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A Brønsted acid catalyzed intramolecular cyclization of N-Cbz-protected diazoketones,

derived from α-amino acids, is described. The reaction proceeds under metal-free

conditions and is promoted by ecofriendly silica-supported HClO4 as the catalyst and

methanol as the solvent. This transformation enables the short synthesis of various

1,3-oxazinane-2,5-diones under mild reaction conditions and in good yields (up to 90%).

The set-up is very simple; by just mixing all reagents together with no work-up necessary

before purification, this protocol takes a greener approach.
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INTRODUCTION

Oxazinanones (six-membered cyclic urethanes) are an important class of heterocycles, which
have been found to be key structural units in bioactive natural products and pharmaceutically
important molecules. Some important examples are the anti-HIV drug Efavirenz (Staszewski et al.,
1999) and the potent anticancer agent Maytansine (Rao et al., 1979) and its synthetic derivatives
Maytansinoid (Blanc et al., 2011) and Ansamitocin P3 (Taft et al., 2012). Other significant biological
activities described for this class of compounds are: antibacterial (Zanatta et al., 2006; Wang,
2008), anti-influenza (Kuznetsov et al., 2017), anti-inflammatory (Ullrich et al., 2004), antidiabetes
[11β HSD1 inhibitor (BI 135585)] (Zhuang et al., 2017), antithrombotic (Jin and Confalone,
2000), antialzheimer (Fuchs et al., 2007), and enzyme inhibiting [(Latli et al., 2017); Figure 1].
Furthermore, they are extensively used as valuable synthetic intermediates in fine chemicals
(Woodward et al., 1981; Wang et al., 1982; Hilborn et al., 2001; Takahata et al., 2002; Wang and
Tunge, 2006), cosmetics (Zofchak, 2003), and pesticides (Hino et al., 2008). They have also showed
wide applications as ligands, auxiliaries and as phase transfer catalysts in organic synthesis (Davies
et al., 2006; Lait et al., 2007).

Thus, it is therefore not surprising that various synthetic methods for the construction of
1,3-oxazinan-2-one rings have been reported in literature. Among many current methodologies,
reactions of CO2 (Kubota et al., 1993) or Urea (Bhanage et al., 2004) with amino alcohols,
cycloaddition of isocyanates to oxetanes (Fujiwara et al., 1989), coupling of the adducts from
the reaction between (Bu3Sn)2O and haloalkyl isocyanate with alkyl halides (Shibata et al.,
1989), iodine-mediated (Fujita et al., 1997; Quinodoz et al., 2017), gold-catalyzed (Robles-Machín
et al., 2006; Alcaide et al., 2013), Pd/sulfoxide-catalyzed C-H amination (Rice and White, 2009),
intramolecular Michael addition reactions (Hirama et al., 1985) of appropriately functionalized
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FIGURE 1 | Bioactive molecules bearing an oxazinanone moiety.

FIGURE 2 | Synthetic methodologies for the preparation of oxazinanone moiety.

allylic/homoallylic/homopropargyl/allenic carbamates, tethered
aminohydroxylation (Donohoe et al., 2007), Brønsted base
catalyzed Michael addition of α-isocyanoacetates to phenyl
vinyl selenones (followed by domino oxidative cyclization)
(Buyck et al., 2014) and Brønsted acid catalyzed elimination-
cycloaddition reaction of Boc-imines (Uddin et al., 2011) are the
most interesting ones (Figure 2).

All the methodologies described above are dedicated to 1,3-
oxazinan-2-one skeletons, whereas only a few are reported for
the preparation of 1,3-oxazinane-2,5-dione rings. Hanessian and
Fu (2001) described the synthesis of this class of compound as a
by-product, during a rhodium catalyzed N-H insertion reaction
of a diazoketone (synthesis of 3-azetidinones) (Figure 3A).
Pansare et al. (1999) treated a diazoketone derived from N-Cbz-
phenylalanine with scandium triflate (Sc(OTf)3) as the catalyst
in methanol, to obtain the oxazinanedione moiety (Figure 3B).
Similarly, Jung and Avery (2006) successfully demonstrated the
synthesis of cyclic urethanes from Boc-protected diazocarbonyl
substrates through an indium triflate [In(OTf)3] catalyzed
intramolecular cyclization reaction (Figure 3C).

Despite the fact that numerous modern, scalable and greener
methods to obtain diazo carbonyl compounds were described

over the past few years (Maas, 2009; Burtoloso et al., 2018), the
development of greener, metal free, cheap and easily available
catalysts for the efficient synthesis of cyclic urethanes is still
highly desirable. With these demands in mind, efforts have been
made to use Brønsted acid catalyst as a potential substitute
to perform the desired transformation. It is also important to
mention here that our group has developed an O-H insertion
reaction into diazo carbonyl compounds employing Bronsted
acid catalyst (Gallo and Burtoloso, 2018). Herein, we report the
operationally simple and greener synthesis of 1,3-oxazinane-2,5-
diones via silica-supported HClO4 catalyzed cyclization of N-
Cbz-protected diazoketones, offering an interesting alternative to
the existing synthetic methods (Figure 3D). Although a single
example for a N-Boc-protected diazoketone was described by
Jung and Avery with HClO4, the conditions employed (solution
in CH2Cl2) and the use of Boc protecting group makes this
method less interesting when compared to the present protocol.

RESULTS AND DISCUSSION

We initiated our screening by selecting phenylalanine-derived
N-Cbz-protected diazoketone 1 as the model substrate and
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FIGURE 3 | Synthesis of 1,3-oxazinane-2,5-diones from diazo carbonyl moieties. (A) Through rhodium catalyzed N-H insertion reaction; (B) through scandium triflate

(Sc(OTf)3) catalyzed insertion reaction; (C) through an indium triflate [In(OTf)3] catalyzed intramolecular cyclization reaction; (D) through silica-supported HClO4

catalyzed intramolecular cyclization reaction.

TABLE 1 | Optimization conditions of Bronsted acid cyclization of diazo

carbonyl 1.

Entry Catalyst (mol%) Solvent Time (h) Yield (%)a

1 H2SO4 10 BnOH 24 12

2 HClO4 10 BnOH 24 27

3 H2SO4-SiO2 10 BnOH 24 35

4 HClO4-SiO2 10 BnOH 24 44

5 HClO4-SiO2 10 EtOH 24 62

6 HClO4-SiO2 10 MeOH 12 71

7 HClO4-SiO2 10 DCE 12 13

8 HClO4-SiO2 10 THF 12 0

9 HClO4-SiO2 10 Toluene 12 0

10 HClO4-SiO2 20 MeOH 12 75

11 HClO4-SiO2 30 MeOH 12 83

12 HClO4-SiO2 40 MeOH 12 82

13 HClO4-SiO2 30 MeOH 1 81

a Isolated yield.

investigated its behavior under different reaction conditions
(Table 1). Based on our previous work (Gallo and Burtoloso,
2018), compound 1 was simply mixed with 10 mol% of H2SO4

(pKa = −3.0) as the BrØnsted acid in benzyl alcohol (BnOH)
as the solvent for 24 h at room temperature. To our delight, we
isolated the intramolecular cyclization product, oxazinanone 2,
in 12% yield instead of getting O-H insertion product (entry
1). A slight improvement in the yield was observed while
using stronger acid HClO4 (pKa = −10) as the catalyst under
similar reaction conditions (entry 2). In order to minimize side
product formation, as well as ease in acid handling, H2SO4

was immobilized on silica gel (230–400 mesh) (Chakraborti and
Gulhane, 2003; Chakraborti and Chankeshwara, 2006; Rudrawar
et al., 2006). This manipulation proved to be useful, providing
target molecule 2 with 35% yield (entry 3). Encouraged by this
outcome, we used silica-supported HClO4 which led to a further
increase in the yield of the reaction (entry 4). Significant increase
in the yield (up to 62%) was noticed when EtOH was employed
as a reaction medium (entry 5). Using MeOH as the solvent
improved the reaction efficiency and the desired product 2 was
isolated in 71% yield in shorter reaction times (12 h) (entry 6).
Poor yield or no product formation was observed in the presence
of non-nucleophilic solvents such as DCE, THF, and toluene
(entries 7–9). Increasing catalyst loading to 20 and 30mol %
provided product 2 in 75 and 83% yield, respectively (entries 10
and 11). Further increasing the catalyst loading (40mol %) did
not affect the reaction yield (entry 12). Under similar conditions
of entry 11, comparable yield (81%) of compound 2 was obtained
when the reaction was carried-out during 1 h. Thus, conditions
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SCHEME 1 | Preparation of N-Cbz-protected diazo carbonyls compounds 1 and 3–11.

SCHEME 2 | Synthesis of oxazinanones from diazo carbonyls via silica-supported HClO4 catalysis.

in entry 13 were chosen as the optimal to explore the scope of the
reaction.

To explore the scope and generality of the reaction, we
prepared several N-Cbz-protected diazoketones (1 and 3–11)
with different substituents (Scheme 1, for detail procedure see
Supplementary Material for the synthesis of diazoketones). In
our approach, diazoketones 1 and 3–11were accessed in excellent
yields by protection of the respective amino acids with benzyl
chloroformate in aqueous NaHCO3, followed by reaction with
isobutyl chloroformate (to activate the carboxylic acid as a mixed
anhydride) and freshly prepared diazomethane.

Employing the conditions from entry 13 (Table 1), the
substrate scope was investigated (Scheme 2). The HClO4-SiO2

catalyst smoothly converted 2-phenylglycine derived diazo
carbonyl 3 into cyclic urethane 12 in 84% yield. Similarly,
for leucine-, alanine-, and valine-derived substrates 3–6, the
corresponding oxazinanones 13–15 were obtained in good
yields. Surprisingly, no product formation was observed
with glycine-derived diazo compound 7 under the standard
reaction conditions (complex mixture) and this result is
under investigation for a better understanding. Diazoketone 8,
possessing terminal ester functionality, also render no product.
In the case of bicyclic oxazinanones 18 and 19, derived from 9

and 10, high yields were obtained. Finally, diazoketone 11, with
terminal Cbz-protected amine chain, did not provide the desired
product.
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FIGURE 4 | A proposed mechanism for the synthesis of oxazinanones from diazo carbonyls through silica-supported HClO4 catalysis.

Although merely speculative (studies are being carried-out),
the two cbz groups in compound 11 can compete against each
other for attack in the protonated diazo carbon (in an inter- or
intramolecular fashion). In diazoketone 8, the ester functionality
can also compete with the cbz group during the insertion in the
protonated diazo carbon. Moreover, the formation of the enol
ether from 8 in acidic medium can furnish by-products through
competing reactions.

Based on the above experimental results, a proposed
mechanism to rationalize the formation of the 1,3-oxazinano-
2,5-diones skeleton is shown in Figure 4. Protonation of diazo
compound 21 by the Brønsted acid generates diazonium
intermediate 22. Next, the intramolecular nucleophilic attack
from the Cbz carboxyl group at C1 releases molecular
nitrogen and furnishes ammonium intermediated 23. Finally,
intermediate 23 is converted into the desired oxazinanone
24 after the nucleophilic attack of MeOH to the benzyl
group. Hydrogen abstraction from 25 by the conjugate
base of the catalyst regenerates the catalyst and provides
(methoxymethyl)benzene 26 (detected by 1H NMR) as a
byproduct.

In conclusion, we have disclosed a direct cyclization of amino
acid-derived diazoketones via a silica-supported HClO4 catalysis,

offering a practical and efficient route for the construction of
several 1,3-oxazinane-2,5-diones in 66–90% yield. This protocol
features a metal free, inexpensive, stable, and easy to handle
catalyst, simple reaction set-up, short reaction time, non-
chlorinated solvent and broad substrate scope.
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