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To understand, and thereby rationally optimize photoactive interfaces, it is of great

importance to elucidate the electronic structures and band alignments of these

interfaces. For the first-principles investigation of these properties, conventional

density functional theory (DFT) requires a solution to mitigate its well-known

bandgap underestimation problem. Hybrid functional and Hubbard U correction are

computationally efficient methods to overcome this limitation, however, the results are

largely dependent on the choice of parameters. In this study, we employed recently

developed self-consistent approaches, which enable non-empirical determination of the

parameters, to investigate TiO2 interfacial systems—the most prototypical photocatalytic

systems. We investigated the structural, electronic, and optical properties of rutile and

anatase phases of TiO2. We found that the self-consistent hybrid functional method

predicts the most reliable structural and electronic properties that are comparable

to the experimental and high-level GW results. Using the validated self-consistent

hybrid functional method, we further investigated the band edge positions between

rutile and anatase surfaces in a vacuum and electrolyte medium, by coupling it with

the Poisson-Boltzmann theory. This suggests the possibility of a transition from the

straddling-type to the staggered-type band alignment between rutile and anatase phases

in the electrolyte medium, manifested by the formation of a Stern-like layer at the

interfaces. Our study not only confirms the efficacy of the self-consistent hybrid functional

method by reliably predicting the electronic structure of photoactive interfaces, but also

elucidates a potentially dramatic change in the band edge positions of TiO2 in aqueous

electrolyte medium which can extensively affect its photophysical properties.
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INTRODUCTION

Titania (TiO2) is one of the most prototypical materials, utilized
in a wide range of photocatalytic and photovoltaic applications
(Diebold, 2003; Thompson and Yates, 2006; Fujishima et al.,
2008; Henderson, 2011; Schneider et al., 2014). Depending on
octahedron connectivity, TiO2 has several polymorphs, among
which the rutile phase is known to be the ground state and
the anatase phase is usually regarded as a better photocatalyst
(Luttrell et al., 2014). For mechanistic investigations of
the photophysical processes, toward optimization of the
photocatalytic or photovoltaic activity, it is important to
understand the electronic structures, such as bandgap properties
and band edge alignments of the various TiO2 phases. However,
due to the sensitivity of electronic structures, to the surface state
(e.g., defects or molecular adsorptions, particle size, dielectric
environment, etc.) (Diebold, 2003; Yu et al., 2003; Stevanovic
et al., 2012; Ronca et al., 2013; Amano et al., 2016; Macounová
et al., 2017), a complete understanding of the electronic and
optical properties of TiO2 remains elusive, despite a number of
experimental and theoretical studies that have been conducted.
For example, the relative band edge positions between the rutile
and anatase phases are still under debate (Li and Gray, 2007;
Scanlon et al., 2013; Zhang et al., 2014; Nolan et al., 2016).

First-principles based density functional theory (DFT) is a
total energy theory, which provides a wealth of understanding
on the electronic structures of materials, with a reasonable
computational cost. However, the (semi-)local approximation
of the Kohn-Sham (KS) DFT in describing the exchange-
correlation (XC) energy invokes an inevitable problem, in which
the bandgaps of semiconductors and insulators are significantly
underestimated. The fundamental origin of this problem lies
in the fact that the total energy vs. the number of electrons
obtained with a (semi-)local XC functional, is not a series of linear
segments between integer numbers (Sham and Schlüter, 1983;
Anisimov et al., 1991).

To resolve the bandgap underestimation problem of KS-
DFT, many theoretical advances have been achieved, including
the weighted density approximation (Alonso and Girifalco,
1978), Hubbard U correction (DFT+U) method (Anisimov
et al., 1991), self-interaction correction method (Perdew and
Zunger, 1981), screened exchange approximation (Bylander and
Kleinman, 1990), optimized effective potentials (Grüning et al.,
2006), generalized Kohn-Sham (GKS) scheme (Seidl et al., 1996),
meta-GGA potentials (Tao et al., 2003), and hybrid functionals
(Becke, 1993). In addition to these methods, quasiparticle GW
approximation (Hedin, 1965) is regarded as the most reliable
and formally accurate method in terms of predicting exact band
edge positions of the valence band maximum (VBM) and the
conduction band minimum (CBM). However, it also negatively
affected by expensive computational cost, which prohibits its
routine application in large-scale systems such as surfaces or
nanoparticles. On the other hand, the hybrid functional or
DFT+U methods provide a more computationally efficient
manner to accurately describe the electronic structure (Anisimov
et al., 1991; Becke, 1993). By including a portion of the nonlocal
Hartree-Fock (HF) exchange or an additional Hubbard-like term,

the hybrid functional or DFT+U methods, respectively, reduce
the self-interaction error of conventional DFT. However, these
methods require an empirical parameter to determine either a HF
mixing ratio or a Hubbard U parameter.

To avoid such empiricism in the hybrid functional or DFT+U
methods, self-consistent approaches have recently been proposed
for the non-empirical determination of the HF mixing ratio
(Skone et al., 2014) or the Hubbard U parameter (Cococcioni
and de Gironcoli, 2005). The self-consistent hybrid (sc-hybrid)
functional method is based on the simplified form of the many-
body self-energy under the static approximation, called the
static Coulomb hole plus screened exchange (COHSEX), which
enables a relation of the HF mixing ratio with the inverse
macroscopic dielectric constant (Skone et al., 2014). Based on
the linear-response property of the total energy with respect
to the occupation number, the Hubbard U parameter can also
be determined in a self-consistent manner (Cococcioni and de
Gironcoli, 2005).

In this study, we investigated the electronic structures and
band edge positions of the rutile and anatase phases of TiO2

by means of these recently developed self-consistent hybrid
functional and DFT+U methods. In comparison with the
conventional DFT results based on the generalized gradient
approximation (GGA) of the XC energy, and with the GW
results from previous studies, we assessed the reliability of the
self-consistent methods by describing the structural, electronic,
and optical properties of bulk rutile and anatase TiO2. We
then investigated surface band alignment in rutile (110) and
anatase (101) surfaces. Further, as most interesting photocatalytic
reactions (e.g., water splitting) occurred in water, we examined
the band edge positions in a vacuum and aqueous environment,
where the solvation effect was implicitly modeled using the
Poisson-Boltzmann theory (Mathew et al., 2014; Mathew and
Hennig, 2016).

METHODS

Self-Consistent Approaches in Hybrid
Functional and GGA+U Methods
Hybrid functional (Becke, 1993) includes a portion of the
HF exchange energy in addition to the (semi-)local DFT XC
energy, where the mixing ratio is controlled by the parameter
α. For the particular GGA functional chosen by Perdew, Burke,
and Ernzerhof (PBE) (Perdew et al., 1996a), the hybrid PBE
functional (PBEh) of the XC energy is written as (Perdew et al.,
1996b):

EPBEhxc = αEHF
x + (1− α)EPBEx + EPBEc

The choice of α = 0.25 gives the standard PBE0 functional,
which is best fitted to yield the atomization energies of typical
molecules (Adamo and Barone, 1999). More recent studies
have related the parameter α with the inverse static dielectric
constant of the system (ε∞) by comparing the HF exchange
with the screened Coulomb interaction (Marques et al., 2011).
Then, since the ε∞ is dependent on the choice of α, a
self-consistent scheme was suggested to determine α without
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empiricism (Skone et al., 2014). From the initial guess of
αin = 0.25, self-consistency could be achieved by repeating
the calculation of ε∞ using the PBEh functional with αin as
an input parameter, until the difference between αin and the
resultant αout = 1

ε∞
is smaller than a specified threshold.

We hereafter term the self-consistent PBE0 functional method
scPBE0.

On the other hand, DFT+U (Anisimov et al., 1991) solves the
problem of the unphysical curvature by adding the correction of
a Hubbard-like interaction for the atom I with occupancy of its
localized orbital nIσ:

EDFT+U [n (r)] = EDFT [n (r)]+ EHub
[{

nIσm
}]

− EDC
[{

nIσ
}]

where the last term, EDC
[{

nIσ
}]

, is subtracted to avoid double
counting since it is included in both the Hubbard term and
the DFT energy. Usually, as a practical choice, a simplified
rotationally invariant version introduced by Dudarev et al. is
employed (Dudarev et al., 1998):

EU
[{

nIσmm′

}]

= EHub
[{

nIσmm′

}]

− EDC
[{

nIσ
}]

=
Ueff

2

∑

I

∑

m,σ

{

nIσmm −
∑

m′

nIσmm′n
Iσ
m′m

}

where the term Ueff = U − J accounts for on-site
Coulomb repulsion and a mimicked effects of exchange
interaction.

Cococcioni and de Gironcoli suggested a self-consistent
approach to determine Ueff using linear response theory
(Cococcioni and de Gironcoli, 2005). In this approach, the
eigenvalue shift, αI , to localize (or delocalize) the occupation
nI of the Hubbard site I is introduced to the total energy of a
constrained system:

E [{αI}] = min
n(r)

{

E [n (r)]+
∑

I

αInI

}

In the case of molecules or solid systems, the non-linear behavior
of total energy as a function of the number of electrons is
also induced by the rehybridization of localized orbitals. The
calculation of the constrained total energy, by fixing the non-
interacting KS potential, is therefore also needed, to subtract this
rehybridization effect:

EKS [{αI}] = min
n(r)

{

EKS [n (r)]+
∑

I

αKS
I nI

}

Then, Ueff can be determined as Ueff, I =
(

χ−1
0 − χ−1

)

II
from

the interacting and non-interacting density response functions of
the system with respect to these constrained problems:

χIJ =
∂2E

∂αI∂αJ
=

∂nI

∂αJ

χKS
IJ =

∂2EKS

∂αKS
I ∂αKS

J

=
∂nI

∂αKS
J

The response functions can be calculated as follows: we first
obtained a well-converged self-consistent potential with zero
perturbation (αI = 0), and then performed both non-self-
consistent and self-consistent calculations under the KS potential
by applying a small potential shift (non-zero αI). From the non-
self-consistent and self-consistent calculations, we obtained the
non-interacting and interacting response functions, respectively.

By iteratively calculating the Ueff and response functions until
Ueff converges with a specified threshold, we obtained the self-
consistent value of Ueff. In the latter part of this manuscript, we
will drop the subscript from Ueff for brevity (hereafter referred to
simply as U).

Computational Details
We performed DFT calculations of bulk rutile TiO2, bulk anatase
TiO2, and their corresponding surface slab models using the
projector augmented wave (PAW) method as implemented in
the Vienna Ab-initio Simulation Package (VASP) (Kresse and
Furthmüller, 1996; Kresse and Joubert, 1999). A plane-wave
expansion of 500 eV was used. The electronic iterations were
continued until the energy difference from the previous step
became smaller than 10−7 eV, and the geometry optimization
was iterated until all atomic forces became smaller than 0.02
eV/Å.We optimized the bulk structures using the PBE functional
(Perdew et al., 1996a) with the Ŵ-centered k-mesh, with grid size
of 0.4 Å−1 (6× 6× 4 and 5× 5× 2 for rutile and anatase phases,
respectively). We then employed these PBE-relaxed geometries
to obtain the α parameters of scPBE0 and the self-consistent U
parameters.

To obtain the α of scPBE0 for each phase, we calculated the
static dielectric constants using the perturbation expansion after
discretization (PEAD) method (Nunes and Gonze, 2001; Souza
et al., 2002). Since convergence of the dielectric constant is slower
than that of total energy, we used the grid size of 0.3 Å−1 for the
k-mesh in the PEAD calculations.

We employed Quantum Espresso (QE) code (Giannozzi et al.,
2009, 2017) to obtain the self-consistent U parameters, while all
other calculations were performed using VASP. This was due
to the lack of implementation of the calculation of the self-
consistent U parameters in the official VASP code. During QE
calculations, we used PAW potentials and the PBE functional
in a manner analogous to that used for the VASP calculations.
We further confirmed the consistency of the calculation results
from two different codes by comparing the equilibrium lattice
parameters, where the QE calculation used a plane-wave kinetic
energy cutoff of 100 Ry and the same grid spacing to the VASP
calculations (see Table 1). To minimize the artifact due to the
periodic images of the density perturbation, we used 2 × 2 × 2
supercells to obtain carefully converged response functions.

Using the convergence criterion of 0.01, we determined both
the self-consistent α of the scPBE0 and the self-consistent U
parameter of the PBE+U. Using these self-consistent parameters,
we then optimized the bulk structures and surface slab models
of rutile and anatase TiO2 phases. Both rutile (110) and anatase
(101) slabs were composed of 6 TiO2 layers, and the middle two
layers were kept fixed during the geometry relaxation to mimic
the bulk structure. The lattice parameters of the slab models were
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TABLE 1 | Structural properties, bandgaps, and static dielectric constants of bulk

rutile and anatase TiOa
2.

Method a (Å) c (Å) V (Å3) B (GPa) 1Egap (eV) ε
∞

RUTILE

PBE 4.64 (4.65)b 2.97 (2.97)b 64.0 193 1.84 7.61

scPBE+U 4.65 2.99 64.9 197 2.09 7.13

PBE0 4.58 2.95 61.7 230 4.19 5.98

scPBE0 4.60 2.95 62.5 215 3.25 6.55

Exp. 4.59c 2.96c 62.4 211d 3.30f 7.37h

ANATASE

PBE 3.80 (3.80)b 9.72 (9.73)b 140 169 2.12 6.60

scPBE+U 3.83 9.72 142 169 2.37 6.14

PBE0 3.76 9.60 136 197 4.46 5.25

scPBE0 3.77 9.62 137 189 3.75 5.58

Exp. 3.78c 9.50c 136 178e 3.47g 5.70i

aa, c, V, B, 1Egap, and ε
∞ are the lattice parameters a and c, equilibrium volume, bulk

modulus, electronic band gap, and static dielectric constant, respectively.
bCalculated lattice parameters using Quantum Espresso code.
cBurdett et al. (1987).
dMing and Manghnani (1979).
eDubrovinsky et al. (2001).
fTezuka et al. (1994).
gBaldini et al. (2017).
hTraylor et al. (1971).
iHosaka et al. (1997).

taken from those of bulk structures which were optimized using
the corresponding level of theory. In addition to the scPBE0 and
PBE+U, which uses the self-consistent U parameter (namely,
scPBE+U), we further performed conventional PBE and PBE0
calculations for the sake of comparison.

RESULTS AND DISCUSSION

Self-Consistent Parameters
Figure 1 shows the evolution of the self-consistent parameters
α and U during iteration. For scPBE0, we obtained α values of
0.151 and 0.178 for the rutile and anatase TiO2, respectively. Our
α value for the rutile phase is slightly different from the self-
consistent value determined by He and Franchini, 0.142 (He and
Franchini, 2017). The difference was ascribed to the use of slightly
different geometries optimized using different XC functionals.
Our value was further compared with the empirical value of
0.159, determined to reproduce the experimental bandgap.

We obtained the same self-consistent U values of 2.47 eV
for both the rutile and anatase phases. Our value is smaller
than the frequently used empirical value of 4.20 eV determined
to reproduce experimental spectroscopic data (Morgan and
Watson, 2007; Araujo-Lopez et al., 2016).

Structural and Electronic Properties of
Rutile and Anatase TiO2
Using the self-consistently determined values of α and U, we
investigated the equations of state (EoS) of the rutile and anatase
phases of TiO2. Figure 2 shows the EoS of the rutile and anatase
phases calculated using PBE, scPBE+U, PBE0, and scPBE0

FIGURE 1 | Self-consistent convergence of (A) α of scPBE0 and (B) U of

scPBE+U during iterations. Black circles and red triangles denote rutile and

anatase phases, respectively. The converged values are indicated by the

dashed lines.

methods. The lattice parameters, equilibrium volumes, and bulk
moduli are shown in Table 1.

We found that PBE and scPBE+U both overestimated the
equilibrium volume and underestimated the bulk modulus,
while the hybrid functionals showed better agreement with
experimental values. Compared to the conventional PBE0,
the self-consistent method of scPBE0 demonstrated a slight
improvement.

Table 1 also shows the bandgaps and dielectric constants
of rutile and anatase TiO2 calculated using various DFT
methods. Unsurprisingly, PBE underestimated the bandgaps.
However, even after the inclusion of the Hubbard U correction,
the scPBE+U still significantly underestimated the bandgaps,
implying that the self-consistently determined U value was not
large enough to reproduce the experimental bandgaps. Indeed,
a previous study has demonstrated that a fairly large U value of
4.2 eV (Morgan and Watson, 2007) was required to empirically
fit the calculated TiO2 bandgap to the experimental spectroscopic
data.

In contrast, PBE0 severely overestimated the bandgaps of
both the rutile and anatase phases, leading to underestimation
of the dielectric constants. The self-consistent approach, which
gave smaller α values than the value of 0.25 given by PBE0,
resulted in smaller bandgaps and higher dielectric constants. In
the case of the rutile phase, the scPBE0-determined bandgap of
3.25 eV is close to the electronic bandgap of 3.30 eV measured
experimentally using photoelectron and inverse-photoelectron
spectroscopies (PES/IPES) (Tezuka et al., 1994). This value
further agrees with the G0W0 calculation results, with values
ranging from 3.30 to 3.59 eV (Chiodo et al., 2010; Kang and
Hybertsen, 2010; Landmann et al., 2012; Zhu and Gao, 2014;
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FIGURE 2 | Equations of state (EoS) for (A) rutile and (B) anatase phases of

TiO2 calculated using PBE (black circles), scPBE+U (red triangles), PBE0 (blue

squares), and scPBE0 (green diamonds) methods. The vertical magenta lines

represent the experimental volumes of the two phases.

Sun et al., 2015). For the anatase phase, the scPBE0-determined
bandgap of 3.75 eV also agrees with the G0W0 calculation results
ranging from 3.56 to 3.86 eV (Chiodo et al., 2010; Kang and
Hybertsen, 2010; Landmann et al., 2012; Patrick and Giustino,
2012; Zhu and Gao, 2014; Sun et al., 2015). Unfortunately,
to the best of our knowledge, no experimental value for the
electronic bandgap of anatase TiO2 is available in the literature,
although the optical bandgap (which is known to be smaller
than the electronic bandgap) was experimentally determined
to be 3.47–3.53 eV (Reyes-Coronado et al., 2008; Baldini
et al., 2017). It was thus concluded that scPBE0 most reliably
predicts the structural and electronic properties of both TiO2

phases.

Band Alignments of Rutile (110) and
Anatase (101) Surfaces
For photocatalytic applications, an understanding of the surface
band alignments in rutile and anatase TiO2 surfaces is important
to elucidate the underlying physics of the charge carrier transfer
between two phases. One open question in this regard relates
to the relative band edge positions in rutile and anatase TiO2

surfaces (Scanlon et al., 2013). Two possibilities have been
suggested, as illustrated in Figure 3: one is the straddling type
(Kang et al., 2012), in which both the VBM and CBM of the rutile
phase are located in the bandgap region of the anatase phase, and

FIGURE 3 | The proposed types of band alignment between rutile and anatase

phases of TiO2. In type-I, also called “straddling type,” the excited electrons

and holes are accumulated in the rutile phase. On the other hand, in type-II

(“staggered type”), the two charge carriers are preferentially accumulated in

different phases according to the sign of the relative band edge shifts.

the second is the staggered type (Deák et al., 2011; Scanlon et al.,
2013; Ju et al., 2014; Garcia et al., 2015), in which the VBM and
CBM of the anatase phase are either up- or down-shifted from
the VBM and CBM of the rutile phase.

As such, we investigated the positions of the VBM and CBM
of rutile and anatase TiO2 surfaces using various DFT methods.
We investigated rutile (110) and anatase (101) surfaces, which
are known to be the most stable surfaces for each phase. Before
our main results, it is noteworthy to note about the effects
of junction between the rutile and anatase TiO2. In its usual
mixed-phase form of the TiO2 photocatalyst, the direct contact
between two phases gives rise to the electron transfer from
anatase to rutile phase, which affects to the band alignment
and eventually to the photocatalytic activity (Kawahara et al.,
2002). Not only the effects of the junction highly depend on the
structure, especially at the interface, of the photocatalyst (Deák
et al., 2011), but also, we need to model rutile-anatase interface
to take account them. The latter, in terms of the computational
cost, is a formidable task in our study with the hybrid functionals.
As fundamental properties of their catalytic activities, we have
focused on the band alignments between the rutile and anatase
TiO2 without the junction effects by using the models of their
surfaces separately. Figure 4A shows the surface band edge
locations for each phase, aligned with respect to the vacuum
level.

For the rutile (110) surface, PBE gave −7.21 and −5.46 eV
for the VBM and CBM, respectively. When the U correction
was included using scPBE+U, the VBM shifted downward
slightly (−7.25 eV), whereas the CBM was up-shifted by a larger
degree due to the increased band gap (−5.27 eV). The VBMs
calculated using the hybrid functionals PBE0 (−8.69 eV) and
scPBE0 (−8.10 eV) are much deeper than those obtained by PBE
and scPBE+U, while the CBMs (−4.59 and −4.94 eV for PBE0
and scPBE0, respectively) are higher than those of the PBE and
scPBE+U results.
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Migani and co-workers calculated the band alignment of
a rutile (110) surface using various approximated variants
of quasiparticle GW methods (Migani et al., 2014). In their
study, the positions of the VBMs were in the region between
−7.3 and −8.8 eV, which is consistent with the experimentally
derived VBM alignment. However, their band gaps were largely
overestimated, resulting in a large up-shift of the CBMs in
comparison to the experimentally derived energies. The position
of the VBM from our scPBE0 method agrees reasonably well
with the GW results of the same authors (Migani et al.,
2014). Considering that the scPBE0-determined bandgap is
also in good agreement with the experimentally determined
electronic bandgap (as discussed above), it was concluded that
the location of the CBM is also reliably predicted by the scPBE0
calculations.

Notably, the scPBE0 results support the straddling-type band
edge alignment between the rutile (110) and anatase (101)
surfaces. This is also consistent with the results of a previous
DFT+U study by Zhang et al. (2015).

Motivated by the knowledge that most photocatalytic
applications of TiO2 occur in aqueous medium (e.g., water
splitting) (Ge et al., 2016), we further examined changes in
the band edge positions in response to the effects of an
aqueous electrolyte. We employed the Poisson-Boltzmannmodel
to include the dielectric screening effect of the medium, as
implemented in VASPsol code (Mathew et al., 2014; Mathew
and Hennig, 2016). We considered an electrolyte consisting of
an aqueous solution of monovalent anions and cations in 1M
concentrations, by using a relative permittivity of 78.4 and a
Debye length of 3 Å.

Figure 4B shows the band alignments of TiO2 aligned
with respect to the theoretically determined absolute electrode
potential of 4.6 V (Mathew and Hennig, 2016) instead of the
vacuum level.We first compared the band edge positions with the

FIGURE 5 | Bound charge distributions at (A) water-rutile (110) and

(B) water-anatase (101) interfaces calculated using Poisson-Boltzmann theory

coupled with scPBE0 calculations. The magenta lines depict the positions of

the uppermost atoms in the surface slab of TiO2.

FIGURE 4 | Band edge positions of rutile (110) and anatase (101) surfaces calculated using PBE, scPBE+U, PBE0, and scPBE0 methods. (A) Band edge positions

in vacuum are aligned with respect to the vacuum potential, while (B) band edge positions in the aqueous electrolyte are aligned with respect to the normal hydrogen

electrode (NHE) using the theoretical absolute electrode potential of 4.6 V. The reduction potential (H+/H2) and the oxidation potential (O2/H2O) for water splitting are

presented as red and green dashed lines, respectively.
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reduction potential of H+/H2 (0.0 V vs. NHE) and the oxidation
potential of O2/H2O (+1.23V vs. NHE). From the PBE and
scPBE+U results, the VBMs of the rutile (110) surface lie at a
lower potential than the oxidation potential of O2/H2O, which
is inconsistent with a previous experimental finding that TiO2

is one of the most-active water-splitting photocatalyst materials
(Zhao and Liu, 2014; Ge et al., 2016; Gellé and Moores, 2017).
In contrast, PBE0 and scPBE0 provided reasonable band edge
positions that would energetically allow reduction and oxidation
of the water molecule.

Interestingly, in comparison to the results in vacuum, we
found that the CBM positions in the rutile and anatase surfaces
became almost identical when the electrolyte solvation effect was
taken into consideration. To elucidate the origin, we show the
bound charge distributions at the water-rutile (110) and water-
anatase (101) interfaces in Figure 5. We found that ions tended
to accumulate at the water-TiO2 interface, forming a Stern-like
layer at both interfaces. However, the water-rutile (110) interface
showed a more profound tendency for Stern layer formation in
comparison to the water-anatase (101) interface. Consequently,
a stronger built-in potential imposed at the water-rutile (110)
interface led to greater upward shifts of the band edge positions
and CBM positions comparable between the rutile and anatase
phases. This implies that the band alignments of TiO2 in an
electrolyte can differ from those in vacuum, and that a transition
from the straddling-type to the staggered-type band alignment
may occur in an electrolyte medium, depending on the salt
concentrations.

CONCLUSION

In this study, we investigated the bulk properties of rutile
and anatase phases of TiO2 as well as their surface electronic
properties, using recently developed self-consistent variations
of the hybrid functional and DFT+U methods, and with the
conventional GGA(PBE) and PBE0 methods. The self-consistent
hybrid functional method (i.e., scPBE0) demonstrated the best
performance in predicting the bulk structural, elastic, and
electronic properties of both phases of TiO2. In particular, the
bandgaps of both the rutile and anatase phases of TiO2 were
accurately described using the scPBE0 method, and the results
were in good agreement with the experimental and/or the highly
accurate GW results.

Based on the success of the scPBE0 method, we applied this
method to calculations of surface slab models. We investigated
the surface band alignment of rutile (110) and anatase (101)
surfaces in a vacuum and in aqueous electrolyte, described

using the Poisson-Boltzmann theory. Our scPBE0 method not
only demonstrated the most reliable calculation of band edge
positions, but also elucidated that the two surfaces form a
straddling-type alignment with respect to each other in a vacuum.
However, in the aqueous electrolyte, the solid-liquid interfacial
field differently shifts the band edge locations, resulting in the
CBMs of the rutile and anatase surfaces being located at nearly
the same level. The difference was ascribed to the different
tendencies for Stern-like layer formation at the water-rutile and
water-anatase interfaces.

Our study suggests that the scPBE0 method, as an
approximation of the GWmethod, can be a practical replacement
for the computationally demanding GW calculations. It also
suggests that the surface band alignment in an electrolyte can
be different from that in a vacuum, and even implies that a
transition from the straddling-type to the staggered-type band
alignment might be possible by changing the salt concentration
of the electrolyte. Our current work will not only provide a
methodological suggestion for theoretical investigations on the
electronic structures and band edge positions of large-scale
systems, but will also provide useful insight into band alignment
of two different TiO2 phases which can be helpful in the design
of photoactive interfaces.
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