

Carbon monoxide (|C≡O) is expected to show similar
reactivity with respect to the isoelectronic isocyanide (|C≡N-
R) species. They share the presence of non-bonding electron
pairs in the sp orbital of the terminal carbon atom and a
triple bond between the latter and a more electronegative
atom. Indeed, Dobbek et al. reported the inhibitory activity
of n-butylisocyanide, |C≡N-(CH2)3CH3, toward the oxidized
MoCu-CODH (Dobbek et al., 2002). In the same study, the
corresponding crystallographic structure of the inhibited enzyme
was determined (PDB ID: 1N62). The resulting inactive complex
is characterized by a thiocarbamate geometry in which the
isocyanide group forms covalent bonds with theµ-sulfido ligand,
the equatorial oxygen of Mo and the Cu atom, while the alkyl
chain of n-butylisocyanide extends into the hydrophobic interior
of the substrate channel.

The features of the crystal structure of the n-butylisocyanide-
bound state prompted Dobbek and coworkers to advance
the first hypothesis ever proposed for the MoCu-CODH
catalytic mechanism (see Figure 2A) (Dobbek et al., 2002).
The latter involves the formation of a thiocarbonate-like

intermediate—analogous to the thiocarbamate derivative formed
during the aforementioned inhibition—after the CO substrate
accesses the oxidized active site. Such thiocarbonate species
would be characterized by the insertion of CO between copper,
the µ-sulfido ligand and the equatorial oxo ligand of the Mo
atom. Taking inspiration from such a mechanistic hypothesis
for CO-oxidation catalysis, the enzymatic mechanism has been
subsequently studied with computational methods by several
groups, thus giving birth to a debate that is still ongoing (vide
infra).

Recently, it has been reported that rather bulky thiol
molecules—e.g., L-cysteine, coenzyme A or glutathione—can
reach the bimetallic active site (Kreß et al., 2014). They cause a
reversible inactivation of the enzymatic activity, competing with
the substrates for the same position at the CuI center.

In the following two sections of this manuscript we aim
at reviewing the theoretical studies that have been published
on MoCu-CODH using quantum mechanical (QM) and
hybrid quantum mechanical/molecular mechanical (QM/MM)
approaches. In doing so, we will pay special attention to
the controversies and the challenges that have emerged.
Moreover, promising future developments in the theoretical
description of this system will be proposed in the concluding
section.

1. SMALL- AND MEDIUM-SIZED
QM-CLUSTER MODELS

The first theoretical investigations of the catalytic activity of
MoCu-CODHwere carried out independently by two theoretical
groups in 2005 (Hofmann et al., 2005; Siegbahn and Shestakov,
2005). To model the enzymatic active site, Hofmann et al. used
a small cluster of 24 atoms representing the two transition
metals and their first coordination spheres (see Figure 1B)
(Hofmann et al., 2005), whereas Siegbahn and Shestakov
performed calculations with two different models, a small one

FIGURE 2 | Proposed reaction mechanisms for the oxidation of CO by means of MoCu-CODH. (A) Reaction mechanism proposed by Dobbek’s experimental group.

(B–D) Reaction mechanisms proposed by Siegbahn and Shestakov, by Hofmann et al. and by Stein and Kirk, on the basis of their respective computational studies.
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of about 20 atoms and a bigger one composed of about
70 atoms (see Figures 1C,D). In the latter, some residues
belonging to the second coordination spheres of the metals
were explicitly included (Siegbahn and Shestakov, 2005). The
hybrid density functional B3LYP (Lee et al., 1988; Becke, 1993)
was employed in both cases to optimize the geometries and
compute relative energies of intermediates along the putative
catalytic cycles. For geometry optimizations, Hofmann and
coworkers adopted the Lanl2DZ (Dunning and Hay, 1976; Hay
and Wadt, 1985a,b; Wadt and Hay, 1985) effective core basis
set with additional d-type functions on S atoms. This was
followed by single point energy calculations using the SDD
(Dunning, 1970; Dunning and Hay, 1977; Dolg et al., 1987)
basis set augmented by d-type polarization functions on all
non-hydrogen, non-metal atoms. The basis sets employed by
Siegbahn and Shestakov were lacvp and lacv3p*—with ECP
for Mo, Cu, and S atoms—for geometry optimizations and
energy calculations, respectively. In both studies, the protein
matrix surrounding the active site was modeled by a continuum
dielectric with ǫ = 4 (Eckert and Klamt, 2002; Cossi et al.,
2003).

A comparative analysis of the results coming from two such
early investigations evidences a significant variability of the
results obtained as a function of the adopted level of theory,
within models of the same size. In particular, the calculated
energy differences showed significant dependency on the basis
sets used, with deviations up to 21 kJ/mol in the case of
intermediates involved in formation of the new C–O bond, a
key step in the catalytic process. Interestingly, previous studies of
oxygen-atom transfer (OAT) reactions involving Mo-complexes
(Li et al., 2013) and other transition-metal-containing systems
(Hu and Chen, 2015; Li et al., 2015) also evidenced the strong
basis set effect on computed energy differences along the reactive
paths.

Notwithstanding the shortcomings deriving from the choice
of basis sets, both Siegbahn, Shestakov and their respective
coworkers evidenced a surprisingly high stability for the
thiocarbonate intermediate. The presence of such a deep
minimum on the energy landscape pertaining to the reaction
mechanism was interpreted differently by the two groups.
Siegbahn and Shestakov in particular proposed that the
thiocarbonate derivative represents an intermediate of the CO-
oxidation mechanism. However, in the proposed mechanism
the barrier for the release of the CO2 product was estimated
to be rather high, as it would require the insertion of a
water molecule which was reported not to be a facile step
(see Figure 2B). Differently, Hofmann and coworkers raised
the possibility that the thiocarbonate adduct lies outside the
catalytic cycle, in a deep potential energy well that would
effectively slow down enzymatic activity (see Figure 2C). These
authors further proposed that the constrains imposed by the
protein matrix could prevent formation of such a stable off-
path adduct, a hypothesis that— however—was later discarded
as a result of a theoretical study focused on this topic (Siegbahn,
2011).

In a more recent theoretical study, a different mechanism
for the oxidation of CO by the MoCu-CODH enzyme was
proposed (see Figure 2D) (Stein and Kirk, 2014). Using a

cluster model analogous to the one previously employed by
Hofmann and coworkers (see Figure 1B), at the PBE/TZP
(Perdew et al., 1996; Ernzerhof and Scuseria, 1999) level of theory
and including continuum dielectric contributions (ǫ = hexane)
(Klamt and Schüürmann, 1993), Stein and Kirk proposed that the
stable thiocarbonate intermediate formation could be bypassed
by evolving bicarbonate as a final product rather than CO2.
Bicarbonate formation would proceed via nucleophilic attack of
a copper-activated water molecule on the C atom of the metal-
bound CO2. However, such a picture is at odds with recent
experimental studies, which appear to exclude the possibility of
forming a bicarbonate complex during catalysis (Dingwall et al.,
2016).

Breglia and coworkers published the most recent theoretical
study of MoCu-CODH, in which only the first shell coordination
spheres were included in a QM model (see Figure 1C) (Breglia
et al., 2017). Such a study mainly regards the hydrogenase
activity of the enzyme and includes a comparative analysis of
the binding reactions of the physiologic substrate—i.e., CO—and
of dihydrogen to the Cu ion. Similarly to previous studies on
H2- and CO-binding enzyme models in which a pure functional
was used in conjuction with triple-zeta bases (Greco et al., 2015;
Rovaletti and Greco, 2018), geometry optimizations and energy
calculations were carried out in vacuo at BP86/def2-TZVP level
(Perdew, 1986; Becke, 1988; Weigend and Ahlrichs, 2005). As
far as the energetics of CO binding is concerned, the computed
1E was as negative as −64 kJ/mol. A comparison of the latter
value with the results of corresponding calculations previously
performed at different levels of theory for the same reaction by
Siegbahn, Hofmann and their respective coworkers, evidences
significant discrepancies (11E = 50 and 31 kJ/mol, respectively).
Actually, the occurrence of such large differences comes with little
surprise, given the well-known shortcomings in binding energy
calculations using quantum chemical models of coordination
complexes and their ligands (Husch et al., 2018).

2. LARGE QM-CLUSTER MODELS AND
HYBRID MODELS

The importance of extending the dimension of the bimetallic
active site model and systematically accounting for the effects
of the second-sphere residues on energetics was evidenced
in a recent theoretical work by Rokhsana and coworkers
(Rokhsana et al., 2016). In fact, a large-size cluster model
of around 180 atoms (see Figure 1E) turned out to be
required for a fully satisfactory reproduction of experimentally
determined structural parameters. The same held true for
the evaluation of the most plausible protonation states of
the Mo/Cu core, which was done taking into account key
geometric features of the enzyme crystal structure and redox
potential measurements available in literature. The authors
were able to assess in particular the protonation state of the
equatorial oxo ligand of Mo, at the different redox states
attained during catalysis. As for the adopted level of theory,
Rokhsana et al. employed the def2-TZVP basis set for all
elements, apart from H and C atoms, for which the def2-SVP
basis set was used (Weigend and Ahlrichs, 2005). The protein
environment was modeled by a continuum dielectric with ǫ = 4
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(Klamt and Schüürmann, 1993). The BP86 and B3LYP density
functionals were used for geometry optimizations and energy
evaluation, respectively.

In a subsequent study, explicit consideration of the whole
protein environment was achieved bymeans of a hybrid quantum
mechanics/molecular mechanics (QM/MM) approach (Xu and
Hirao, 2018). In the work of Xu and Hirao, the active site was
described by a QM region of 89 atoms (see Figure 1F) using
the B3LYP functional. During geometry optimization, the SDD
effective core potential basis set was employed to represent the
transition metal ions, whereas the 6-31G* basis set was adopted
for all the other atoms (Dolg et al., 1987; Andrae et al., 1990).
Single-point energy calculations were carried out using the larger
def2-TZVP basis set. For the molecular mechanics calculations,
the AMBER03 force field was employed (Duan et al., 2003).
Moreover, the Grimme’s D3-correction with Becke−Johnson
damping [D3(BJ)] was taken into account in the calculations
(Grimme et al., 2011). The previously proposed catalytic
mechanisms that involve the formation of the thiocarbonate
species were re-investigated at such a level of theory. According
to Xu and Hirao’s study, the S-C-bound adduct would be formed
along the reaction pathway as previously suggested (Dobbek
et al., 2002; Siegbahn and Shestakov, 2005). However, based
on the novel QM/MM results, the thiocarbonate species thus
formed would not be as stable as previously proposed. It has to
be remarked that the thiocarbonate intermediate was not found
to be directly linked to the transition state for CO2 releasing.
In fact, it was proposed that— after thiocarbonate formation—
the reaction needs to follow a reverse process to productively
proceed toward CO2 evolution. Notably, the overall barrier for
the proposed catalytic mechanism was found to be low (in the
order of 50 kJ/mol). In the same study, Xu and Hirao also
carried out purely QM calculations with a QM-cluster of the
same size of the quantum-mechanical region of their hybrid
model, and compared the obtained results with those coming
from QM/MM modeling. Such a comparison evidenced that the
protein environment is not involved in modulating the kinetic
barrier associated with the investigated catalytic mechanism.
However, it was found that the protein matrix plays an important
role in the stabilization of the CO2-released state. Finally, it was
also reported that the inclusion of dispersive corrections lowers
by 15 kJ/mol the activation barrier of the product-releasing step,
in line with what was expected for the modeling of a bimolecular
reaction step.

CONCLUDING REMARKS

Over the last fifteen years, the theoretical investigation of
the CO oxidation mechanism by MoCu-CODH has given
rise to a debate, the essentials of which are centered on the
possible occurrence and on the role of a thiocarbonate catalytic
intermediate. In the above sections, we have reported key details
of the various computational studies published to date, and we
are now in the condition to present a more general outlook on
the state of the art regarding MoCu-CODH.

The early studies by Siegbahn, Hofmann, and their
respective coworkers evidenced that the thiocarbonate

intermediate would occupy a deep well in the energy
profiles pertaining to the investigated reaction mechanisms.
However, the kinetic barriers they computed for CO2
evolution were at least 30 kJ/mol higher than the recently
determined experimental counterpart (Zhang et al., 2010).
In part, this picture depends on the neglect of dispersive
corrections: their inclusion became a standard possibility
only after the publication of the mentioned study (Siegbahn,
2011).

Results more compatible with the experimental evidence of
a kinetic barrier of around 50 kJ/mol were obtained by Xu
and Hirao, who exploited a larger QM-cluster model with the
explicit inclusion of most of the second-sphere coordination
environment, along with employment of large basis sets and
dispersion corrections (Xu and Hirao, 2018). It is noticeable that,
according to Xu and Hirao’s results, the thiocarbonate species
still appears to behave as a thermodynamic sink. Even though
not a very deep one, such a sink would effectively hamper
the advancement along the proposed path toward products, a
rather unusual role for a species formed during an enzymatic
process.

All the catalytic mechanisms proposed in the theoretical
studies reviewed here focus on the possibility that the Mo-
bound equatorial oxo ligand performs the nucleophilic attack
on the activated CO substrate bound to the Cu ion. This is in
line with what has been suggested in the case of the catalytic
mechanism of the homologous xanthine oxidases enzymes.
However, a variant with respect to such a picture has been
recently proposed, in which an activated water molecule would
play the role of nucleophile (Hille et al., 2015). Notably, to the best
of our knowledge this alternative mechanism has not yet been
investigated by QM or hybrid QM/MM studies.

Future theoretical studies on this (and other) putative catalytic
mechanism will possibly face the challenge associated with
rather pronounced fluctuations of computed energy differences
as a function of the adopted level of theory. As far as the
application of density functional theory is concerned, extensive
benchmarking could in principle help to improve the theoretical
predictions. In this regard, the available experimental data on
enzyme inhibition— by thiols in particular—could represent a
useful dataset, keeping in mind that the reproduction of binding
energies in the case of bulky thiols might require extensive
protein matrix phase space sampling in the case of QM/MM
studies. High level ab initio methods are a viable—though still
challenging—alternative for providing reliable results. In fact,
thanks to recent methodological developments, the treatment
of relatively large bimetallic systems has been shown to
be computationally affordable with multiconfigurational post-
Hartree-Fock approaches (Phung et al., 2016, 2018; Dong et al.,
2017).

The relevance of MoCu-CODH as an inspiring system for
future biomimetic and bioengineering applications is currently
growing. This is due not only to the relevance of the reactions it
catalyzes, but also to its resistance to atmospheric O2 exposure—
a rare feature in the case of enzymes expressing carbonmonoxide
dehydrogenase and hydrogenase activities (Choi et al., 2017;
Gourlay et al., 2018; Groysman et al., 2018). Notably, the recent
establishment of a functional heterologous expression system for
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the MoCu-CODH enzyme (Kaufmann et al., 2018) together with
developments in the computational chemistry field will hopefully
boost the positive feedback among biochemical, biomimetic and
quantum chemical studies, opening new perspectives for a deeper
understanding of this interesting metalloenzyme.
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