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Substrate mediated gene delivery (SMD) is a method of immobilizing DNA complexes

to a substrate via covalent attachment or nonspecific adsorption, which allows for

increased transgene expression with less DNA compared to traditional bolus delivery.

It may also increase cells receptivity to transfection via cell-material interactions.

Substrate modifications with poly(acrylic) acid (PAA) brushes may improve SMD by

enhancing substrate interactions with DNA complexes via tailored surface chemistry and

increasing cellular adhesion via moieties covalently bound to the brushes. Previously,

we described a simple method to graft PAA brushes to Ti and further demonstrated

conjugation of cell adhesion peptides (i.e., RGD) to the PAA brushes to improve

biocompatibility. The objective of this work was to investigate the ability of Ti substrates

modified with PAA-RGD brushes (PAA-RGD) to immobilize complexes composed

of branched polyethyleneimine and DNA plasmids (bPEI-DNA) and support SMD in

NIH/3T3 fibroblasts. Transfection in NIH/3T3 cells cultured on bPEI-DNA complexes

immobilized onto PAA-RGD substrates was measured and compared to transfection

in cells cultured on control surfaces with immobilized complexes including Flat Ti,

PAA brushes modified with a control peptide (RGE), and unmodified PAA. Transfection

was two-fold higher in cells cultured on PAA-RGD compared to those cultured on all

control substrates. While DNA immobilization measured with radiolabeled DNA indicated

that all substrates (PAA-RGD, unmodified PAA, Flat Ti) contained nearly equivalent

amounts of loaded DNA, ellipsometric measurements showed that more total mass

(i.e., DNA and bPEI, both complexed and free) was immobilized to PAA and PAA-RGD

compared to Flat Ti. The increase in adsorbed mass may be attributed to free bPEI,

which has been shown to improve transfection. Further transfection investigations
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showed that removing free bPEI from the immobilized complexes decreased SMD

transfection and negated any differences in transfection success between cells cultured

on PAA-RGD and on control substrates, suggesting that free bPEI may be beneficial for

SMD in cells cultured on bPEI-DNA complexes immobilized on PAA-RGD grafted to Ti.

This work demonstrates that substrate modification with PAA-RGD is a feasible method

to enhance SMD outcomes on Ti and may be used for future applications such as tissue

engineering, gene therapy, and diagnostics.

Keywords: substrate mediated, polymer brushes, poly(acrylic) acid, nonviral gene delivery, branched

polyethylenimine, RGD ligand

INTRODUCTION

Nonviral gene delivery is the delivery of exogenous genetic
material to cells or tissues, generally to produce a therapeutic
protein, with applications in gene therapy, tissue engineering
and regenerative medicine, and biomedical implants. Nonviral
gene delivery is often performed using cationic polymer or lipid
vectors complexed with DNA plasmids through electrostatic
interactions. The formed complexes are typically delivered using
a bolus method, which can be limited by mass transport to
the cells and leaves the complexes susceptible to processes
such as degradation and aggregation, thereby limiting gene
transfer (Al-Dosari and Gao, 2009). Substrate-mediated gene
delivery (SMD), also known as reverse transfection or solid-
phase delivery, is a method of immobilizing DNA complexes to
the substrate via covalent attachment or nonspecific adsorption.
Compared to bolus delivery, SMD has been shown to limit
complex aggregation and require a lower dose of DNA, as well
as increase transgene expression and the number of transfected
cells by increasing the local concentration of DNA within the
microenvironment around the cell and overcoming a mass
transport barrier to gene delivery efficiency (Pannier and Shea,
2004; Bengali et al., 2005, 2007; Pannier et al., 2005, 2008;
Rea et al., 2009a; Wang et al., 2010; Pannier and Segura,
2013). Although a promising deliverymethod, past investigations
into SMD have focused on using tissue engineering scaffolds
like poly(lactide-co-glycolide) (PLG) (Shea et al., 1999; Jang
et al., 2005) or traditional culturing substrates such as tissue
culture polystyrene (TCPS), with or without protein coatings
(Bengali et al., 2005, 2009; Rea et al., 2009b), but few SMD
studies have focused on the modification of commonly used
metal biomaterials (Zhang et al., 2015; Shekhar et al., 2018).
For example titanium (Ti) is one of the most commonly
used biomaterials (Elias et al., 2008), with many applications
that could benefit from nonviral SMD such as enhancing the
integration of bone implants by delivering genes to increase
osseointegration (Wang et al., 2015; Zhang et al., 2015), gene-
eluting stents to accelerate re-endothelialization (Sharif et al.,
2012), or developing implantable sensors protected by the local
delivery of anti-inflammatory and anti-fibrosis genes (Klueh
et al., 2014), but to date there have been few studies published
using SMD on Ti.

Along with the limited scope of biomaterials investigated
for nonviral SMD, further tunings of the substrate to enhance

DNA complex interactions and cell-material interactions are
necessary to make SMD more efficient and therapeutically
relevant. Polymer brushes are an attractive substratemodification
for SMD, as the brushes have stimuli-responsive and bioactive
properties (Krishnamoorthy et al., 2014; König et al., 2018), can
be engineered for controlled cellular response through covalent
binding of adhesions peptides (Psarra et al., 2015a, 2017; Alas
et al., 2017; Rosenthal et al., 2018), and can be used to control
the adsorption of proteins and release of biomolecules (Dai et al.,
2006; Hollmann and Czeslik, 2006; Chiang et al., 2011; Psarra
et al., 2015a; Bittrich et al., 2018). Polymer brushes are formed
by grafting polymer chains adjacently on a substrate, which
forces the chains to stretch from the substrate (Milner, 1991;
Brittain and Minko, 2007). There are two common approaches
for grafting polymer brushes, “grafting from” and “grafting
to.” For the “grafting from” approach, a substrate is modified
with initiator sites and then exposed to monomers, which are
polymerized on the surface, often by radical polymerization
strategies. In this “grafting from” approach, homogenous brushes
are formed with high brush density but are more difficult to
produce and characterize (Zdyrko and Luzinov, 2011). For the
“grafting to” method, polymer chains are formed before grafting
to the substrate and added to the surface via chemical reactions
between reactive groups on the surface and a functional end
group of the polymer (Zhao and Brittain, 2000). With the
“grafting to” approach, “pseudo”-brushes with more than one
grafting point per chain can be prepared with swelling properties
not distinguishable from end-grafted brushes (Aulich et al., 2010;
Bittrich et al., 2010). Although less dense compared to “grafting
from” brushes, the “grafting to” approach, in general, produces
homogeneous polymer brushes with a well-defined structure
and higher stability compared to physically adsorbed polymers
(Minko, 2006; Zdyrko and Luzinov, 2011; Li and Sheiko, 2015).

While methods to produce polymer brushes on silicon
and other materials (i.e., gold, stainless steel) are well-known
(Callewaert et al., 2005; Wu et al., 2007; Bittrich et al., 2010;
Chiang et al., 2011; Kasputis et al., 2013; Akkilic et al., 2016), in
our recent paper (Rosenthal et al., 2018), we showed for the first
time that the poly(acrylic) acid (PAA) brush “grafting to” process
is feasible on Ti substrates and the pH-responsive deprotonation
of the PAA brushes is maintained. Furthermore, following
the addition of the RGD-containing peptide GRGDS to the
brushes (PAA-RGD), cell adhesion of NIH/3T3 fibroblasts was
significantly enhanced compared to cells cultured on unmodified
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PAA brushes. Swollen deprotonated brushes have been shown
to produce negatively charged polymer chains at a pH of 7.2
(Psarra et al., 2015b), and that charge was further decreased by
the inclusion of RGD peptides (Psarra et al., 2017). Therefore,
given the negative charge of the PAA brushes and the inclusion
of the RGD peptide (Figure 1), we propose that Ti substrates
modified with PAA-RGD are an ideal platform for SMD, as PAA
brushes could improve the loading of cationic DNA complexes
through charge interactions and mediate cell adhesion via the
RGD peptide. In this work we expand on our previous study
by showing, for the first time, the feasibility of immobilizing
complexes formed with branched polyethylenimine and DNA
plasmids (bPEI-DNA) onto PAA-RGD brushes (Figure 1), and
characterize their release and transfection ability, as well as
propose a potential benefit of PAA-RGD brushes to allow for the
presentation of free bPEI to cells to improve gene delivery.

MATERIALS AND METHODS

Preparation of PAA Brushes on Ti Surface
and Covalent Bonding of RGD/RGE
Peptides
Throughout this study the substrates investigated include PAA
brushes on Ti (abbreviated as PAA), PAA brushes modified with
GRGDS on Ti (abbreviated as PAA-RGD), PAA brushes modified
with the control peptide RGES on Ti (abbreviated as PAA-RGE),
and Ti with no modification (termed Flat Ti) as a control. Ti
substrates (100 nm Ti, Grade 2, on a Si wafer) were purchased
from Platypus Technologies (Madison, WI) and used for flat
controls. Ti substrates for polymer brush functionalization were
produced by Fraunhofer IWS (Dresden, DE) by sputtering Ti
pellets (Grade 2) on Si wafer (Silicon Materials, Germany)

FIGURE 1 | bPEI-DNA complex immobilization on PAA brushes at pH 7.2.

Complex formation with DNA plasmid encoding for enhanced green

fluorescent protein (eGFP) and luciferase (LUC) and branched polyethylenimine

(bPEI) at a N/P ratio of 20 complexes with an overall positive charge (6mV).

These positively charged bPEI-DNA complexes can interact with negatively

charged, swollen PAA-RGD brushes (pH 7.2) on the substrate to transfect

NIH/3T3 fibroblasts cultured on the substrate.

or fabricated in an ultra-high deposition vacuum chamber
by electron beam evaporation of Ti pellets (Super Conductor
Materials, Inc., Tallman, NY) onto Si wafer substrates (University
Wafer, South Boston, MA) (Rosenthal et al., 2018). Samples were
functionalized with polymer brushes according to our previously
reported “grafting-to” method (Rosenthal et al., 2018). Briefly,
the Ti substrate was activated with oxygen plasma for 1min
(Plasma Cleaner PDC-002 with Plasmaflo PDC-FMG-2, Harrick
Plasma, USA). After activation, a solution composed of 0.02 wt
% of poly(glycidyl) methacrylate (PGMA, Mn = 17,500 g/mol,
Mw/Mn = 1.7, Polymer Source,Inc., Canada) in chloroform
(CHCl3, Fisher Scientific, UK) was spin-coated (Spin150 spin
coater, Polos, Putten, Netherlands). The PGMA layer was
annealed for 10min at 110◦C under vacuum, resulting in a
thin reactive anchoring layer with epoxy groups for the adjacent
grafting step. A PAA (Mn = 26,000 g/mol, Mw/Mn = 1.12,
Polymer Source, Inc., Canada) solution was prepared at 1.0 wt %
in ethanol (EtOH) and spin-coated onto the grafted PGMA layer.
The PAA layer was annealed at 80◦C for 30min under vacuum
to react to the epoxy groups of PGMA with COOH groups along
the chain of PAA, grafting the PAA chains in loops and tails via
ester bonds. Excess polymer was extracted by stirring the samples
in ethanol for 30min at room temperature and dried with a N2

flux. Peptide conjugation based on the carboxyl-amine-reaction
(EDC-NHS coupling) was performed as previously described
(Rosenthal et al., 2018) and all materials used for peptide
conjugation were purchased from Sigma-Aldrich (St. Louis,
MO). Briefly, buffers were prepared using boric acid, phosphate-
buffered saline (PBS), and 2-(N-morpholino)ethanesulfonic
acid (MES). The linear RGD-containing peptide GRGDS (or
RGE-containing peptide RGES) was covalently bound to PAA
brushes on Ti surfaces via activation of the PAA carboxy
groups with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide
hydrochloride (EDC) and N-hydroxysuccinimide (NHS) for
direct conjugation of carboxyl groups with the primary amines of
the peptides. For conjugation, PAA brushes on Ti substrates were
equilibrated in 0.1M MES at pH 6 for 10min. After aspiration
of this buffer, brushes were reacted with 0.5mL of 5mM EDC
solution and 0.5mL of 2mM NHS solution in 0.1M MES buffer
(pH 6) by gently shaking for 40min. Subsequently, a 1.0 mg/mL
solution of GRGDS (or RGES) in 0.1M borate buffer (pH 8) was
added to the activated PAA brush substrates. After gentle shaking
at room temperature for 16 h, the peptide solution was aspirated
and the GRGDS (or RGES)-modified samples were washed three
times by stirring in 0.1M PBS buffer at pH 7.4 for 3min.

DNA Complex Formation and
Characterization
Plasmid (pEGFP-LUC), that encodes both the enhanced green
fluorescent protein (EGFP) and firefly luciferase protein (LUC)
under the direction of a CMV promoter, was used in all studies
in this work. Plasmids were purified from bacteria culture using
Qiagen (Valencia, CA) reagents and stored in Tris–EDTA buffer
solution (10mM Tris, 1mM EDTA, pH 7.4) at −20◦C. For
DNA complex formation, 25 kDa branched polyethylenimine
(bPEI; Sigma-Aldrich) was dissolved in reduced serum medium
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OptiMEM (Fisher Scientific) and then added dropwise to DNA in
OptiMEM, vortexed for 10 s, and incubated for 15min at room
temperature. Complexes were formed at nitrogen/phosphate
(N/P) ratios of 3, 5, 10, or 20 in OptiMEMwith 2µg of DNA, and
delivered in a volume of 3mL for the spectroscopic ellipsometry
measurement and 300µL for all other studies, resulting in a DNA
amount of 1 µg/cm2 used for immobilization to substrates in all
studies.

The size and zeta potential of the bPEI/DNA complexes
were determined by dynamic light scattering and Laser Doppler
micro-electrophoresis, respectively, using a Zetasizer Nano ZS90
(Malvern Instruments Ltd, UK). Size measurements were taken
at 25◦C at a scattering angle of 90◦ and size reported as the Z-
average diameter (d. nm). Zeta potential measurements were also
taken at 25◦C using folded capillary cells with the measurement
mode set to automatic and the values reported in mV.

Ellipsometric Measurements for
Characterization of PAA Brushes and DNA
Complex Immobilization
Ellipsometric measurements were acquired using a Woollam
RC2 or a M2000-VI spectroscopic ellipsometer (both from
J.A. Woollam, Co., Inc., Lincoln, NE, USA) to confirm brush
parameters, as previously described (Rosenthal et al., 2018).
Briefly, for dry brushes the ellipsometric data, 1 (relative phase
shift) and tan 9 (relative amplitude ratio), were recorded at
wavelengths (λ) of 380–1,700 nm and four angles of incidence
(AOI: 45, 55, 65, 75◦). To confirm brush swelling and
functionality (indicative of deprotonation), substrates were first
sterilized with EtOH and then the pH-reactive brush swelling was
performed by adding OptiMEM (pH 7.2) to dry PAA brushes.
Brush swelling within OptiMEM was measured at AOI 70◦ with
a batch cuvette (TSL Spectrosil, Hellma, Muellheim, Germany),
at wavelengths λ = 400–1,200 nm. The brush film thickness
was quantified via the change in 9 and 1, which was used to
calculate the swelling degree (swollen brush thickness divided by
dry brush thickness). Brush swelling was also measured before
and after the addition of RGD and RGE peptides, as well as before
and after complex immobilization, to determine the amount
of peptide and complexes immobilized. These measurements
were all performed in situ. Experimental data were modeled
in CompleteEASE software (Version 4.64, J.A. Woollam Co.,
Inc., Lincoln, NE, U.S.A.) as described in our previous work
(Rosenthal et al., 2018). The amounts of the peptides RGD and
RGE at the PAA brush surface were calculated with a modified de
Feijter approach (Equation 1) (König et al., 2018):

Ŵpeptide (or complexes) = dbrush
ncomb−nbrush

(

dn
dc

) + dadd
ncomb−namb

(

dn
dc

)

(1)

In this approach, changes in the layer parameters in-situ
refractive index and in-situ thickness (ncomb, dcomb) after covalent
peptide immobilization are referenced to the swollen state of
the surface (nbrush, dbrush) before immobilization, which are the
parameters of the swollen PAA brushes (Equation 1). The amount

of DNA complexes immobilized to the Flat Ti substrate was
calculated by the de Feijter equation (De Feijter et al., 1978), while
amounts of complexed DNA on PAA and PAA-RGD brushes
were calculated again with the modified de Feijter approach
(Equation 1), referencing the in-situ layer parameters (ncomb,
dcomb) of the combined complexes and brushes to the parameters
(nbrush, dbrush) of the swollen PAA brushes or the parameters of
the swollen PAA-RGD brush, respectively. The refractive index
increment dn/dc = 0.185 cm3/g was used for the RGD peptides
(Rosenthal et al., 2018) and dn/dc = 0.183 cm3/g for the DNA
complexes (Tumolo et al., 2004).

DNA Complex Immobilization and Release
Measured by Radiolabeled DNA
Plasmid radiolabeled with [α-32P]dATP (Perkin Elmer, Akron,
OH) was used to measure the immobilization of DNA complexes
on Flat Ti, PAA, and PAA-RGD substrates. To label the DNA
plasmid, a nick translation kit (Invitrogen, Waltham, MA) was
used following the manufacturer’s protocol. The radiolabeled
DNA was diluted with unlabeled DNA to a final concentration
(0.806 µg/µL) and used to form DNA complexes, as described
above. First, the substrates were prepared by cutting with a
diamond-tipped scribe into pieces that fit into FalconTM 48 well
tissue culture plates (Fisher Scientific). Images of each substrate
used for immobilization studies were taken prior to complex
immobilization and analyzed with NIH ImageJ Processing
Software to determine the surface area (cm2). Next, the substrates
were bathed in 70% EtOH and then transferred to a new sterile
well plate to air dry in a sterile biosafety cabinet. Complexes
(300 µl in OptiMEM as described above) were immobilized by
incubation on substrates for 2 h. After complex immobilization,
the complex solution was removed and the substrates were
washed twice with PBS. The quantity of DNA immobilized was
determined by immersing substrates in a scintillation cocktail
(5mL, Thomas Scientific, Swedesboro, NJ) formeasurement with
a Packard Tri-Carb 1900 TR Liquid Scintillation Counter. Counts
per minute were correlated to the DNA amount using a standard
curve and the amount of DNA immobilized to each sample was
normalized to the surface area (cm2).

The release profiles of immobilized DNA complexes from
PAA, PAA-RGD, or Flat Ti were determined by incubation of
the DNA-loaded substrates with either reduced serumOptiMEM,
serum-containing cell growth media, or conditioned growth
media (from flasks of NIH/3T3 fibroblasts cultured for 48 h) at
37◦C in a humid chamber. At time 0, substrates with immobilized
complexes were moved to a fresh well before adding the media
to the substrates. At predetermined time points (0.5, 4, 24, and
48 h), the total volume of media was removed and counts per
minutes weremeasured using a Packard Tri-Carb 1900 TR Liquid
Scintillation Counter. An equal volume of fresh warmed media
was then added to each substrate and the release was allowed
to continue. At the final time point, the DNA remaining on
the samples was also determined. The amount of DNA released
from the substrate was determined from the measured counts
per minutes using a standard curve with known amounts of
DNA. The percentage of DNA released was calculated by dividing
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the cumulative counts released (at each time point) by the total
counts initially on the substrate (determined by mass balance);
thus, the release curves represent the percentage of DNA released
relative to the initial amount bound to each surface.

Cell Culture and Substrate Mediated Gene
Delivery
Transfection studies were performed with murine fibroblast
NIH/3T3 cells (ATCC, Manassas, VA) cultured in Dulbecco’s
Modified Eagle’s Media (DMEM) completed with 10%
Calf Serum (Colorado Serum Co., Denver, CO) and 1%
Penicillin/Streptomycin. Fibroblasts were cultured at 37◦C and
5% CO2 and passaged every 2 days with 0.05% Trypsin-EDTA.
For transfection studies, substrates were cut and sterilized
(as described above), bPEI-DNA complexes were formed
and immobilized for 2 h onto the four substrate conditions
(Flat Ti, PAA, PAA-RGD, and PAA-RGE), after which the
solutions containing the DNA complexes were removed and
then substrates were rinsed with OptiMEM before cells were
seeded onto the substrates at a density of 50,000 cells/mL.
Cells were cultured for 48 h at 37◦C and 5% CO2 and then
the substrates were transferred into a new well plate and lysed
using 200 µL of 1X reporter lysis buffer (Promega, Madison,
WI). As previously described in Hamann et al. (2018) and Kelly
et al. (2016), transfection levels were quantified by measuring
the luciferase activity using the Luciferase Assay System
(Promega) and a luminometer (Turner Designs, Sunnyvale, CA).
Luciferase activity (measured as relative light units, or RLUs) was
normalized to the total protein amount determined with a Pierce
BCA protein assay (Pierce, Rockford, IL), as seen in previous
investigations.

Cell Adhesion of NIH/3T3 Fibroblasts
Cultured on PAA Brushes With Immobilized
Complexes
To determine the effect of complex immobilization on the
cellular response of NIH/3T3 fibroblasts cultured on bPEI-
DNA complexes immobilized to PAA, PAA-RGD, PAA-RGE,
and Flat Ti, calcein staining (Life Technologies, Carlsbad, CA)
was used to visualize cellular adhesion and quantify the cell
counts per area (cm2) at 48 h following cell seeding. Briefly,
surfaces with adhered cells were transferred into new well plates
prior to the assays. Substrates for staining were rinsed with
PBS and then stained for 20min in phenol-free DMEM (Fisher
Scientific) with 2µM Calcein-AM. Substrates were imaged with
a Leica DMI 3000B fluorescencemicroscope (LeicaMicrosystems
CMS GmbH, Wetzlar, Germany) and five images per well of
three replicate wells were acquired using a 5x objective. Image
analyses were performed using NIH ImageJ Processing Software
to quantify cell counts.

Assessing the Contribution of Free bPEI on
Transfection Success With SMD
To assess the contribution of free bPEI on transfection success
in NIH/3T3 fibroblasts cultured on bPEI-DNA complexes
immobilized to PAA, PAA-RGD, PAA-RGE, and Flat Ti,
complexes were first formed as previously described, and then

filtered to remove free (uncomplexed) bPEI using a Vivaspin R©6
Centrifugal Concentrator (Vivaproducts, Inc., Littleton, MA).
Complexes were filtered by centrifuging the solution at 3,000 g
for 3min at 4◦C. The DNA complexes trapped in the filter
were eluted using an equal volume of OptiMEM. These filtered
complexes were immobilized onto the substrates (PAA, PAA-
RGD, PAA-RGE, and Flat Ti) and cells were cultured on these
substrates and transfection was assessed, as described above.

To further understand the effect of free bPEI on transfection
success in NIH/3T3 fibroblasts cultured on bPEI-DNA
complexes immobilized to PAA, PAA-RGD, PAA-RGE, and
Flat Ti, SMD transfection was performed with a controlled
dosage of free bPEI. Filtered complexes formed as previously
described received an addition of 1 or 5 µg of free bPEI during
immobilization to the substrate, and then transfection was
performed and assessed as described above.

Cell Viability of NIH/3T3 Fibroblasts
Cultured on PAA Brushes With Immobilized
Filtered and Unfiltered Complexes
To understand the effect of immobilized complexes (and
free bPEI) on the cellular response, the metabolic activity
of cultured NIH/3T3 fibroblasts was assessed using a Water
Soluble Tetrazolium (WST-1) salt cell proliferation assay kit
(Roche, Indianapolis, IN), according to manufacturer’s protocol,
to quantify the cell viability at 48 h following cell seeding.
Briefly, cells cultured on PAA-RGD, PAA-RGE, PAA, and Ti
substrates (immobilized with unfiltered or filtered complexes)
were transferred into new well plates prior to the assays.
Cells were washed with 1× PBS and incubated at 37◦C
in WST-1 solution (10 vol% WST-1 reagent in phenol-free
Dulbecco’s Modified Eagle Medium) for 3 h. After incubation,
absorbance values were measured on an Epoch Microplate
spectrophotometer (BioTek, Winooski, VT) at 430 nm and
corrected with 690 nm as a reference wavelength, and then
normalized per area (cm2).

Statistical Analysis
All experiments were performed in triplicate on duplicate days,
and values are reported from one representative experiment as
means with standard error of the mean. Statistical comparisons
were performed with Prism 5.0 graphing and statistical analysis
software (Graph Pad, La Jolla, CA) at 95% confidence level (α =

0.05), with the statistical tests used specified in the figure legends.

RESULTS

PAA Brush Film Characterization
The objective of this paper was to apply SMD to a Ti substrate
functionalized with PAA brushes, further functionalized with
RGD (or control RGE) peptides (Figure 1). First, the PAA
brush parameters and pH swelling behavior were measured and
modeled with spectroscopic ellipsometry to confirm the brush
film thickness and swelling functionality of PAA brushes before
the immobilization of bPEI-DNA complexes. Similar to our
previous study where we functionalized Ti with PAA brushes
(Rosenthal et al., 2018), the average film thickness for the
activated oxide groups (dTiO2[nm]) after plasma activation, the
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PGMA anchoring layer (dPGMA [nm]), and PAA brush thickness
(dPAA [nm]) were 0.8 ± 0.6, 1.9 ± 0.3, and 5.5 ± 0.3 nm,
respectively (Table 1). After the addition of OptiMEM (pH 7.2;
the reduced serum media used for complex immobilization),
PAA brushes swelled to an average thickness of 23 ± 3.0 nm
(average swelling degree of 4.0± 1.0, Table 2), which is similar to
the swelling in 0.1M PBS (pH 7.4) reported in our previous study
(Rosenthal et al., 2018). Swelling measurements were also used to
calculate RGD and RGE conjugation densities using Equation (1)
(1.3 ± 0.2 and 1.0 ± 0.2 µg/cm2, respectively; Table 3), which
is similar to the RGD density we reported in our previous study
(Rosenthal et al., 2018).

TABLE 1 | PAA brushes formed on Ti substrates.

Replicate dTiO2 [nm] dPGMA [nm] dPAA [nm]

1 0.2 2.3 5.1

2 0.7 1.8 5.7

3 1.4 1.7 5.6

Average 0.8 ± 0.6 1.9 ± 0.3 5.5 ± 0.3

The “grafting-to” process was monitored with spectroscopic ellipsometry at each step

of the PAA brush formation. The first step is plasma activation for 1min to form oxide

groups (dTiO2 [nm]), and then a PGMA anchoring layer was spin-coated onto the activated

substrate, and annealed at 110◦C for 10min under vacuum (dPGMA [nm]). Next, a layer of

PAA was spin-coated onto the PGMA anchoring layer and annealed at 80◦C for 30min

under vacuum. Finally, the excess polymer was extracted with EtOH for 30min at room

temperature (dPAA [nm]). Average values for each thickness are reported for three replicate

substrates

TABLE 2 | PAA brushes swelling in OptiMEM.

Replicate

number

dPAA[nm] in cell dbrush in OptiMEM [nm] Swelling

degree

1 5.2 26.0 5.0

2 6.7 23.2 3.4

3 6.3 19.7 3.1

Average 6.1 ± 0.8 23 ± 3.0 4.0 ± 1.0

Swelling was performed to measure the increase in brush film thickness and calculate the

swelling degree. The first measurement of the dry PAA brushes on Ti was performed in

the cuvette (dPAA [nm] in cell). Next, the brushes were swollen by adding OptiMEM (pH

7.2) to PAA brushes (dbrush in OptiMEM [nm]). The swelling degree was calculated as a

ratio of swollen thickness to dry thickness. Three replicate samples were measured and

the average is given with the standard deviation of the data.

TABLE 3 | PAA Brushes with covalently bound peptide.

Replicate ΓRGD[µg/cm²] ΓRGE[µg/cm²]

1 1.5 1.0

2 1.2 1.2

3 1.2 0.9

Average 1.3 ± 0.2 1.0 ± 0.2

Brush swelling of PAA brushes before and after covalent binding of GRGDS or RGES

(c = 1 mg/ml) to PAA brushes were used to calculate the immobilized peptide amount

(ΓRGD/RGE [µg/cm²]) using a modified de Feijter approach. Three replicate samples were

measured and the average is given with the standard deviation of the data.

Substrate Mediated Gene Delivery
After assessing the brush formation and swelling behavior,
the ability of the substrates modified with PAA brushes
to support SMD was measured in NIH/3T3 fibroblasts and
reported as transgene expression normalized to total amount
of protein. Transfection was investigated as a function of the
N/P ratio used to form bPEI-DNA complexes, which resulted in
complexes with increasingly positive zeta potential and smaller
diameter as the N/P ratio increased (Supplementary Figure 1),
as expected. Transfection success increased for cells cultured on
all substrates as the N/P ratio increased (Figure 2). Transfection
with complexes formed at the lowest N/P ratio of 3 showed
no significant difference in transfection success comparing
all substrates (Figure 2A). While there was no significant
difference in transfection measured in cells on all substrates with
immobilized complexes formed at an N/P ratio of 5, transfection
was increased by one order of magnitude for cells cultured on
PAA-RGD compared to those cultured on PAA-RGE, PAA, and
Flat Ti (Figure 2B). Finally, forming complexes at the higher
N/P ratios of 10 and 20 resulted in a significant increase in
transfection success (by up to an order of magnitude) in cells
cultured on complexes immobilized to PAA-RGD compared to
those cultured on PAA (Figure 2C; ∗∗P ≤ 0.01; Figure 2D; ∗P
< 0.05). Given that complexes formed at the N/P ratio of 20
exhibited the highest transgene expression, further investigations
on immobilization, release, and transfection were performed
using this parameter.

Immobilization and Release of DNA-bPEI
Complexes
To determine if the amount of DNA adsorbed into each substrate
was the primary determinant for increased transfection success
in cells cultured on PAA-RGD, the immobilization and release
of bPEI-DNA complexes were analyzed. DNA complexes were
loaded onto PAA, PAA-RGD, and Flat Ti substrates and the
adsorbed amounts were measured by monitoring radiolabeled
DNA plasmids with scintillation counting or total organic
mass (bPEI, free and complexed to DNA, as well as DNA)
with spectroscopic ellipsometry modeling. For immobilization
determined with radioactivity, the amount of DNA adsorbed
to PAA, PAA-RGD, and Flat Ti was 0.055 ± 0.007, 0.048 ±

0.008, and 0.055 ± 0.008 µg/cm2, respectively (Figure 3A);
these amounts were not significantly different among the three
substrates. For ellipsometry monitoring, the total mass of organic
material adsorbed to the substrates was 0.93 ± 0.03 µg/cm2

for PAA, 0.97 ± 0.09 µg/cm2 for PAA-RGD, and 0.053 ±

0.003 µg/cm2 for Flat Ti, which showed a significant increase
of adsorbed mass (i.e., DNA and free and complexed bPEI) on
PAA-RGD and PAA compared to Flat Ti (Figure 3B; ∗∗∗∗P ≤

0.0001).
To determine the effect of electrostatic and hydrophobic

interactions between bPEI-DNA complexes and the substrates,
and the contribution of complex release from substrates to
transfection profiles, DNA release was quantified at multiple time
points up to 48 h, using three different media: reduced serum
OptiMEM, serum-containing cell growth media, or conditioned
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FIGURE 2 | Substrate-mediated gene delivery of bPEI-DNA complexes in NIH/3T3 fibroblasts with varied N/P ratios. NIH/3T3 fibroblasts were cultured onto

bPEI-DNA complexes formed with 2 µg of DNA, at N/P of 3, 5, 10, or 20, and immobilized to the substrate for transfection. SMD studies were analyzed using

one-way ANOVA with Tukey’s post-test, and cells cultured on complexes at N/P ratio of 3 or 5 has no statistical significance in transfection success for all substrates

(A,B), whereas cells cultured on immobilized complexes at N/P ratio of 10 showed a statistically significant increase in transfection of cells cultured on PAA-RGD

compared to those cultured on PAA (**P ≤ 0.01) (C), and cells cultured on immobilized complexes at N/P ratio of 20 had a statistically significant increase in

transfection of cells cultured on PAA-RGD compared to those cultured on PAA (*P ≤ 0.05) (D).

FIGURE 3 | DNA complexes immobilized to PAA brushes compared to Flat Ti. For complexes formed at an N/P ratio of 20, the amount of material immobilized onto

substrates measured by (A) radiolabeled DNA via scintillation counting and (B) total mass (bPEI and DNA plasmid, free and complexed) by spectroscopic ellipsometry.

Statistical analyses were completed using one-way ANOVA with Tukey’s post-test. There were no significant differences in the amount of DNA immobilized as

measured by radioactivity (A), but there were statistically significant differences between the amount of total mass on PAA-RGD and PAA substrates compared to Flat

Ti (****P ≤ 0.0001) (B). A dotted line marks the expected mass of bPEI-DNA complexes immobilized to the substrate based on the N/P ratio and quantification of

DNA by radioactivity (B).

growth media (from flasks of cultured cells). The average
percentages of total DNA released in OptiMEM from PAA-RGD,
PAA, and Flat Ti after 48 h were 7.0 ± 1.5, 14 ± 2.6, and 13
± 2.3%, respectively (Figure 4A), and there was no significant
difference in the release of bPEI-DNA complexes from any of
the substrates. The average percentage of total DNA released in

serum-containing growth media for PAA-RGD, PAA, and Flat
Ti at 48 h were 15 ± 1.0, 26 ± 2.9, and 19 ± 2.6%, respectively
(Figure 4B), and the release of bPEI-DNA complexes from PAA
substrates was significantly increased (11 ± 3.1%; ∗P ≤ 0.05)
compared to the release from PAA-RGD at the final time point
when statistics were performed. Finally, the average percentage of
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total DNA released in conditioned growth media for PAA-RGD,
PAA, and Flat Ti at 48 h were 11 ± 1.2, 16 ± 1.0, and 17 ± 1.3%,
respectively (Figure 4C) and the release of bPEI-DNA complexes
from Flat Ti was significantly increased (5.0 ± 1.6%; ∗P ≤ 0.05)
compared to the release from PAA-RGD.

Cellular Adhesion and Viability on
DNA-bPEI Complexes Immobilized on
Substrates
The cellular responses of NIH/3T3 fibroblasts cultured onto PAA
brushes with immobilized bPEI-DNA complexes were assessed,
including the number of cells adhered per area (cm2) and
cellular morphology. Morphologically, the cells were spread
with filamentous extensions characteristic of fibrotic cells on
all substrates investigated (Figures 5A–D). No evidence of
cytotoxicity was visually detected from these investigations. The
number of live cells per area (cm2) was higher on PAA-RGD
compared to all other surfaces, which was significant compared
to the number of cells adhered to PAA (∗∗∗P ≤ 0.001) and
Flat Ti (∗∗P ≤ 0.01) (Figure 5E). Cell viability assays were
performed in cells cultured on PAA-RGD, PAA-RGE, PAA,
and Ti substrates with immobilized complexes (N/P 20), which
showed no statistical differences in the viability of cells cultured
on PAA-RGD, PAA-RGE, PAA, or Flat Ti (Figure 5F) after 48 h.

Investigating the Effect of Free bPEI on
Substrate Mediated Gene Delivery
Given that DNA adsorption studies suggested that all
surfaces loaded the same amount of DNA and ellipsometric
measurements suggested there was additional organic matter
(i.e., free bPEI) adsorbed to the substrates with PAA brushes, the
role of free bPEI on SMD on polymer brush-modified substrates
was investigated. To study the effect of free bPEI on transfection,
free (i.e., uncomplexed) bPEI was filtered out from the formed
bPEI-DNA complexes prior to immobilization to substrates for
SMD. After the removal of free bPEI, there were no significant
differences in transfection for NIH/3T3 fibroblasts cultured
on any of the substrates (Figure 6). Furthermore, comparing
the results of transfection using complexes (formed at N/P 20)
with or without free bPEI (Figure 2D vs. Figure 6) showed
that transfection mediated by filtered complexes was nearly
two orders of magnitude lower than transfection mediated by
unfiltered complexes with the free bPEI. Furthermore, similar
to the cell viability measured on substrates with immobilized
(unfiltered) complexes (Figure 5F), there were no statistical
differences in the viability of fibroblasts cultured on PAA-RGD,
PAA-RGE, PAA, or Flat Ti with immobilized filtered complexes
(Supplementary Figure 2).

To further elucidate the effect of free bPEI on transfection
success, the addition of free bPEI was controlled by adding
free bPEI to filtered complexes during immobilization to the
different substrates. Two different amounts of free bPEI (1 or 5
µg) were added onto the substrate with the filtered complexes
and immobilization was allowed to proceed for 2 h as described
above. By defining the mass of DNA required in the final complex
solution, the desired N/P ratio, and using the molecular weight of

bPEI and the pEGFP-LUC plasmid, we were able to calculate the
approximatemasses of bPEI needed to form complexes at various
N/P ratios. Furthermore, based on previous literature suggesting
an N/P ratio of 3 results in fully complexed DNA with little to
no excess free bPEI (Yue et al., 2011a), we were able to estimate
the mass of complexed and free PEI present in the complex
solution when forming complexes at varying N/P ratios. Using
these calculations, the dose of free bPEI added was determined
by subtracting the calculated mass of complexed bPEI required
to complex 0.05 µg DNA (0.13 µg) from the calculated total
mass of bPEI required (0.89 µg) for complexes formed at a
N/P ratio of 20. Additionally, the calculated difference between
the total mass immobilized to PAA(0.93 µg) and PAA-RGD
(0.97 µg), both measured by ellipsometry (Figure 3B), and the
mass accounted for by the complexed DNA and PEI (0.07 µg,
calculated based on the mass of radiolabeled DNA measured
plus the mass of PEI required to fully complex that mass of
DNA) suggests an amount of ∼1 µg of free PEI in solution (0.86
and 0.90 µg, respectively; Figure 3). For all substrates, although
there were no statistical differences, increasing the amount of
free bPEI increased the normalized transgene expression in a
dose-dependent manner by one order of magnitude in cells
cultured on substrates dosed with 5 µg compared to those dosed
with 1 µg (Figure 7B vs. Figure 7A), except those on PAA.
When investigating the substrate response by dose, there was
no significant difference in transfection success for cells cultured
on all substrates dosed with 1 µg of free bPEI (Figure 7A), but
substrates dosed with 5 µg of free bPEI showed transfection
one order of magnitude higher for cells cultured on PAA-
RGD, PAA-RGE, and Flat Ti when compared to those on PAA
(Figure 7B).

DISCUSSION

The objective of this work was to investigate the immobilization
of DNA complexes to substrates functionalized with polymer
brushes, taking advantage of the high negative surface charge
of the brushes to attract and load cationic complexes, while
also presenting cell-binding ligands to potentially influence
the cellular response. Previous studies have indicated that
the chemical properties of the substrate (e.g., self-assembly
monolayers, polymer films, protein coatings) affect DNA
complex binding and the efficiency of SMD (Segura et al., 2003;
Bengali et al., 2005, 2007, 2009; Pannier et al., 2005, 2008; Li et al.,
2009; Rea et al., 2009b; Zhang et al., 2009; Holmes and Tabrizian,
2013; Hu and Zheng, 2015), but many of those studies have
focused on substrates like TCPS or glass, rather than biomaterials
with possible clinical applications such as Ti. In this paper,
we investigated the ability of chemically modified Ti substrates
(with PAA brushes with or without peptide modifications) to
support SMD. Building off our previous work, where we showed
that PAA brushes grafted to Ti maintain swelling functionality
and the addition of the RGD peptide enhances cell attachment
compared to unmodified PAA (Rosenthal et al., 2018), herein
we hypothesized that the highly negative charge of PAA (Psarra
et al., 2015b) could allow for improved DNA complex adsorption
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FIGURE 4 | DNA complexes released from PAA and PAA-RGD brush substrates, compared to Flat Ti. The amount of DNA released from the substrates with

OptiMEM (A), serum-containing growth media (B), or conditioned DMEM media (C) at 37◦C was measured by radiolabeled DNA via scintillation counting. Release

experiments were analyzed using one-way ANOVA with Tukey’s post-tests at the final timepoint, which showed a statistically significant difference between PAA-RGD

and PAA (*P ≤ 0.05) for release with growth media (B), and a statistically significant difference between PAA-RGD compared to Flat Ti (*P ≤ 0.05) for release with

conditioned media (C).

and that cells cultured on PAA-RGD would have increased
transfection success with SMD.

After determining that brushes were grafted and modified
similarly to our previous investigation (Tables 1–3) (Rosenthal
et al., 2018), we investigated the ability of PAA-RGD brushes to
support SMD in NIH/3T3 fibroblasts. Fibroblasts were chosen
given their frequent use in transfection studies (Rea et al.,
2009a; Ryoo et al., 2010; Blocker et al., 2011; Kasputis and
Pannier, 2012), and their role in wound healing. Fibroblasts
cultured on PAA-RGD with immobilized bPEI-DNA complexes
(for N/P ratios of 5, 10, 20) had the highest transfection
compared to cells cultured on all other surfaces (PAA-RGE,
PAA, Flat Ti). Transfection was significantly increased in cells
cultured on PAA-RGD compared to cells cultured on PAA
on surfaces when complexes formed at N/P 10 and N/P 20
were immobilized (Figure 2); complexes formed at these ratios
exhibited the smallest diameters and highest positive charges
(Supplementary Figure 1), two attributes that have previously
been shown to produce high transfection success (Kunath et al.,
2003). Using the highest N/P ratio, experiments were then
performed to investigate the amount of DNA immobilized
on and released from the substrate to determine if enhanced
SMD on PAA-RGD substrates could be attributed to increased
DNA adsorption (and thus dose presented to the cells), which
is often what contributes to improved transfection success
seen in SMD (Kasputis et al., 2016). Given that complexes
formed at a N/P ratio of 20 exhibited the highest overall
positive charge compared to those formed at lower N/P ratios
(Supplementary Figure 1) and both PAA brushes (Psarra et al.,
2015b) and the RGD peptide GRGDS (Psarra et al., 2017)
have a negative charge under physiological conditions (pH 7.2;
Figure 1), we hypothesized that PAA brushes would increase the
amount of DNA loading. However, there was no increase in the
amount of radiolabeled DNA immobilized onto PAA and PAA-
RGD substrates compared to Flat Ti (Figure 3A). Furthermore,
the amount of immobilized radiolabeled DNA measured on
PAA substrates was within the range, albeit low, of previously
reported studies using other substrates for SMD (Segura et al.,
2003; Bengali et al., 2005; Pannier et al., 2005, 2008; Holmes
and Tabrizian, 2013), further suggesting that PAA brushes do
not increase the DNA loading capacity of the substrate. After

analyzing the immobilization of complexes with radiolabeled
DNA onto PAA, PAA-RGD, and Flat Ti substrates, the release
of DNA was similarly measured with radioactivity using three
different media conditions (OptiMEM, growth media, and
conditioned media) to investigate the effect of electrostatics and
competitive protein binding on the release of DNA from PAA
brushes. The release profiles here are comparable to previously
reported studies (Bengali et al., 2005; Pannier et al., 2005, 2008;
Zhang et al., 2009; Holmes and Tabrizian, 2013), suggesting that
the brushes provide sufficient release for transfection success.
Three release media were used with different amounts of serum
components (OptiMEM<growth culture media<conditioned
media) and cellular metabolites (i.e., conditioned media) that
aid release (Pannier et al., 2008). We hypothesized the amount
of DNA released should correlate to the respective increase in
serum/metabolites, yet the release profiles were similar regardless
of release media (Figure 4), suggesting that the combined effect
of competitive protein binding and electrostatics were similar
for all media types. In addition, within each media condition,
while there were some significant differences in release profiles
among the different substrates, it is unlikely that the difference
in the amount of DNA released accounted for the difference in
transfection outcomes seen in Figure 2D.

Finally, cellular adhesion and viability in the presence of
immobilized complexes on the substrates were investigated, as
these are cellular behaviors known to influence transfection
success (Pannier et al., 2005, 2008; Kasputis and Pannier,
2012). Cellular adhesion was enhanced significantly in cells
cultured on PAA-RGD compared to those cultured on PAA
and Flat Ti (Figure 5), which confirms results from our
previous work (Rosenthal et al., 2018) and is expected due
to the known effect of RGD on cell adhesion (Hersel et al.,
2003). However, it should be noted that in comparison
to cellular adhesion on these substrates without complexes
(Rosenthal et al., 2018), cell adhesion was increased in this
work on all substrates (i.e., PAA-RGD, PAA-RGE, PAA, Flat
Ti) with immobilized complexes (Figures 5A–D), suggesting
that immobilized bPEI-DNA complexes can increase cellular
adhesion, even on nonfouling substrates (i.e., PAA-RGE, PAA).
Similar observations have been made on other nonfouling
substrates used for SMD (Pannier et al., 2008), and the
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FIGURE 5 | Adhesion and viability quantification of NIH/3T3 fibroblasts cultured on PAA brushes with bPEI-DNA complexes. Measurements of the adhesion and

viability of NIH/3T3 mouse fibroblasts were acquired using calcein staining and water soluble tetrazolium (WST-1), respectively, with cells cultured on PAA brushes with

bPEI-DNA complexes immobilized to the substrate, 48 h following cell seeding. For assessment of adhesion, cells were stained with calcein (2µM) for 15min before

imaging. Cells cultured on all substrates exhibited healthy spreading and morphologies, as seen in representative images for PAA-RGD (A), PAA-RGE (B), PAA (C),

and Flat Ti (D) (Scale bar = 200µm). Images were quantified for the live cells per area (cm2) using NIH ImageJ Processing Software. Statistical analysis was

performed using one-way ANOVA with Tukey’s post-tests, which showed a statistically significant difference between the number of live cells/cm2 on PAA-RGD

compared to those on PAA (***P ≤ 0.001) and Flat Ti (**P ≤ 0.01) (E). WST-1 quantification of cell viability after 48 hours was measured at an absorbance of λ =

430 nm and normalized to the area (cm2) and statistical analysis using a one-way ANOVA with Tukey’s post-tests showed no statistical differences (F).

promotion of cell adhesion on immobilized complexes has been
attributed to possible interactions between serum proteins and
the immobilized positively charged complexes (Pannier et al.,
2008), which subsequently can promote adhesion. Along with
the increase in positive charge of the substrate by the cationic
complexes, the addition of peptides has been shown to alter
the charge of the substrate (Psarra et al., 2017), which also may
explain the similarity in cell adhesion on PAA-RGD and PAA-
RGE substrates (Figure 5E), due to increased protein adsorption

to the complexes immobilized on both substrates, allowing for
cell adhesion.

Although complex immobilization significantly increased the
number of adhered cells onto PAA-RGD compared to PAA
and Flat Ti (Figure 5E), there was no significant difference
in the viability of cells cultured on PAA-RGD, PAA-RGE,
PAA, or Flat Ti (Figure 5F). While the presence of RGD
was shown to improve cell adhesion and transfection, cell
viability was shown to be similar and high on all substrates
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(Figure 5F). Many previous investigations of RGD-modified
substrates have shown that cellular adhesion and viability are
often related (Nuttelman et al., 2005; Salinas and Anseth,
2008; Bacakova et al., 2011). However, the difference between
the results for adhesion and viability assays reported here is
presumably due to the processing required for each technique,
as adhesion staining has more wash steps in comparison
to the WST-1 assay, which presumably results in only
the most adhered cells remaining for image analysis. Like
the investigations of DNA immobilization and release, the
investigations of the cellular response also do not sufficiently
explain the difference in transfection outcomes seen in
Figure 2D.

FIGURE 6 | Substrate-mediated gene delivery of filtered bPEI-DNA complexes

in NIH/3T3 fibroblasts. Fibroblasts were cultured onto filtered bPEI-DNA

complexes immobilized onto the substrate for transfection. Filtered samples

were centrifuged through a Vivaspin6 filter to remove free bPEI and the

complexes were eluted from the filter. SMD studies were analyzed using

one-way ANOVA with Tukey’s post-test, and the results showed no significant

difference between transfection success in cells cultured on immobilized

filtered complexes on any substrate.

Given that traditional indicators of successful SMD
transfection (DNA immobilization and DNA release from
the substrate, and the cellular response) did not explain the
differences seen in SMD transfection among the different
substrates, and adsorption measurements made using
radiolabeled DNA only account for the mass of DNA adsorbed
to the substrates (i.e., bPEI cannot be accounted for using
radiolabeled DNA), we explored ellipsometric methods to
measure and model the total amount of adsorbed mass (DNA
and bPEI, both free and complexed). Using ellipsometry we
showed that there was a significant increase in total mass
immobilized onto the substrates modified with PAA and PAA-
RGD compared to the mass on Flat Ti (Figure 3B). Given that it
requires∼0.02µg of 25 kDA bPEI to fully complex 0.05µg DNA
(based on the calculations as described above using the molecular
weight of bPEI and DNA and N/P ratio of 3), which would result
in a theoretical total mass of 0.07 µg for the fully formed
complexes used in the adsorption studies (Figure 3B, dotted
line), and there was nearly no difference in the amount of DNA
measured on Flat Ti (Figure 3A) and total mass measured on
Flat Ti (Figure 3B); we hypothesize ellipsometric measurements
are underestimating the total mass on the Flat Ti, which has been
shown in previous investigations with complex immobilization
monitored by ellipsometry (Kasputis et al., 2014). However,
even with underestimation, the increased mass measured on
PAA-RGD and PAA compared to Flat Ti is large, and may be
from the adsorption of complexed bPEI but also free bPEI, as free
bPEI in the complexing solution has been previously suggested
as a component of the immobilized material in SMD (Pannier
et al., 2008). Based on the assumptions that a N/P of 3 will have
no free bPEI (Yue et al., 2011a) and calculations to determine
the polymer present in a solution formed for complexes at an
N/P of 20, we estimate a mass of approximately 0.76 µg of
free bPEI was present in the complex solution used for taking
ellipsometric measurements, which is similar to the change in
mass for substrates modified with PAA and PAA-RGD compared
to Flat Ti (0.86 and 0.90 µg, respectively; Figure 3).

FIGURE 7 | Substrate-mediated gene delivery of filtered bPEI-DNA complexes in NIH/3T3 fibroblasts with the addition of free bPEI. Fibroblasts were cultured onto

filtered bPEI-DNA complexes immobilized to the substrate for transfection. At the time of complex immobilization, 1 (A) or 5 (B) µg of bPEI (1 µg/µL) was added

concurrently to the substrates. SMD studies were analyzed using one-way ANOVA with Tukey’s post-test, and there was no significant difference between transfection

success in cells cultured with additional 1 or 5 µg free PEI.
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In bolus studies, free bPEI has been proposed to increase
overall gene transfection efficiency by up to hundreds of fold
(Boeckle et al., 2004; Deng et al., 2009; Dai et al., 2011; Yue et al.,
2011a,b; Bonner et al., 2013). Specifically, free bPEI has been
suggested to reduce charge interactions that repeal complexes
from the cellular membrane, reduce lysosomal entrapment of
complexes, assist translocation of complexes through the nuclear
membrane, enhance transcription, and facilitate translocation
of mRNA (Cai et al., 2016). The role of free bPEI has not
been significantly investigated for SMD, given that traditional
SMD methods usually perform a rinse after immobilization of
DNA complexes to remove loosely bound complexes (Pannier
et al., 2005, 2008; Bengali et al., 2009). Therefore, rinsing the
substrates would presumably result in free bPEI also being
washed away from the surface before performing SMD, as seen
on bare Flat Ti in this current study (Figure 3B). However,
the highly negative PAA brushes could allow for the capture of
the positively charged free bPEI to the substrates, which may
improve subsequent transfection. Therefore, we hypothesized
that the increase in transfection seen in cells cultured on bPEI-
DNA complexes immobilized to PAA-RGD may be related to
free bPEI attracted to the brushes. To test this, we investigated
the effect of free bPEI on transfection success by performing
transfection with filtered complexes (i.e., free bPEI removed)
and complexes formed with different N/P ratios to tune
the amount of free bPEI in the complexing solution, which
has previously been shown to dramatically affect transfection
success (Dai et al., 2011; Bonner et al., 2013). The removal
of all free bPEI through a size-exclusion membrane resulted
in a substantial decrease in transfection by two orders of
magnitude compared to transfection performed with unfiltered
complexes (Figure 6 vs. Figure 2) and transfection was not
different amongst the investigated substrates (Figure 6), which
supported our hypothesis that the presence of free bPEI may
enhance transfection. These results are similar to those for bolus
delivery studies that show the presence of free bPEI enhances
transfection success (Boeckle et al., 2004; Deng et al., 2009;
Dai et al., 2011; Yue et al., 2011a,b; Bonner et al., 2013),
thereby suggesting that free bPEI could also enhance transfection
success in SMD on PAA-RGD, possibly through bPEI adsorption
and subsequent release from the PAA-RGD surface. To further
investigate the role of free bPEI in SMD, investigations were
performed using the filtered complexes immobilized to the
substrate, but with the addition of free bPEI (1 or 5 µg) to
the complexing solution during immobilization. As previously
stated, the doses of free bPEI were determined by the estimated
amount of free bPEI in the complexing solution, which was
calculated to be about 0.76 µg, and the difference in mass
calculated for substrates modified with PAA and PAA-RGD
compared to Flat Ti (0.86 and 0.90 µg, respectively; Figure 3).
Therefore, a dose close to the calculated amount (1 µg) and
a dosage in excess (5 µg) were chosen as free bPEI amounts
to immobilize with filtered complexes. Transfection outcomes
were then assessed, which showed an increase in transfection
success for all surfaces, except for PAA, in a dose-dependent
manner (Figure 7), further validating the importance of free bPEI
for enhancing transfection. In addition to studies with filtered

complexes, the dose of free bPEI can also be controlled simply
by forming complexes at various N/P ratios. Complexes formed
at a N/P of 3 have been shown to have little to no free bPEI (Yue
et al., 2011a) and showed low SMD transfection success in our
investigation. Conversely, complexes at higher ratios (i.e., 5, 10,
20) have been shown to have more free bPEI (Dai et al., 2011),
and in our investigations showed an increase in transfection
levels that corresponded with the increase of the N/P ratio,
thereby supporting our hypothesis that transfection is influenced
by the presence of free bPEI on the substrates. Furthermore,
viability was also studied on substrates with immobilized
filtered complexes (Supplementary Figure 2), which showed,
like in viability assays on substrates with immobilized unfiltered
complexes (Figure 5F), that there was no statistical difference
in viability as a function of substrate modification. More
importantly, cell viability was not statistically different on filtered
complexes (Supplemental Figure 2) compared to unfiltered
complexes (Figure 5F), which suggests that free bPEI (which is
present in unfiltered complexes immobilized on substrates in
Figure 5F), does not negatively impact the cellular response to
the substrate.

Finally, in addition to free bPEI, the RGD ligand on PAA-
RGD may be aiding SMD transfection success with complexes
at higher N/P ratios (Figures 2B–D), given the transfection was
enhanced in cells cultured on complexes immobilized to PAA-
RGD substrates compared to PAA-RGE. Fibroblasts (e.g., the
NIH/3T3 cell line) are known to express integrin α5β1 (Dalton
et al., 1995), which is known to aid cell adhesion through
binding to RGD (Massia and Hubbell, 1991; Suehiro et al.,
2000; Humphries et al., 2006), and supports the results of our
previous work (Rosenthal et al., 2018) and work shown here
(Figure 5E) that show an increased number of cell attached to
PAA-RGD compared to the control surfaces. Furthermore, the
inclusion of the RGD ligand may activate signaling cascades
that regulate cell processes pivotal for transfection, such as
endocytosis and internalization (Hersel et al., 2003; Garcia, 2005).
Integrin binding to RGD ligands has been shown to improve
bolus nonviral gene delivery (Kong et al., 2007) and SMD (Rea
et al., 2009b), via the RGD motif on fibronectin coatings for
both types of delivery (Bengali et al., 2007; Dhaliwal et al.,
2010, 2012). However, the role of the RGD ligand in our system
here requires further investigations to understand its role in
transfection success.

CONCLUSIONS

In our previous study, we showed that PAA brushes can
be “grafted-to” Ti substrates and RGD can be conjugated
to these brushes to support cell adhesion (Rosenthal et al.,
2018). Herein, we investigated those PAA-RGD modified Ti
substrates as a platform for improving SMD to NIH/3T3
fibroblasts using immobilized bPEI-DNA complexes. From our
studies, we found that transfection was significantly increased
on PAA-RGD modified substrates, but this improvement in
transfection could not be attributed to the amount of DNA
immobilized to the surface or the DNA release profile. Instead,
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we found that substrates modified with PAA brushes adsorb
more overall mass, which may be attributed to immobilization
of free and complexed bPEI, as measured with spectroscopic
ellipsometry. To confirm the role of free bPEI in SMD on PAA-
RGD substrates, transfection investigations were performed with
filtered complexes and controlled dosages of free bPEI. The
results of these transfection investigations with filtered complexes
suggest that free bPEI is beneficial to transfection success and
PAA brushes allow for the adsorption and presentation of free
bPEI in a SMD format. To our knowledge, this paper is one of
the first reports using polymer brushes grafted to a Ti substrate
for SMD and the conclusions from our findings suggest that
these substrates can enhance the cellular response to transfection
via SMD. Therefore, future studies will investigate the adjuvant-
like effect of free bPEI in cells cultured on PAA-RGD brush
substrates through further optimization of the dosage and
complex formation, as well as investigations into the intracellular
mechanisms affected by RGD and free bPEI that are involved
in transfection efficiency (i.e., endocytosis, trafficking). Overall,
the findings of this article suggest that the modification of Ti
with PAA-RGD may be a future platform for applications that
could be improved by gene delivery such as biomedical devices,
implantable sensors, and diagnostics tools.
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Supplementary Figure 1 | Zeta potential and sizing of bPEI-DNA complexes with

varied N/P ratios. bPEI-DNA complexes were formed with 2 µg of DNA at N/P of

3, 5, 10, or 20, and the zeta potential (A) and size (B) of the complexes were

determined by dynamic light scattering and Laser Doppler micro-electrophoresis,

respectively, at room temperature. Statistical differences between the

measurements for zeta potential (and complex diameter) were analyzed using

one-way ANOVA with Tukey’s post-test. The zeta potential measurements (A)

showed a significant increase in the charge of all complexes formed at the higher

N/P ratios (5, 10, and 20) compared to those formed at N/P of 3 (∗∗∗∗P ≤

0.0001), as well as a significant increase in the charge of complexes formed at

N/P of 10 and 20, compared to those formed at a N/P of 5 (∗P < 0.05, and ∗∗P ≤

0.01, respectively). The sizing of the complexes (B) showed that complexes

formed at a N/P ratio of 3 were significantly larger than those formed at all other

N/P ratios (5, 10, and 20) (∗∗∗P ≤ 0.001, ∗∗P ≤ 0.01, and ∗∗∗P ≤ 0.001

respectively), and complexes formed at a N/P ratio of 20 were significantly smaller

than those formed at a N/P of 5 and 10 (∗∗∗∗P ≤ 0.0001).

Supplementary Figure 2 | Viability quantification of NIH/3T3 fibroblasts cultured

on PAA brushes with filtered bPEI-DNA complexes. The measurement of the

viability of NIH/3T3 mouse fibroblasts was acquired using water soluble

tetrazolium (WST-1) with cells cultured on PAA brushes with filtered bPEI-DNA

complexes immobilized to the substrate, 48 h following cell seeding. WST-1

quantification of cell viability was measured at an absorbance of λ = 430 nm and

normalized to the area (cm2). Statistical analysis was performed using one-way

ANOVA with Tukey’s post-tests, which showed no statistical differences.

REFERENCES

Akkilic, N., Molenaar, R., Claessens, M. M. A. E., Blum, C., and de Vos, W.
M. (2016). Monitoring the switching of single BSA-ATTO 488 molecules
covalently end-attached to a pH-responsive PAA brush. Langmuir 32,
8803–8811. doi: 10.1021/acs.langmuir.6b01064

Alas, G. R., Agarwal, R., Collard, D. M., and Garcia, A. J. (2017). Peptide-
functionalized poly[oligo(ethylene glycol) methacrylate] brushes on dopamine-
coated stainless steel for controlled cell adhesion. Acta Biomater. 59, 108–116.
doi: 10.1016/j.actbio.2017.06.033

Al-Dosari, M. S., and Gao, X. (2009). Nonviral gene delivery: principle, limitations,
and recent progress. AAPS 11, 671–681. doi: 10.1208/s12248-009-9143-y

Aulich, D., Hoy, O., Luzinov, I., Brucher, M., Hergenroder, R., Bittrich, E., et al.
(2010). In situ studies on the switching behavior of ultrathin poly(acrylic

acid) polyelectrolyte brushes in different aqueous environments. Langmuir 26,
12926–12932. doi: 10.1021/la101762f

Bacakova, L., Filova, E., Parizek, M., Ruml, T., and Svorcik, V. (2011).
Modulation of cell adhesion, proliferation and differentiation on
materials designed for body implants. Biotechnol. Adv. 29, 739–767.
doi: 10.1016/j.biotechadv.2011.06.004

Bengali, Z., Pannier, A. K., Segura, T., Anderson, B. C., Jang, J. H., Mustoe, T.
A., et al. (2005). Gene delivery through cell culture substrate adsorbed DNA
complexes. Biotechnol. Bioeng. 90, 290–302. doi: 10.1002/bit.20393

Bengali, Z., Rea, J. C., Gibly, R. F., and Shea, L. D. (2009). Efficacy of immobilized
polyplexes and lipoplexes for substrate-mediated gene delivery. Biotechnol.
Bioeng. 102, 1679–1691. doi: 10.1002/bit.22212

Bengali, Z., Rea, J. C., and Shea, L. D. (2007). Gene expression and internalization
following vector adsorption to immobilized proteins: dependence on

Frontiers in Chemistry | www.frontiersin.org 13 February 2019 | Volume 7 | Article 51

https://www.frontiersin.org/articles/10.3389/fchem.2019.00051/full#supplementary-material
https://doi.org/10.1021/acs.langmuir.6b01064
https://doi.org/10.1016/j.actbio.2017.06.033
https://doi.org/10.1208/s12248-009-9143-y
https://doi.org/10.1021/la101762f
https://doi.org/10.1016/j.biotechadv.2011.06.004
https://doi.org/10.1002/bit.20393
https://doi.org/10.1002/bit.22212
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Mantz et al. Gene Delivery on Polymer Brushes

protein identity and density. J. Gene Med. 9, 668–678. doi: 10.1002/
jgm.1058

Bittrich, E., Mele, F., Janke, A., Simon, F., Eichhorn, K. J., Voit, B., et al. (2018).
Interactions of bioactive molecules with thin dendritic glycopolymer layers.
Biointerphases 13, 06d405. doi: 10.1116/1.5042703

Bittrich, E., Rodenhausen, K. B., Eichhorn, K. J., Hofmann, T., Schubert, M.,
Stamm, M., et al. (2010). Protein adsorption on and swelling of polyelectrolyte
brushes: a simultaneous ellipsometry-quartz crystal microbalance study.
Biointerphases 5, 159–167. doi: 10.1116/1.3530841

Blocker, K. M., Kiick, K. L., and Sullivan, M. O. (2011). Surface immobilization
of plasmid DNA with a cell-responsive tether for substrate-mediated gene
delivery. Langmuir 27, 2739–2746. doi: 10.1021/la104313z

Boeckle, S., von Gersdorff, K., van der Piepen, S., Culmsee, C., Wagner, E.,
and Ogris, M. (2004). Purification of polyethylenimine polyplexes highlights
the role of free polycations in gene transfer. J. Gene Med. 6, 1102–1111.
doi: 10.1002/jgm.598

Bonner, D. K., Zhao, X., Buss, H., Langer, R., and Hammond, P. T. (2013).
Crosslinked linear polyethyleneimine enhances delivery of DNA to the
cytoplasm. J. Control. Release. 167, 101–107. doi: 10.1016/j.jconrel.2012.09.004

Brittain, W. J., and Minko, S. (2007). A structural definition of polymer brushes. J.
Polym. Sci. Part A: Polym. Chem. 45, 3505–3512. doi: 10.1002/pola.22180

Cai, J., Yue, Y., Wang, Y., Jin, Z., Jin, F., and Wu, C. (2016). Quantitative study
of effects of free cationic chains on gene transfection in different intracellular
stages. J. Control. Release. 238, 71–79. doi: 10.1016/j.jconrel.2016.07.031

Callewaert, M., Rouxhet, P. G., and Boulangé-Petermann, L. (2005). Modifying
stainless steel surfaces with responsive polymers: effect of PS-PAA and
PNIPAAMon cell adhesion and oil removal. J. Adhes. Sci. Technol. 19, 765–781.
doi: 10.1163/1568561054867837

Chiang, E. N., Dong, R., Ober, C. K., and Baird, B. A. (2011). Cellular
responses to patterned poly(acrylic acid) brushes. Langmuir 27, 7016–7023.
doi: 10.1021/la200093e

Dai, J., Bao, Z., Sun, L., Hong, S. U., Baker, G. L., and Bruening, M. L. (2006). High-
capacity binding of proteins by poly(acrylic acid) brushes and their derivatives.
Langmuir 22, 4274–4281. doi: 10.1021/la0600550

Dai, Z., Gjetting, T., Mattebjerg, M. A., Wu, C., and Andresen, T. L. (2011).
Elucidating the interplay between DNA-condensing and free polycations in
gene transfection through a mechanistic study of linear and branched PEI.
Biomaterials 32, 8626–8634. doi: 10.1016/j.biomaterials.2011.07.044

Dalton, S. L., Scharf, E., Briesewitz, R., Marcantonio, E. E., and Assoian, R. K.
(1995). Cell adhesion to extracellular matrix regulates the life cycle of integrins.
Mol. Biol. Cell. 6, 1781–1791. doi: 10.1091/mbc.6.12.1781

De Feijter, J. A., Benjamins, J., and Veer, F. A. (1978). Ellipsometry as a tool to study
the adsorption behavior of synthetic and biopolymers at the air-water interface.
Biopolymers 17, 1759–1772. doi: 10.1002/bip.1978.360170711

Deng, R., Yue, Y., Jin, F., Chen, Y., Kung, H. F., Lin, M. C., et al. (2009). Revisit the
complexation of PEI and DNA - how to make low cytotoxic and highly efficient
PEI gene transfection non-viral vectors with a controllable chain length and
structure? J Control. Release. 140, 40–46. doi: 10.1016/j.jconrel.2009.07.009

Dhaliwal, A., Maldonado, M., Han, Z., and Segura, T. (2010). Differential
uptake of DNA-poly(ethylenimine) polyplexes in cells cultured on
collagen and fibronectin surfaces. Acta Biomater. 6, 3436–3447.
doi: 10.1016/j.actbio.2010.03.038

Dhaliwal, A., Maldonado, M., Lin, C., and Segura, T. (2012). Cellular cytoskeleton
dynamics modulates non-viral gene delivery through RhoGTPases. PLoS ONE
7:e35046. doi: 10.1371/journal.pone.0035046

Elias, C. N., Lima, J. H. C., Valiev, R., and Meyers, M. A. (2008).
Biomedical applications of titanium and its alloys. JOM 60, 46–49.
doi: 10.1007/s11837-008-0031-1

Garcia, A. J. (2005). Get a grip: integrins in cell-biomaterial interactions.
Biomaterials 26, 7525–7529. doi: 10.1016/j.biomaterials.2005.05.029

Hamann, A., Broad, K., Nguyen, A., and Pannier, A. K. (2018). Mechanisms
of unprimed and dexamethasone-primed nonviral gene delivery to
human mesenchymal stem cells. Biotechnol. Bioeng. 116, 427–443.
doi: 10.1002/bit.26870

Hersel, U., Dahmen, C., and Kessler, H. (2003). RGD modified polymers:
biomaterials for stimulated cell adhesion and beyond. Biomaterials 24,
4385–4415. doi: 10.1016/S0142-9612(03)00343-0

Hollmann, O., and Czeslik, C. (2006). Characterization of a planar poly(acrylic
acid) brush as a materials coating for controlled protein immobilization.
Langmuir 22, 3300–3305. doi: 10.1021/la053110y

Holmes, C. A., and Tabrizian, M. (2013). Substrate-mediated gene delivery from
glycol-chitosan/hyaluronic acid polyelectrolyte multilayer films. ACS Appl.

Mater. Inter. 5, 524–531. doi: 10.1021/am303029k
Hu, W. W., and Zheng, Y. R. (2015). Electrophoretic deposition to promote layer-

by-layer assembly for in situ gene delivery application. Colloids Surf. B. 133,
171–178. doi: 10.1016/j.colsurfb.2015.05.046

Humphries, J. D., Byron, A., and Humphries, M. J. (2006). Integrin ligands. J. Cell
Sci. 119, 3901–3903. doi: 10.1242/jcs.03098

Jang, J. H., Rives, C. B., and Shea, L. D. (2005). Plasmid delivery in vivo from porous
tissue-engineering scaffolds: transgene expression and cellular transfection.
Mol. Ther. 12, 475–483. doi: 10.1016/j.ymthe.2005.03.036

Kasputis, T., Farris, E., Guerreiro, G., Taylor, J., and Pannier, A. K. (2016).
“Substrate-mediated gene delivery,” in The World Scientific Encyclopedia of

Nanomedicine and Bioengineering I, ed. Y. Cheng (Singapore: World Scientific
Publishing Co.), 219–260.

Kasputis, T., Koenig, M., Schmidt, D., Sekora, D., Rodenhausen, K. B., Eichhorn,
K.-J., et al. (2013). Slanted columnar thin films prepared by glancing angle
deposition functionalized with polyacrylic acid polymer brushes. J. Phys. Chem.
117, 13971–13980. doi: 10.1021/jp402055h

Kasputis, T., and Pannier, A. K. (2012). The role of surface chemistry-induced cell
characteristics on nonviral gene delivery to mouse fibroblasts. J. Biol. Eng. 6:17.
doi: 10.1186/1754-1611-6-17

Kasputis, T., Pieper, A., Schubert, M., and Pannier, A. (2014). Dynamic analysis
of DNA nanoparticle immobilization to model biomaterial substrates using
combinatorial spectroscopic ellipsometry and quartz crystal microbalance with
dissipation. Thin Solid Films 571, 637–643. doi: 10.1016/j.tsf.2014.01.046

Kelly, A. M., Plautz, S. A., Zempleni, J., and Pannier, A. K. (2016). Glucocorticoid
cell priming enhances transfection outcomes in adult human mesenchymal
stem cells.Mol. Ther. 24, 331–341. doi: 10.1038/mt.2015.195

Klueh, U., Antar, O., Qiao, Y., and Kreutzer, D. L. (2014). Role of vascular
networks in extending glucose sensor function: impact of angiogenesis and
lymphangiogenesis on continuous glucose monitoring in vivo. J. Biomed. Mater

Res. Part A 102, 3512–3522. doi: 10.1002/jbm.a.35031
Kong, H. J., Hsiong, S., and Mooney, D. J. (2007). Nanoscale cell adhesion ligand

presentation regulates nonviral gene delivery and expression. Nano Lett. 7,
161–166. doi: 10.1021/nl062485g

König, U., Psarra, E., Guskova, O., Bittrich, E., Eichhorn, K. J., Müller, M.,
et al. (2018). Bioinspired thermoresponsive nanoscaled coatings: tailor-made
polymer brushes with bioconjugated arginine-glycine-aspartic acid-peptides.
Biointerphases 13:021002. doi: 10.1116/1.5020129

Krishnamoorthy, M., Hakobyan, S., Ramstedt, M., and Gautrot, J. E. (2014).
Surface-initiated polymer brushes in the biomedical field: applications in
membrane science, biosensing, cell culture, regenerative medicine and
antibacterial coatings. Chem. Rev. 114, 10976–11026. doi: 10.1021/cr500252u

Kunath, K., von Harpe, A., Fischer, D., Petersen, H., Bickel, U., Voigt, K., et al.
(2003). Low-molecular-weight polyethylenimine as a non-viral vector for DNA
delivery: comparison of physicochemical properties, transfection efficiency and
in vivo distribution with high-molecular-weight polyethylenimine. J. Control
Release 89, 113–125. doi: 10.1016/S0168-3659(03)00076-2

Li, Y., and Sheiko, S. S. (2015). “Molecular mechanochemistry: engineering
and implications of inherently strained architectures,” in Polymer
Mechanochemistry, ed R. Boulatov (Basel: Springer), 1–36.

Li, Y. Q., Li, F., Zhang, X. Z., Cheng, S. X., and Zhuo, R. X. (2009).
Three-dimensional fast-degrading polymer films for delivery of calcium
phosphate/DNA co-precipitates in solid-phase transfection. J. Mater. Chem. 19,
6733–6739. doi: 10.1039/b906003k

Massia, S. P., and Hubbell, J. A. (1991). An RGD spacing of 440 nm is
sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm
for focal contact and stress fiber formation. J. Cell Biol. 114, 1089–1100.
doi: 10.1083/jcb.114.5.1089

Milner, S. T. (1991). Polymer brushes. Science 251, 905–914.
doi: 10.1126/science.251.4996.905

Minko, S. (2006). Responsive polymer brushes. J. Macromol. Sci. Polym. Rev. 46,
397–420. doi: 10.1080/15583720600945402

Frontiers in Chemistry | www.frontiersin.org 14 February 2019 | Volume 7 | Article 51

https://doi.org/10.1002/jgm.1058
https://doi.org/10.1116/1.5042703
https://doi.org/10.1116/1.3530841
https://doi.org/10.1021/la104313z
https://doi.org/10.1002/jgm.598
https://doi.org/10.1016/j.jconrel.2012.09.004
https://doi.org/10.1002/pola.22180
https://doi.org/10.1016/j.jconrel.2016.07.031
https://doi.org/10.1163/1568561054867837
https://doi.org/10.1021/la200093e
https://doi.org/10.1021/la0600550
https://doi.org/10.1016/j.biomaterials.2011.07.044
https://doi.org/10.1091/mbc.6.12.1781
https://doi.org/10.1002/bip.1978.360170711
https://doi.org/10.1016/j.jconrel.2009.07.009
https://doi.org/10.1016/j.actbio.2010.03.038
https://doi.org/10.1371/journal.pone.0035046
https://doi.org/10.1007/s11837-008-0031-1
https://doi.org/10.1016/j.biomaterials.2005.05.029
https://doi.org/10.1002/bit.26870
https://doi.org/10.1016/S0142-9612(03)00343-0
https://doi.org/10.1021/la053110y
https://doi.org/10.1021/am303029k
https://doi.org/10.1016/j.colsurfb.2015.05.046
https://doi.org/10.1242/jcs.03098
https://doi.org/10.1016/j.ymthe.2005.03.036
https://doi.org/10.1021/jp402055h
https://doi.org/10.1186/1754-1611-6-17
https://doi.org/10.1016/j.tsf.2014.01.046
https://doi.org/10.1038/mt.2015.195
https://doi.org/10.1002/jbm.a.35031
https://doi.org/10.1021/nl062485g
https://doi.org/10.1116/1.5020129
https://doi.org/10.1021/cr500252u
https://doi.org/10.1016/S0168-3659(03)00076-2
https://doi.org/10.1039/b906003k
https://doi.org/10.1083/jcb.114.5.1089
https://doi.org/10.1126/science.251.4996.905
https://doi.org/10.1080/15583720600945402
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Mantz et al. Gene Delivery on Polymer Brushes

Nuttelman, C. R., Tripodi, M. C., and Anseth, K. S. (2005). Synthetic
hydrogel niches that promote hMSC viability. Matrix Biol. 24, 208–218.
doi: 10.1016/j.matbio.2005.03.004

Pannier, A. K., Anderson, B. C., and Shea, L. D. (2005). Substrate-mediated delivery
from self-assembled monolayers: effect of surface ionization, hydrophilicity,
and patterning. Acta Biomater. 1, 511–522. doi: 10.1016/j.actbio.2005.05.004

Pannier, A. K., and Segura, T. (2013). Surface- and hydrogel-mediated
delivery of nucleic acid nanoparticles. Methods Mol. Biol. 948, 149–169.
doi: 10.1007/978-1-62703-140-0_11

Pannier, A. K., and Shea, L. D. (2004). Controlled release systems for DNA delivery.
Mol. Ther. 10, 19–26. doi: 10.1016/j.ymthe.2004.03.020

Pannier, A. K., Wieland, J. A., and Shea, L. D. (2008). Surface polyethylene glycol
enhances substrate-mediated gene delivery by nonspecifically immobilized
complexes. Acta Biomater. 4, 26–39. doi: 10.1016/j.actbio.2007.08.008

Psarra, E., Foster, E., Konig, U., You, J., Ueda, Y., Eichhorn, K. J.,
et al. (2015a). Growth factor-bearing polymer brushes–versatile bioactive
substrates influencing cell response. Biomacromolecules 16, 3530–3542.
doi: 10.1021/acs.biomac.5b00967

Psarra, E., König, U., Mueller, M., Bittrich, E., Eichhorn, K. J., Welzel,
P. B., et al. (2017). In situ monitoring of linear RGD-peptide
bioconjugation with nanoscale polymer brushes. ACS Omega 2, 946–958.
doi: 10.1021/acsomega.6b00450

Psarra, E., König, U., Ueda, Y., Bellmann, C., Janke, A., Bittrich, E., et al. (2015b).
Nanostructured biointerfaces: nanoarchitectonics of thermoresponsive
polymer brushes impact protein adsorption and cell adhesion. ACS Appl.

Mater. Interfaces 7, 12516–12529. doi: 10.1021/am508161q
Rea, J. C., Gibly, R. F., Barron, A. E., and Shea, L. D. (2009a). Self-assembling

peptide-lipoplexes for substrate-mediated gene delivery. Acta Biomater. 5,
903–912. doi: 10.1016/j.actbio.2008.10.003

Rea, J. C., Gibly, R. F., Davis, N. E., Barron, A. E., and Shea, L. D. (2009b).
Engineering surfaces for substrate-mediated gene delivery using recombinant
proteins. Biomacromolecules 10, 2779–2786. doi: 10.1021/bm900628e

Rosenthal, A., Mantz, A., Nguyen, A., Bittrich, E., Schubert, E., Schubert, M.,
et al. (2018). Biofunctionalization of titanium substrates using nanoscale
polymer brushes with cell adhesion peptides. J Phys. Chem. B 122, 6543–6550.
doi: 10.1021/acs.jpcb.8b02407

Ryoo, S. R., Kim, Y. K., Kim, M. H., and Min, D. H. (2010). Behaviors of NIH-3T3
fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and
gene transfection studies. ACS Nano. 4, 6587–6598. doi: 10.1021/nn1018279

Salinas, C. N., and Anseth, K. S. (2008). The influence of the RGD peptide motif
and its contextual presentation in PEG gels on human mesenchymal stem cell
viability. J. Tissue Eng. Regen. Med. 2, 296–304. doi: 10.1002/term.95

Segura, T., Volk, M. J., and Shea, L. D. (2003). Substrate-mediated DNA delivery:
role of the cationic polymer structure and extent of modification. J. Control
Release 93, 69–84. doi: 10.1016/j.jconrel.2003.08.003

Sharif, F., Hynes, S. O., McCullagh, K. J., Ganley, S., Greiser, U., McHugh, P., et al.
(2012). Gene-eluting stents: non-viral, liposome-based gene delivery of eNOS
to the blood vessel wall in vivo results in enhanced endothelialization but does
not reduce restenosis in a hypercholesterolemic model.Gene Ther. 19, 321–328.
doi: 10.1038/gt.2011.92

Shea, L. D., Smiley, E., Bonadio, J., and Mooney, D. J. (1999). DNA delivery
from polymer matrices for tissue engineering. Nat. Biotechnol. 17, 551–554.
doi: 10.1038/9853

Shekhar, S., Lee, B., Roy, A., Candiello, J., and Kumta, P. N. (2018).
Surface mediated non-viral gene transfection on titanium substrates using

polymer electrolyte and nanostructured silicate substituted calcium phosphate
pDNA (NanoSiCaPs) composites. Mater. Today Commun. 16, 169–173.
doi: 10.1016/j.mtcomm.2018.05.008

Suehiro, K., Mizuguchi, J., Nishiyama, K., Iwanaga, S., Farrell, D. H., and
Ohtaki, S. (2000). Fibrinogen binds to integrin alpha(5)beta(1) via the
carboxyl-terminal RGD site of the Aalpha-chain. J. Biochem. 128, 705–710.
doi: 10.1093/oxfordjournals.jbchem.a022804

Tumolo, T., Angnes, L., and Baptista, M. S. (2004). Determination of the refractive
index increment (dn/dc) of molecule and macromolecule solutions by surface
plasmon resonance.Anal. Biochem. 333, 273–279. doi: 10.1016/j.ab.2004.06.010

Wang, C. H. K., Jiang, S. Y., and Pun, S. H. (2010). Localized cell uptake of his-
tagged polyplexes immobilized on NTA self-assembled monolayers. Langmuir

26, 15445–15452. doi: 10.1021/la1025203
Wang, Z., Wu, G., Feng, Z., Bai, S., Dong, Y., and Zhao, Y. (2015).

Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded
chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation
of human bone marrow mesenchymal stem cells. Int. J Nanomed. 10,
6675–6687. doi: 10.2147/IJN.S94689
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