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Luminescent Single-Molecule Magnets (SMM) belong to a new class of multifunctional

molecule-materials that associate luminescence and slow relaxation of their

magnetization within a single crystalline phase. We present in this mini-review the

major advances that have been achieved in this new field over the last few years. More

particularly, we will focus on the use of Schiff-base complexes in order to correlate

magnetism and luminescence, as well as discussing the future outlooks of the field.
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INTRODUCTION

Nowadays, developing optimized molecule-based materials for future applications such as
biomedicine (Horcajada et al., 2012; Long et al., 2016a), gas separation (Dechambenoit and
Long, 2011), catalysis (Li et al., 2016), and quantum computing (Bogani and Wernsdorfer, 2008)
frequently requires the association of different properties within a single-crystalline structure.
Molecule-based materials benefit from specific assets related to their molecular nature, with
respect to usual solid-state materials such as an unlimited structural diversity, weak density,
optical transparency and the possibility to finely adjust and control their properties. Remarkably,
coordination chemists have been at the front lines of science since the turn of the century, taking
advantage of the respective intrinsic properties of metal ions and organic/inorganic ligands, to
design original architectures with targeted functionalities. From a fundamental point of view, these
unique molecular materials may display these properties independently, but the design of systems
in which these functionalities strongly interact, constitutes the central objective for one property to
control another.

Since the pioneering work of (Ishikawa et al., 2003), lanthanide-based Single-Molecule Magnets
(SMM) have been investigated thoroughly because of their tremendous technological potential
in high-density storage and quantum computing (Leuenberger and Loss, 2001; Woodruff et al.,
2013; Liddle and van Slageren, 2015; Tang and Zhang, 2015; Ungur and Chibotaru, 2016). In
such coordination complexes, an anisotropic barrier, ∆, originating from the interplay between
the magnetic anisotropy and crystal-field splitting, opposes the reversal of the magnetization and
leads to superparamagnetic-like behavior, comparable to that observed in magnetic nanoparticles.
This feature may eventually give rise to a magnetic bistability that is strictly intrinsic to the
molecular entity. Obviously, utilizing lanthanide ions constitutes a straightforward approach
to implement simultaneous magnetic and luminescent properties because of their strong
magnetic anisotropy and exceptional luminescence properties, dominated by f -f electronic
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transitions, which results in long-lived emission, narrow
bandwidth, important Stokes shifts and high quantum yields
(Bunzli and Piguet, 2005). While the collection of lanthanide
SMM is growing exponentially, only a small percentage of those
systems exhibit lanthanide luminescence and can therefore be
viewed as multifunctional. In this mini-review, we discuss the use
of Schiff-base ligands and associated complexes for the design
of luminescent SMM, as well as providing future outlooks and
directions in the field.

CRITERIA TO DESIGN LANTHANIDE
LUMINESCENT SMM

Slow relaxation of the magnetization and lanthanide
luminescence, arises in both cases from the subtle association
between a defined lanthanide ion and appropriate ligand(s).
Therefore, the SMM behavior depends on the nature of
the lanthanide ion, such as its angular momentum value, J,
its Kramers/non-Kramers character as well as the angular
dependence of the 4f electronic density which can be oblate
(flattened spheroid) or prolate (elongated spheroid) (Rinehart
and Long, 2011; Ungur and Chibotaru, 2016). On the other
hand, and considering simple electrostatic considerations,
the crystal-field generated by the surrounding ligands could
result in the formation of mJ states largely separated in energy.
Since it is mostly the single-ion anisotropy that dominates
the slow relaxation, ∆ is therefore directly related to crystal-
field splitting, through relaxation involving the first or higher
excited states. Other mechanisms involved in spin-phonon
coupling (Raman and direct processes) or Quantum tunneling
of Magnetization (QTM) complicate this scenario however, by
creating underbarrier relaxation paths. In this sense, significant
advances have been achieved in recent years, with either
coordination (Chen et al., 2016; Liu et al., 2016; Meng et al.,
2018) or organometallic complexes (Chen et al., 2016; Ding
et al., 2016; Gregson et al., 2016; Gupta et al., 2016; Goodwin
et al., 2017; Guo et al., 2017) showing for instance magnetic
hysteresis higher than liquid nitrogen boiling’s temperature (Guo
et al., 2018). Remarkably, while the QTM affects the magnetic
relaxation at a low temperature, recent studies have highlighted
the decisive role of molecular vibrations (spin-phonon coupling)
at a higher temperature (Goodwin et al., 2017; Escalera-Moreno
et al., 2018).

With regards to lanthanide luminescence, the parity and
spin forbidden character of the f -f transitions usually require
an indirect excitation through the use of sensitizer ligands
that transfers the absorbed energy to the excited state of the
lanthanide ion. Consequently, the ligand is of utmost importance
since it directly dictates the coordination environment suitable
for the slow relaxation of the magnetization, while ensuring an
efficient luminescence sensitizing toward a specific lanthanide
ion. Among the lanthanide series, Dy3+ ion represents one of the
most promising candidates to design luminescent SMM, because
of its large J = 15/2 value, its Kramers character leading to a
doubly degenerated ground state and its oblate electronic density
which could be easily stabilized by usual coordination chemistry

ligands. Dy3+ luminescence could be observed both in the visible
and Near-Infra Red (NIR) (Long et al., 2018b). To a lesser
extent, the NIR emissive Yb3+ has also been widely employed to
design luminescent SMM (Pointillart et al., 2015), but optimizing
the slow relaxation remains more difficult to realize with
respect to Dy3+. Tb3+ and Er3+ could also be employed to
design luminescent SMM. Nevertheless, in practice they exhibit
some drawbacks associated either to the Tb3+ non-Kramers
nature (Ehama et al., 2013; Yamashita et al., 2013) or to the
difficulty to observe Er3+-based luminescence (Ren et al., 2014).
Historically, the first example of SMM simultaneously exhibiting
a slow relaxation of the magnetization and a weak lanthanide
luminescence was reported by Bi et al. in a tetranuclear calixarene
dysprosium complex in 2009 (Bi et al., 2009). Following this,
various ligand families (beta-diketonates, carboxylates, aromatic
amines) have been successfully explored (Long et al., 2018b;
Jia et al., 2019). We will however, next focus on another class
belonging to Schiff bases and describe examples that go further
than the simple observation of both properties.

LUMINESCENT SCHIFF-BASE SMM:
MAGNETO-LUMINESCENCE
CORRELATION

Schiff-base ligands are known as simple efficient sensitizers of
Ln3+ (Yang et al., 2014; Andruh, 2015) while benefiting from
a large tunability including the denticity, rigidity/flexibility,
and selective coordination sites (Figure 1). Several 4f or 3d/4f
luminescent complexes based on a myriad of Schiff-base ligands
and incorporating various lanthanide ions such as Eu3+,
Nd3+, Tb3+, Yb3+, have been reported since the beginning
of the century (Wong et al., 2002, 2006; Yang and Jones,
2005; Burrow et al., 2009; Wang et al., 2009). Nevertheless,
the occurrence of slow relaxation of magnetization in these
complexes was either not achieved, due to the lack of magnetic
anisotropy, or was not investigated. Thus, the first example
of a bifunctional Schiff-base SMM was reported by our group
in 2012 in a [Zn(NO3)L

1Dy(NO3)2(H2O)] complex [H2L
1:

N,N’-bis(3-methoxysalicylidene)-1,2-diaminoethane)] and
based on a simple compartmentalized ligand obtained from the
condensation of o-vanillin and ethylenediamine (Long et al.,
2012). The complex could be described as a dinuclear entity
in which the connections between Zn2+ and Dy3+ ions are
provided by phenolate bridges (Figure 2). Introduction of the
diamagnetic Zn2+ ion clearly has two benefits: it increases the
negative charge (basicity) of the phenolate moieties and in
turn the crystal-field splitting of the lanthanide ion (Upadhyay
et al., 2014) while it does not quench the rare-earth emission
in the visible spectral window. At room temperature, both
a broad emission band, ascribed to the zinc complex and
the typical Dy3+ emission lines were observed, indicating a
partial energy transfer toward the lanthanide ion. Lowering
the temperature (14K) results in the exclusive observation
of well-resolved Dy3+ emission bands. Such feature is of
prime interest since the emission lines involving the electronic
transitions also involve the magnetic ground state 6H15/2 and
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as a consequence directly reflects its crystal-field splitting.
Remarkably, such an approach was previously utilized in the
60’s, using absorption spectroscopy for ytterbium (Buchanan
et al., 1967) or dysprosium garnets (Grünberg et al., 1969)
and this methodology was later extended by Cucinotta et al.
(2012) to correlate luminescence and magnetic properties in
the archetypical SMM Na[Dy(DOTA)(H2O)]·4H2O complex
(Cucinotta et al., 2012). The emission spectrum for the complex
[Zn(NO3)L

1Dy(NO3)2(H2O)] shows more than eight expected
transitions, resulting from the splitting of 6H15/2 ground
state into eight Kramers doublets (J + 1/2). This indicates
the presence of “hot bands” arising from the first excited
state of the emitting level 7F9/2 (Figure 2). Deconvolution
of the emission bands, using Gaussian functions, allows one
to experimentally obtain the crystal-field splitting of the
Kramers doublets. Hence, the gap between the ground and
first excited doublets is estimated at 48 cm−1, in line with
the value of ∆ = 35 cm−1 obtained by alternate currents (ac)
magnetic measurements. This suggests that the relaxation
occurs via the first excited Kramers doublet corresponding
to an Orbach process. Nevertheless, the slight discrepancy
between luminescence and magnetism indicates that additional
magnetic relaxation mechanisms are involved. This is further
corroborated through the study of both the magnetic and
luminescence properties of the aforementioned complex,
diluted in a diamagnetic yttrium matrix (Long et al., 2016b).
Photoluminescence confirms that: (i) the Dy3+ ion remains in
a similar environment upon chemical dilution; (ii) as expected,
the energy gap between the ground and first excited doublets is
identical. The magnetic measurements for the diluted sample
reveal an increased anisotropic barrier of ∆ = 45 cm−1 due
to the removal of the dipolar interactions, known to enhance
the QTM, that decrease the effective barrier. The value of ∆ is
in remarkable accordance with that obtained by luminescence,
which confirms that such an approach can be used to compare
the results from these two experimental techniques and further
shed light on the mechanisms that govern the slow relaxation of
magnetization.

Such simple methodology has been widely extended, by
other groups and including our own, to numerous SMM or
coordination networks that exhibit a single-ion based magnetic
relaxation in order to obtain a detailed picture of the lanthanide
crystal-field and therefore improves comprehension of the
relaxation dynamics (Long et al., 2018b; Jia et al., 2019).
We would also like to emphasize that such outcomes could
also be further confirmed by the decisive input from ab
initio calculations, especially with systems that exhibit multiple
crystallographically independent sites (Long et al., 2015).

Pure 4f Schiff base complexes also represent another
class of promising systems. However, it remains difficult to
simultaneously increase the magnetic anisotropy to generate
a genuine slow relaxation of magnetization, while retaining
the lanthanide luminescence (Shintoyo et al., 2014; Long
et al., 2018a). Therefore, one alternative strategy consists
of synthesizing heterotrinuclear Zn2Dy complexes (Oyarzabal
et al., 2015; Sun et al., 2016) in which the lanthanide ion is
sandwiched between two bis-phenoxide moieties. This results in

FIGURE 1 | General scheme showing the combination of compartmental

Schiff-base complex and Ln3+ ions.

an enhancement of the axial crystal-field. The five-membered
ring constituted by four methoxy oxygen and one solvate,
or counter-ion, defines a basal plane (hard plane) almost
perpendicular to the Zn2+-Dy3+-Zn2+ arrangement. Numerous
complexes with various counter-anions and co-ligands that
exhibit SMM behavior and Dy3+-based luminescence associated
with remanent emission from the ligands, have been reported
(Costes et al., 2015, 2016). To this point, we have recently
described an example of a luminescent trinuclear complex
[(ZnL1Cl)2Dy(H2O)]4[ZnCl4]2·H2O that shows a zero-field slow
relaxation of magnetization that could be observed for up to 30K
(Boulkedid et al., 2018). The compound exhibits the typical Dy3+

emission, but the presence of four different crystallographically
independent dysprosium sites precludes the extraction of the
energy difference between the ground and first excited doublets.
Luminescence reveals however a large total crystal-field splitting
of about 1,500 cm−1, indicating that such systems may have great
potential if the relaxation occurs through higher excited Kramers
doublets.

Schiff-base ligands could also be employed to introduce
further functionalities. For instance, implementing chirality,
opens the field to new properties that result from the
crystallization in non-centrosymmetric structures. One can
cite for instance Natural Circular Dichroism (NCD), Second-
Harmonic Generation (SHG), Circular Polarized Luminescence
(CPL) as well as magneto-optical cross-effects that result from
the interplay with magnetism, such as magneto-chiral dichroism
and Magnetized Second-Harmonic Generation (MSHG) (Train
et al., 2011). In addition, the crystallization in appropriate
non-centrosymmetric space groups paves the way toward
advanced electrical properties such as piezo/pyroelectricity
and ferroelectricity. With this in mind, we reported chiral
[ZnL2Dy(OAc)(NO3)2] complexes based on the enantiopure

Schiff base ligands R,R or S,S-HL2 = phenol,2,2
′

[2,2-diphenyl-
1,2-ethanediyl]bis[(E)-nitrilomethylidyne]-bis(6-methoxy)
(Long et al., 2015). Each enantiomer crystallizes in the polar
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FIGURE 2 | (A) Crystal structure of the dinuclear [Zn(NO3)L
1Dy(NO3)2(H2O)] complex. (B) Frequency dependence of the out-of-phase susceptibility (χ”) obtained

under a 900 dc field. (C) Magnification of the 4F9/2→
6H15/2 emission transitions in the 20,050–21,300 cm−1 region (at 14K) Multi-Gaussian function fit

components arising from the first 4F9/2 Stark sublevel to the 6H15/2 multiplet in the energy interval. The fits regular residual plots (R2> 0.98) are shown in inset (Long

et al., 2012, 2016b).

P21 space group, with two crystallographically inequivalent
homochiral Zn2+/Dy3+ complexes, in the asymmetric
unit. Apart from the typical dysprosium luminescence
and slow relaxation of the magnetization that have been
correlated and compared with results obtained from ab
initio calculations, the compounds exhibit a ferroelectric
behavior up to the decomposition of the material at 300◦C,
making it the highest temperature at which a switchable
polarization has been observed for a molecular ferroelectric.
Such robust chiral molecular compounds may represent
alternative candidates for high-temperature ferroelectrics
(Hang et al., 2011).

CONCLUSIONS AND FUTURE OUTLOOK

Schiff-bases represent an interesting class of ligands from
which to design luminescent lanthanide SMM. Their infinite
diversity and flexibility make them ideal candidates to face
the challenges in the field and to obtain air-stable luminescent
SMM with high energy barriers. In a more general context, the
in-depth understanding of magnetic relaxation in lanthanide-
based SMM remains a challenge as this involves concepts and
models in physics from the 60’s, related for instance to spin-
phonon coupling (Escalera-Moreno et al., 2018), which should be
modernized. In this regard, photoluminescence could definitely
shed light on lanthanide crystal-field splitting, to determine if
the relaxation proceeds via the 1st or higher excited states,
or involves underbarrier Raman, direct or QTM processes.
Moreover, studying the vibronic coupling in high temperature
SMM may be experimentally achieved by photoluminescence
(emission lifetimes, f -f relative intensities. . . ).

While the correlation between magnetism and
photoluminescence should be viewed as the inception, studying
the interplay between the two properties constitutes a major
milestone. As both properties are intimately correlated to
the electronic structure of the lanthanide ion, the coupling is
expected to be strong and such a cross-effect has previously
been evidenced more than 50 years ago, in paramagnetic
ytterbium garnet (Buchanan et al., 1967; Grünberg et al., 1969).
Thus, applying a magnetic field induces a strong modification
of the emission spectrum and has been explained by the
well-known Zeeman effect, that lifts the degeneracy of the
Kramers doublets. Such approach was first demonstrated in
lanthanide SMM, in 2016 (Bi et al., 2016) in which values
of the gyromagnetic factor (that are usually difficult to
experimentally obtain) were extracted, confirming the gap
between the first and excited Kramers doublets. One point
that needs to be addressed concerns the comprehension of
the field dependence of the emission intensity as observed in
others SMM (Chen et al., 2017). Such breakthroughs confirm
the possibility to control both the emission intensity and
wavelength by a magnetic field, which could be relevant for
applications such as magnetic field sensors. However, such
inductive effects may simply occur in any luminescent 4f
paramagnetic compound, therefore, future studies should
examine the existence of an interplay between the SMM property
(magnetic bistability) and the luminescence. This requires
circumventing synthetic issues to design systems, simultaneously
exhibiting a significant magnetic remanence and coercivity at
a pertinent temperature with stability over a long-time scale.
This last point is of critical importance since 4f SMM usually
shows quick relaxation of magnetization, due to the QTM.
Major advances have recently been achieved in organometallic
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SMM, showing magnetic bistability of up to 60–80K (Goodwin
et al., 2017; Guo et al., 2017, 2018), confirming that the
design of high performing luminescent SMM with possible
air-stability is within reach if suitable sensitizer ligands that
are able to maximize the magnetic anisotropy, are rationally
conceived.

On the other hand, introduction of chirality and other
properties, resulting from the non-centrosymmetric character
of the crystal structures, may be easily achieved using Schiff
base ligands. Simple multifunctional molecular ferroelectrics
therefore represent ideal candidates to study the coupling
between the constitutive functionalities such as the magneto-
electrical coupling. Designing a strong coupling between an
electric and magnetic property clearly constitutes an important
challenge in the field of solid-state chemistry (Fiebig et al., 2016).
This indicates that molecular systems may control polarization,
by applying a magnetic field and vice versa with prospective
applications in non-volatile memories and low-consumption
devices (Eerenstein et al., 2006; Cheong and Mostovoy, 2007;
Mandal et al., 2015).

More generally and in order to fulfill these ambitious
objectives, molecular materials also need to be integrated or
shaped into more complex architectures (surfaces, films, or
composites) for use in practical applications. Such strategies
necessitate investigating that the considered molecular objects
and their associated functionalities remain preserved. Among
the characterization techniques used to investigate the latter,

photo-luminescence could easily be used for this purpose.
Close collaboration between chemists and photo physicists
is therefore clearly necessary, in order to achieve these
objectives.
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