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When density functional theory is used to describe the electronic structure of periodic
systems, the application of Bloch’s theorem to the Kohn-Sham wavefunctions greatly
facilitates the calculations. In this paper of the series, the concepts needed to model
infinite systems are introduced. These comprise the unit cell in real space, as well as
its counterpart in reciprocal space, the Brillouin zone. Grids for sampling the Brillouin
zone and finite k-point sets are discussed. For metallic systems, these tools need to be
complemented bymethods to determine the Fermi energy and the Fermi surface. Various
schemes for broadening the distribution function around the Fermi energy are presented
and the approximations involved are discussed. In order to obtain an interpretation of
electronic structure calculations in terms of physics, the concepts of bandstructures
and atom-projected and/or orbital-projected density of states are useful. Aspects of
convergence with the number of basis functions and the number of k-points need
to be addressed specifically for each physical property. The importance of this issue
will be exemplified for force constant calculations and simulations of finite-temperature
properties of materials. The methods developed for periodic systems carry over, with
some reservations, to less symmetric situations by working with a supercell. The chapter
closes with an outlook to the use of supercell calculations for surfaces and interfaces
of crystals.

Keywords: density functional theory, high-throughput calculations, Brillouin zone sampling, supercell approach,

convergence tests, solid-state chemistry techniques

1. INTRODUCTION

Three-dimensional periodic solids were among the first systems for which the theory of electronic
structure was worked out. The concept of an electronic band structure reaches back to the first
decade after the invention of quantum mechanics and early examples can be found in the work
of Sommerfeld and Bethe (1933), Slater (1934) and others. Almost fifty years ago, the total energy
of the electrons and nuclei in an elementary unit cell of a crystalline solid has come into focus
of theoretical investigations. To obtain it, summation over reciprocal space (or k-space, as it’s
often called) is required. Thus, through the 1970s, a number of papers about the sampling of k-
space have been published (Jepsen and Andersen, 1971; Baldereschi, 1973; Chadi and Cohen, 1973;
Cunningham, 1974;Monkhorst and Pack, 1976). Given that computational power in these days was
rather limited, the emphasis at this time was to keep the number of k-points to be treated as small as
possible, and the most efficient choice of special k-points was the major topic of these earlier works.
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Meanwhile, this knowledge has found its way into textbooks.
The interested reader may e.g., consult chapter 4 in Martin
(2004). With the increase of computer power, computational
physicists and materials scientists started to work on more and
more complex systems comprising hundreds of atoms in one unit
cell. Since such large unit cell goes along with small Brillouin
zone (BZ) in reciprocal space, sampling of k-space received
less attention. Moreover, liquid or amorphous systems that lack
translational order were approximated by large supercells, e.g.,
using quasi-random structures. Due to the lack of ’true’ physical
periodicity, calculations with large supercells often employ just
one k-point which, for the sake of additional computational
savings, is often chosen to be the Ŵ-point, i.e., the origin in
reciprocal space. As becomes apparent from the bibliography
of this review article, only few papers about k-point sampling
appeared around the turn of the century, which we attribute to
this shift of interest.

Recently, the wish to perform highly accurate calculations
has raised renewed interest in improved methods for the
sampling of reciprocal space. One driving factor originates from
computational materials science. For thermodynamic studies,
e.g., for the calculation of phase diagrams, highly converged
total energies for the elementary unit cells of bulk materials are
required (Grabowksi et al., 2007; Grabowski et al., 2011). The
necessary calculations should be performed in an automated
way, using the methods of high-throughput computing. For this
reason, one uses automatically generated, very dense k-point
sets that allow one to reach an accuracy of the total energy
better than 1 meV per atom. As has been shown in a recent
study (Morgan et al., 2018) , in order to guarantee this accuracy
level for all phases (with differently sized and shaped unit cells),
a k-point density as high as 5,000 k-points /Å−3 is typically
required. Moreover, methods based on machine learning attempt
to select k-point grids that are most suitable for the problem at
hand (Choudhary and Tavazza, 2019). As another factor driving
innovation in the field of k-point sampling, the interest in
special properties of bulk materials, in particular in the areas of
electronic transport, magnetism and topological states of matter,
has lead to improved (e.g., adaptive) schemes. While the total
energy is a quantity that is variational with respect to small
changes in the charge density, and is thus computationally robust,
the applications mentioned above require the resolution of very
fine structures in the Brillouin zone in order to obtain an accurate
description of the properties of interest.

While we restrict ourselves to density functional theory
calculations in this review, an ab initio treatment of periodic
systems with the wavefunction-based methods of quantum
chemistry is an alternative option that is free of any inaccuracies
due to approximate density functionals. Recently, this field
has attracted strong interest and significant progress has been
achieved (Booth et al., 2012; Gruber et al., 2018). Most of
the statements about DFT calculations made in this review
carry over to the Hartree-Fock approximation, which, like
DFT, describes the wavefunction in terms of single-particle
orbitals. Efficient computer codes for Hartree-Fock calculations
including the option to treat period systems (Dovesi et al., 2018)
are available. Post-Hartree-Fock methods incorporate electronic

correlations in various approximate ways; examples applicable
to periodic systems are the Møller-Plesset perturbation theory
or the Coupled-Cluster method (Gruber et al., 2018). Here,
the difficulty of treating correlations between two electrons in
different unit cells of the solid must be tackled with. The best
correlated ground-state wavefunction (in a variational sense)
may have fewer symmetries than the many-particle Hamiltonian;
therefore approaches exploiting the translational symmetry of
the crystal need to be considered with caution. A systematic
way to include electronic correlations in calculations for periodic
systems is offered by the method of increments (Paulus, 2006).
Another option applicable to periodic systems is the Quantum
Monte Carlo method (Foulkes et al., 2001) which allows for an
even more flexible mathematical representation of the many-
particle wavefunction than methods starting from a basis set of
atomic orbitals.

This review article serves the purpose of informing researchers
in the materials physics community about current developments
in the area of high-throughput computing with high demands on
the accuracy of atomic structures, forces and total energies. At
the same time, we aim at providing a tutorial for newcomers to
the field of density functional theory calculations, and therefore
give a summary of the basic knowledge about periodic DFT
calculations that has been accumulated over the years but is
spread out over a bunch of articles in the original literature that
are inconvenient to access for the beginner. Since the essentials
of the Kohn-Sham approach have been described in a number of
textbooks (Parr and Weitao, 1994; Koch and Holthausen, 2001;
Martin, 2004; Sholl and Steckel, 2009), we assume that the reader
is familiar with them. Convergence issues with respect to the
plane-wave expansion of the Kohn-Sham wavefunctions (Kresse
and Furthmüller, 1996a) or with respect to atom-centered basis
sets (Koch and Holthausen, 2001; Blum et al., 2009) should be
addressed by practitioners of DFT before turning their attention
to periodic systems; again, we refer to the literature.

2. BASICS OF CRYSTALLOGRAPHY

The periodic arrangement of atoms in a crystal is mathematically
described by its smallest periodic unit, the unit cell, and by a
lattice of points invariant under translations. The lattice points
Rmust fulfill the equation

R = n1a1 + n2a2 + n3a3 , (1)

where n1, n2, n3 are (positive or negative) integers. The lattice

vectors a1, a2, a3 span the three-dimensional unit cell with
volume�.

The unit cell may be occupied by a single or by several
atoms; in the latter case, crystallographers call the positions of
the atoms within the unit cell the (crystallographic) basis. The
possible shapes of unit cells are limited by the considerations
that the periodic repetitions of the unit cell must be space-filling,
i.e., there are no overlaps or voids. The lattices described by
Equation (1) that fulfill this condition are called Bravais lattices.

For any crystal lattice in general, it must hold that the discrete
symmetries (i.e., mirror symmetry or invariance under certain
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rotations) of the pattern formed by all atoms (including those
defined through the crystallographic basis) are compatible with
the invariance under translations defined by the Bravais lattice.
This excludes e.g., dodecahedra or icosahedra as unit cells.
However, it may well be that the basis has a lower symmetry than
the Bravais lattice itself. In fact, this leads to a finer classification
of crystal structures – the Bravais lattice is just the topmost level
in a hierarchical classification scheme (Streitwolf, 1971; Ashcroft
and Mermin, 1976).

Crystal symmetry is treated within the mathematical field of
group theory. The relevant groups (called point groups and
space groups) consists of a finite number of symmetry operations
Ngroup. As for any group, the crystallographic groups must be
closed under the inclusion of any composite operations, where
composite means the sequential application of two discrete
symmetry operations (= group elements Gα , α = 1, . . .Ngroup)
after one another. Under the term crystallographic point

group one addresses a certain collection of discrete symmetry
operations, such as reflections or rotations, that form a group in
the mathematical sense and that map (at least) one point of the
crystal lattice (which is considered to be infinite for this purpose)
onto itself, while any other lattice point may be mapped onto
a different lattice point. The concept of the point group does
not make reference to translations; if we require the crystal, in
addition to invariance under the point group operations, to obey
translational symmetry under some symmetry operations TRn ,
we reach the (more rich) concept of a Bravais lattice. All Bravais
lattices having the same set of discrete symmetries, i.e., having the
same point group, are said to belong to the same crystal system.
An example is the cubic crystal system that contains the simple
cubic, body-centered cubic (bcc) and face-centered cubic Bravais
lattices. The point group, however, may be reduced to a sub-
group if the basis is less symmetric than the Bravais lattice itself.
The overall number of point groups is therefore higher or equal
to the number of Bravais lattices. The actions of the (abstract)
symmetry group operations on an electronic wave function ψ(r)
can be described by linear algebra on real-space vectors, e.g.,

TRnψ(r) = ψ(r+ Rn) , (2)

in other words, the position r of the electron is shifted by a
lattice vector Rn. In case of a rotation or reflection, the symmetry
operation is represented by some matrix Gα , e.g.,

Gαψ(r) = ψ(Gαr) . (3)

If the crystal possesses a certain symmetry, the corresponding
symmetry operation acting on the wavefunction changes it by
nothing more than a phase factor,

TRnψ(r) = eiφnψ(r) , (4)

Gαψ(r) = eiφαψ(r) . (5)

with real numbers φn and φα .
The symmetry operations mentioned so far, also called

symmorphic symmetry operations, comprising translations,
rotations and reflections, have in common the property that

each single of them leaves the crystal (thought to be infinite and
unbounded) invariant. One can imagine cases where the crystal
is left invariant only by a certain combination of symmorphic
symmetry operations. The two cases of these so-called non-

symmorphic symmetry operations are the glide plane—the
crystal remains invariant only under a combined reflection and
translation, typically by a fraction of a full lattice vector—and the
screw axis – the crystal remains invariant only under a combined
rotation and translation, typically by a fraction of a full lattice
vector. By the presence or absence of these non-symmorphic
symmetries, the classification scheme for crystals can be made
even more diverse than with the point groups alone. Hence, the
crystal symmetries, including the non-symmorphic ones, must
eventually be described by the crystallographic space groups.

The paramount importance of symmetry for quantum
mechanics is well-known. In application to crystals, this means:
The Hamiltonian of the crystal commutes with all elements of the
point group. In this context, the group elements are represented
by certain operators on a Hilbert space. Consequently the
eigenfunctions of the Hamilton operator have specific properties
with respect to the application of symmetry operations.

Bloch’s theorem (Bloch, 1928)
To be specific, let us consider translational symmetry operations.
Although the conditions leading to Bloch’s theorem can be
taken over to many-particle systems by introducing an artificial
’simulation cell’ Hamiltonian (see Rajagopal et al., 1995), we
restrict our considerations to single-particle eigenfunctions for
electrons. From the translational invariance of the crystal, it
follows that the electronic wave functions can change only up to
a phase factor under translation,

ψ(r+ Rn) = eikRnψ(r) . (6)

Another (mathematically equivalent) way of stating this
requirement is as follows: The wave function is required to
consist of a lattice-periodic factor u(r), which is the same in each
unit cell, u(r+ R) = u(r), multiplied by a plane wave,

ψk(r) = eikruk(r). (7)

The index k is a vector and may be considered a ‘quantum
number’ characterizing the wave functions of a periodic crystal. k
is termed crystal momentum. Please note that also uk(r) depends
on this index, albeit the dependence being weak in most cases.

Reciprocal lattice

For every given set R of lattice points, we may (at least in a formal
mathematical sense) construct a reciprocal lattice spanned by the
reciprocal lattice vectors b1, b2, b3. These are defined by

aibj = 2πδij . (8)

In practice, the bi (in three-dimensional space) are obtained as

b1 = 2π
a2 × a3

det(a1a2a3)
. (9)

Formulas for the other two reciprocal lattice vectors can be
obtained by cyclic permutations of the indices (i, j, k) = (1, 2, 3).
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The denominator contains the volume of the real-space unit cell,
� = | det(a1a2a3)|. A unit cell of the reciprocal lattice is also
called a Brillouin zone, see e.g., Ashcroft and Mermin (1976)
for its definition. Due to Bloch’s theorem (confer Equation 7) it
suffices to know the wave functions ψk for crystal momentum k

within the primitive unit cell of the reciprocal lattice, i.e., within
the first Brillouin zone1. If a translation acts on a wavefunction,
its crystal momentum does not change. The actions of a rotation
or reflectionGα on the wavefunction, represented by a real-space
matrix multiplication Gα , operates via its inverse in reciprocal
space, i.e., it maps k 7→ G−1

α k.

3. BRILLOUIN ZONE SAMPLING

In density functional theory (DFT), the total energy of an
atom, molecule or cluster is obtained by summing over
contributions from all its electrons. Due to the effective
single-particle description offered by the Kohn-Sham method
in conjunction with Bloch’s theorem, the total energy of a
crystal can be calculated from the knowledge of the uk(r)
in Equation (7) by considering the electronic states where r

varies just within one real-space unit cell. This is a tremendous
computational simplification. However, Bloch’s theorem requires
us to calculate wavefunctions for all boundary conditions
specified by Equation (6) with k-points in the first Brillouin zone.
In a finite crystal, the number of terms to be summed over is
equal to the number of unit cells in the crystal (cf. Ashcroft and
Mermin, 1976). This corresponds to a very fine sampling, and one
often speaks of Brillouin zone integration since the huge sum and
the integral are interchangeable.

So far, nothing would be gained in terms of computational
savings. However, since the lattice-periodic part uk(r) of the wave
function typically only weakly depends on k, it is sufficient to
sample the Brillouin zone integral at a finite, usually rather small
number of points. The numerical techniques to achieve this are
based on Fourier quadrature (Froyen, 1989). For concreteness, let
us consider some lattice-periodic function F(k) that may contain
implicit dependencies on the eigenvalues εi(k) andwavefunctions
ψk(r). We assume that this function can be expanded into a finite
number of Fourier components, up to some Rm = (xm, ym, zm),

F(k) =
m
∑

j=1

Fje
ikRj . (10)

The integral of F(k) over the whole Brillouin zone is given by
the lowest Fourier component F0, and this integral is supposed
to be approximated by a finite sum over k-points. Since the
following considerations concerning the discretization error rely
on the vanishing of large Fourier components (beyond Rm),
they apply in a strict sense to semiconductors and insulators
only. For metals, the presence of a Fermi surface where the
occupation of the bands changes rapidly from zero to one
implies the presence of high Fourier components in F(k). In

1The points in the first Brillouin zone are closer to the origin than to any other
reciprocal lattice point. Due to the periodicity of the factor eikR in Equation (6), k
points outside this range do not provide any new information.

order to minimize the discretization error, one introduces so-
called special k-points. In the simplest case of a cubic crystal
with lattice constant a, one uses equidistant grids of k-points
that fill the Brillouin zone homogeneously. For instance, let’s
assume that the grid consists of Nx points in the x-direction,
then the finite sum in Equation (10) is able to represent the
integral exactly, if Nxa ≥ xm, the first component of Rm.
In other words, the finite sum is identical to the integral if
the function F(k) was sufficiently smooth and contained only
Fourier components that reached out to Nx lattice constants a in
real space. Even in case of non-cubic unit cells, the k-points may
still be chosen to lie on planes parallel to the planes spanned by
two reciprocal lattice vectors, i.e., parallel to the faces of the unit
cell in reciprocal space. If the crystal possesses point symmetries,
these symmetry operations can be used to reduce the number
of k-points for which an actual calculation of the Kohn-Sham
wave functions needs to be performed. In other words: It is
sufficient to sample only the irreducible wedge of the Brillouin
zone. This results in considerable savings of computational costs.
By virtue of symmetry mapping, one can always ’unroll’ the
irreducible wedge2 to recover the full Brillouin zone. In this
way, it is always possible to recover the fully symmetric charge
density, forces, etc. when needed. Even if the unit cell has no
point group symmetries, time reversal invariance allows to map
the wavefunction ψk to ψ−k = ψ∗

k , and thus the number of
k-points can be reduced by a factor of two. This procedure,
using time reversal invariance, is broken by a magnetization or
an external magnetic field, and it does not apply if spin-orbit
interactions are to be considered in a system that lacks inversion
symmetry. If additional point group symmetries are present, the
reduction of the number of k-points will be even larger, and thus
allows for additional savings in computer time. Hence, exploiting
symmetries is highly recommendable.

The DFT codes in use also symmetrize the charge density
and the forces on the atoms if applicable. This leads to an
important caveat: Symmetry can not be exploited if one wants to
investigate symmetry-breaking relaxations of the atoms starting
from an “ideal” symmetric structure. In this case, most codes
offer an option to switch off the symmetrization manually
(with the consequence of significantly enhanced computational
resources required). Then, the forces are not symmetrized and
the numerical rounding error (or some manually applied small
displacement) is sufficient to drive the system from a symmetric
starting point to its symmetry-breaking ground state.

3.1. Economic Choices of k-point Grids
In early computational work, when computer memory was a
major limitation, the focus was on an economic choice of k-
points for Brillouin zone sampling that made it possible to
carry out calculations for real-space unit cells with many atoms.
In the simplest case, one could estimate the Brillouin zone
integral by the value of the integrand at a single point, the so-
called Baldereschi point (Baldereschi, 1973). However, for more

2One applies all symmetry operations in the point group, including subsequent
action of several elementary rotations or reflections, to all k-points in the
irreducible wedge.
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accurate calculations, a larger set of special k-points should be
used. The convergence criteria, as well as explicit listings of
special k-points sets for three-dimensional crystals, have been
worked out by Chadi and Cohen (1973). One starts by defining
symmetrized functions Am(k) that are characteristic of a certain
“shell” of k vectors. The index m can be associated with some
length |k|, i.e., with some shell of equidistant k-points around the
Ŵ-point that marks the origin of the reciprocal lattice. Formally
we define

Am(k) =
Ngroup
∑

α

Gαe
ikr , (11)

where the summation runs over all elements Gα in the point
group, in other words, it amounts to applying all point group
operations onto some plane wave eikr with given k. By choosing
a set of special k-points ki, i = 1, . . .Nspecial, the aim is to
make the leading shells Am (those for which F(k) has significant
contributions) to vanish, such that we have

∑

i wiA(ki) = 0 with
some suitably chosen weighting factors wi. Any lattice-periodic
function F can be integrated according to

�

(2π)3

∫

BZ
dk F(k) = F0 =

Nspecial
∑

i=1

wiF(ki)+
∞
∑

m=M+1

Nspecial
∑

i=1

wiFmAm(ki) .

(12)
Due to the choice of a special k-point set, the M leading terms
in the first sum in the second term vanish exactly. For a smooth
function F(k), the Fm get smaller and smaller as we go to higher
and higher shells. Therefore, it is reasonable to drop the second
term in Equation (12) as a whole, and estimate the Brillouin zone
integral by the first term. The quality of a special k-point set
can be judged by specifying how many leading shells of Am it
makes to vanish. However, for a final judgement of the accuracy
of Brillouin zone integration, one also needs to consider the
properties of the function F to be integrated. Obviously, some
assumptions about the smoothness of F are required to reach
satisfactory accuracy in the integration, which are fulfilled if F
stands for the charge density, total energy density, or any other
quantity representing the systems as a whole.

In terms of computational economy, one important issue
is the question whether some special k-points come to lie on
symmetry planes or symmetry axes (mirror planes, rotational
axes), or if they avoid the symmetry-invariant loci of the Brillouin
zone. For an efficient sampling with some given number of
k-points, these should be “representative” of any point in the
Brillouin zone, and therefore they should stay away from the
symmetry plane or axes. In this case, all k-points would ideally
contribute to the Brillouin zone integral with equal weight
(Figure 1A). If a special k-point falls onto a symmetry plane or
axis, it contributes with a smaller weight (Figure 1B). It does not
represent so many other k-points outside the irreducible wedge,
because some symmetry operations map this point onto itself,
rather than onto another k-point. Grids of special k-points with
unequal weights wk tend to be less efficient than a grid with
equal weights; however, unequal weights often cannot be avoided
completely. Thus, one approximates the Brillouin zone integral

FIGURE 1 | Special k-point set according to Monkhorst and Pack (6× 6,
shifted away from Ŵ) (A), and a Ŵ-centered grid (B). Note that the fraction of
k-points falling onto the coordinate axis is larger in the second case.

of some function F by a weighted sum,

F0 ≈
Nirred
special
∑

j=1

wjF(kj) . (13)

The weights (that contain the effects of symmetry) must sum
up to unity,

∑

j wj = 1. The question how efficiently any
given set of k-points can be reduced due to symmetry has
been studied systematically for the lattices of the cubic crystal
system by Moreno and Soler (1992). The authors provide tables
listing the number of irreducible k-points for a given number
of k-points in the total BZ, and indicate how many shells (the
index M) in Equation (12) are made to vanish by this choice.
More recently, the methods of informatics have been applied
to this topic (Wisesa et al., 2016) and a database with k-point
sets rendering the strongest symmetry reduction for a given
lattice have been published. Moreover, a robust algorithm for
symmetry reduction of large k-point sets has been published
recently (Hart et al., 2018).

Nonetheless, sometimes there are reasons why one would like
to include a point of high symmetry (e.g., the Ŵ point) into the
special k-point set. For instance, the high-symmetry point may
be physically important, e.g., if it is the maximum or minimum
of the conduction or valence band in a semiconductor. However,
even in this case one would prefer to first carry out a self-
consistent calculation of the total energy using a k-point set
without the Ŵ-point, which then could be followed by a non-
self-consistent calculation with a denser k-point grid including
the Ŵ point to obtain the density of states or the electronic band
structure along high symmetry lines in the Brillouin zone.

In the simplest case, a k-point grid is specified by a product of
three integer numbers, e.g., a 10 × 10 × 10 grid. The number of
reducible k-points is given by the product of these three numbers
(1,000 in the present example). In the actual DFT calculation,
only a smaller number of k-points, the irreducible k-points, are
used. These are the k-points that remain after all equivalences
between k-points due to point group symmetries and time-
reversal symmetry have been exploited. This helps to reduce the
required computational resources considerably.

Mathematically speaking, the k-point set is expressed by a
set of fractional numbers κ , the coordinates of the k-points in
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a coordinate system spanned by the reciprocal lattice vectors bj.
For example, for a cubic lattice with lattice constant a and a
qx × qy × qz grid, one chooses

k = (κx,r , κy,r , κz,r)π/a with (14)

κx,r =
2rx − qx − 1

2qx
, rx = 1, . . . qx , (15)

κy,r =
2ry − qy − 1

2qy
, ry = 1, . . . qy , (16)

κz,r =
2rz − qz − 1

2qz
, rz = 1, . . . qz . (17)

with integers rx, ry and rz .
This corresponds to the choice of Monkhorst and Pack (1976)

and Pack and Monkhorst (1977). For even qx, qy, qz , the factor 2
in the denominators ensures that the k-points stay away from the
coordinate axis of reciprocal space. An alternative could be a grid
centered around the Ŵ-point. In this case, one simply chooses
κx,r = rx/qx − 1, . . . and so on. Here, the k-points fall onto the
coordinate axes, which, after reduction by the symmetries, leads
to unequal weights wrx ,ry ,rz .

Studying two-dimensional k-point grids is instructive,
because their visualization is easy. Moreover, they are of
practical relevance in the study of surfaces (see section 3.5
below). The ideas of Monkhorst and Pack carry over to all
five 2D Bravais lattices permitted by surface crystallography.
An interesting situation occurs for the hexagonal lattice. The
two-dimensional unit cell can be described by a rhombic shape.
Following Monkhorst and Pack, the k-points are distributed
on lines that run parallel to the edges of the rhombic shape.
Consequently, a high fraction of the k-points falls onto the
coordinate axis that bisects the rhombus (Figure 2A). Following
the work of Cunningham (1974), there are alternative choices for
special k-point sets. In his scheme, he starts from a small set of
“generating” k-points and then arrives at his special k-point set
by applying the point group operations Gα to this “generating”
set. The procedure can be repeated, thereby obtaining finer
and finer k-point meshes by starting from increasingly larger
generating sets. In this way, he obtains first a set of three,
then six, and then 18 irreducible k-points (see Table 1). When
unfolded on the entire Brillouin zone, these yield sets of 18, 54
and 162 k-points that cannot by expressed in the usual notation,
as qx × qy, but rather are distributed in a way compatible with
the hexagonal symmetry (Figure 2B). Thus, they allow for a high
symmetry reduction factor (up to nine).

The convergence of various k-point sets for single-layer
graphene is compared in Figure 3. The Monkhorst-Pack k-point
sets (which are defined to avoid high-symmetry points) show fast
convergence, both as a function of k-point density (Figure 3A)
and as a function of the computational effort (Figure 3B). The Ŵ-
centered grids displays a slower, monotonic convergence in the
case of graphene, but allow for a stronger symmetry reduction.
Note that the hexagonal lattice behaves differently with respect
to symmetry reduction from the cubic or orthorhombic lattices
discussed above. The calculations with the Cunningham k-
point sets also benefit from symmetry reduction, but their

FIGURE 2 | (A) First Brillouin zone of the hexagonal lattice with irreducible
(shaded) wedge. The conventional, rhombic Brillouin zone used in DFT
calculations is indicated by the dashed line, together with a 5× 5
Monkhorst-Pack mesh. (B) Cunningham’s special k-point set (Cunningham,
1974) consisting of six points (filled circles) or 18 points (crosses) in the
irreducible wedge.

accuracy is comparable or less than for the Ŵ-centered and
Monkhorst-Pack sets.

For analysis purposes, one often plots the total density of states
g(ε), defined by

g(ε) =
∑

i,k

δ(ε − εi,k) . (18)

Obviously, the δ-function in Equation (18) is an example for
an integrand F(k) that is not a smooth function of k. Another
example occurs if the Fermi surface(s) of a metal (see below)
should be calculated. In both situations, a very fine sampling of
the Brillouin zone is required to obtain accurate results. A way
to achieve this is the tetrahedron method, originally proposed
in its linear form (Jepsen and Andersen, 1971). Within a small
tetrahedron, a band εi(k) can be approximated by a linear
function3 or by quadratic interpolation of the bands (MacDonald
et al., 1979; Blöchl et al., 1994). Moreover, tetrahedra are flexible
enough to provide a space-filling coverage (a tessellation) of the
whole Brillouin zone. With these pre-requisites, the Brillouin
zone integration can be performed over a set of piecewise
linear functions. If a band crosses the Fermi energy within one
tetrahedron, it will cut out a triangle within this tetrahedron.
The entire Fermi surface can be composed of a set of all these
triangles. Practical extensions of the method even go beyond the
piecewise linear approximation. This is necessary because some
electronic bands (those that are partners under some non-trivial

3The values of εi(kj) at the four apices of the tetrahedron allows us to define a
plane intersecting the tetrahedron that is a local (tangent plane) approximation
to the global function εi(k). However, this method can fail when two bands cross
inside the tetrahedron. Fortunately, this will happen only in a small fraction of all
tetrahedra and the error associated with it only contributes in higher order to the
total discretization error.
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TABLE 1 | Cunningham’s choice of special k-points in the two-dimensional hexagonal lattice.

Nspecial Nirred
special

18 3 ( 109 , 2
3
√
3
), ( 89 , 0), (

4
9 , 0)

54 6 ( 29 ,
2

9
√
3
), ( 49 ,

4
9
√
3
), ( 89 ,

8
9
√
3
) ( 69 ,

2
9
√
3
), ( 89 ,

4
9
√
3
), ( 109 , 2

9
√
3
)

( 427 , 0), (
8
27 , 0), (

16
27 , 0) ( 1027 ,

2
9
√
3
), ( 1427 ,

2
9
√
3
), ( 2227 ,

2
9
√
3
),

162 18 ( 3427 ,
2

9
√
3
), ( 3227 ,

4
9
√
3
), ( 2827 ,

8
9
√
3
) ( 1627 ,

4
9
√
3
), ( 2027 ,

4
9
√
3
), ( 2827 ,

4
9
√
3
),

( 2027 , 0), (
18
27 , 0), (

32
27 , 0), ( 2227 ,

6
9
√
3
), ( 2627 ,

6
9
√
3
), ( 2627 ,

2
9
√
3
)

In the 3-point set, all weights wk = 1/3 , in the 6-point set the k-points in the third column have wk = 1/9 and the remaining ones in the forth column have wk = 2/9, and in the 18-point
set the third column has wk = 1/27 and the forth column wk = 2/27. The location of these k-points is visualized in Figure 2.

representation of the symmetry group operations) display local
extrema at the high-symmetry points in the Brillouin zone. Then,
it is more adequate to use a quadratic approximation for these
bands. Even in the interior of the BZ, bands are usually curved,
and one particular (say, positive) curvature may prevail over the
Brillouin zone (if e.g., these bands are all derived from the same
atomic orbitals). Then, including a quadratic correction may give
a systematic improvement of the sampling, as shown e.g., for
copper and NiSi2 in Blöchl et al. (1994).

3.2. Metallic Systems
Density functional theory has initially been proven for atomic
and molecular systems with a finite, integer number of electrons.
With the help of Bloch’s theorem, the proof has been carried
over to an infinite, periodic crystal of a semiconducting or
insulating material: A finite number of bands, say N bands, are
fully occupied, separated from unoccupied states by an energy
gap. In a spin-polarized calculation, N equals the number of
electrons in the unit cell; in the (more common) case of a spin-
compensated calculation, N is only half of the electron count,
since each band may host two electrons (of opposite spin).
In either case, a numerical calculation can be carried out by
considering the occupied bands only, disregarding unoccupied
electronic states. This approach, only keeping the occupied bands
in the calculations, has been used successfully in many earlier
studies, including ab initio molecular dynamics, e.g., of liquid
water or solid silicon.

For a fully periodic, metallic solid, however, we have to
allow for the situation of bands being partially occupied. Hence,
the Kohn-Sham formalism needs to be extended to include
occupation numbers fi ∈ [0, 1] (in the spin-polarized calculation;
otherwise, fi ∈ [0, 2] are admissible due to spin degeneracy).
Moreover, at finite temperature some electrons in a metal will be
in excited states, since there is no energy gap in a metal that could
prevent such excitations. From a very general point of view, it has
been shown that the validity of DFT can be extended to finite
temperatures by the concept of ensemble DFT (Mermin, 1965;
Marzari et al., 1997), i.e., the electron density now follows from a
variational principle derived from a suitably defined free energy.
This means that the occupation numbers must become functions
of temperature, fi(Te) = f (εi,Te). From a physics point of view,
one may prefer to choose the Fermi-Dirac distribution function

for the occupation numbers,

f (ε,Te) =
1

exp
(

(ε − EF)/(kBTe)
)

+ 1
, (19)

where Te is the temperature of the electronic system, kB is the
Boltzmann constant, and EF is the Fermi energy which can be
also regarded as the chemical potential of the electrons µ(Te).

From a numerical perspective, choosing an occupation
function is motivated by additional considerations: Since we
work with a finite number of k-points, the electronic eigenvalue
spectrum in a calculation is always discrete. In order to mimic
the behavior of a metal, one uses a “smearing” technique, i.e.,
Te is set to a high value (typically a few tenth of an eV, i.e.,
an order of magnitude higher than the physical temperature) to
have a smooth transition of the occupation numbers between 1
at low energies and 0 at high energies. This “smearing” allows
for numerically stable algorithms to locate the Fermi energy
from the set of calculated eigenvalues εi(kj). Within the DFT
code, the Fermi energy EF is adapted in each iteration to fulfill
the condition

N
∑

i=1

∑

kj∈BZ

f (εi(kj),Te → 0) = N , (20)

where N is the number of electrons per unit cell. Likewise, one
can define a Fermi temperature by the relation TF = EF/kB with
kB the Boltzmann constant. Instead of the summation over the
Brillouin zone, one can also use energy integration if one allows
for an additional factor g(E) in the integrand accounting for the
density of states,

N =
∫ ∞

−∞
dE g(E)2(EF − E) , (21)

where 2 is the Heaviside function. After introducing the
‘smearing’ parameter σ and performing a transformation to a
dimensionless variable

x =
E− EF

σ
, (22)

the Heaviside function 2(−σx) serves as starting point for
various approximations. For instance, it could be replaced by
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FIGURE 3 | Convergence of the total energy of single-layer graphene
calculated with the FHI-aims code (Blum et al., 2009). (A) shows the
convergence with the total number of k-points in the Brillouin zone,
corresponding to the inverse k-point density, while panel (B) shows the scaling
with the computational effort, being proportional to the number of irreducible
k-points, after the operations of the symmetry group D3v have been applied.
The Monkhorst-Pack grids are constructed with qx ,qy ,qz in
Equation (15)–(17) being even numbers, and consequently the
Monkhorst-Pack sets exclude the Ŵ-point.

a Fermi-Dirac function with some electronic temperature Te.
However, working with an unphysically high Te introduces
an error in the total energy (and also in all other averaged
quantities) calculated by the DFT code. In fact, when using
fi = f (εi(k),Te), the code calculates the total energy Etot(Te)
and the free energy Ftot(Te) at finite Te rather than the total
energy Ezero = Etot(Te → 0). The free energy is defined by
Ftot(Te) = Etot(Te)− TeSe(Te) where

Se(Te) = −kB
∑

i

(

fi ln fi + (1− fi) ln(1− fi)
)

(23)

is the electronic entropy. A correction is necessary to obtain the
ground state energy at Te = 0. In the simplest case, one uses the
average of the total energy Etot(Te) and the free energy Ftot(Te),
making use of the Sommerfeld expansions (see e.g., Ashcroft and
Mermin, 1976, Appendix C)

Ftot(Te) = Etot(0)

[

1+ a2
T2
e

T2
F

+O

(

(

Te

TF

)4
)

+ . . .

]

, (24)

Etot(Te) = Etot(0)

[

1− a2
T2
e

T2
F

+O

(

(

Te

TF

)4
)

+ . . .

]

. (25)

The absolute value of the coefficient a2 in both expansionmust be
equal, since basic thermodynamics tells us that Ftot = Etot−TeSe,
but also Se = −∂Ftot/∂Te. For instance, in the free electron
gas, a2 = 5π2

12 . If the higher-order terms in the expansion are
negligible, since the leading T2

e terms cancel each other,

Ezero ≈
Etot(Te)+ Ftot(Te)

2
(26)

yields an improved estimate for Ezero. The behavior of Ftot(Te)
and Ezero will be illustrated by examples in Figures 4, 5. The
above equation also gives us a hint how to choose Te in an actual
calculation: It must not be too large (such that the T4

e terms are
indeed negligible), but at the same time it should be large enough
to “smear out” any (unphysical) gaps in the eigenvalue spectrum
εi(kj) (see e.g., Figure 6). If the latter condition is not satisfied,
one must repeat the calculation with a denser grid of k-points.
Thus, for a metal, the density of the k-point grid and the choice
of the “smearing" parameter should always be discussed together
if highly converged results are needed.

One has to keep in mind that the correction scheme
(Equation 26) is applied to the total energy only, while other
physical quantities, e.g., the forces on the atoms, are derivatives
of the free energy and remain uncorrected. The demand for
accurate forces (consistent with the conservation of total energy)
is of particular importance in molecular dynamics simulations
on the Born-Oppenheimer potential-energy surface and has
inspired extensions of the above correction scheme (Wagner
et al., 1998) to the calculation of forces. To keep things simple,
however, one would like to have a numerical scheme in which
already the coefficient a2 of the leading T2

e term is as small as
possible. One way to achieve this is the scheme suggested by
Methfessel and Paxton (1989). They replace the Fermi-Dirac
distribution function (Equation 19) by a complementary
error function (erfc) plus an expansion into Hermite
polynomials Hn(x):

SL(x) =
1

2
erfc(x)+

L
∑

n=1

BnH2n−1(x) exp(−x2) , (27)

with the variable x defined in Equation (22). The function SL(x)
can also be understood as an approximation to the Heaviside
function 2 in Equation (21). The coefficients Bn must be chosen
such as to minimize the truncation error of the expansion. In
practice, it is advisable to keep only the first few terms in the
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expansion, L = 1 or 2. Choosing L = 0 yields the limit
of Gaussian smearing, in which the derivative of the Fermi-
Dirac function is approximated by a Gaussian function centered
at the Fermi energy. It turns out that, with the Methfessel-
Paxton scheme with a carefully chosen width σ , not only the
total energy, but the forces are sufficiently accurate. This will be
discussed later (Figure 7). It is still possible (but not necessary) to
extrapolate the total energy to zero broadening using the formula
(Kresse and Furthmüller, 1996a)

Ezero ≈
Etot(Te)+ (L+ 1)Ftot(Te)

L+ 2
(28)

which can be seen as a generalization of Equation (26) to the case
L > 0. The price to be paid when using the Methfessel-Paxton
scheme is the possible occurrence of negative f (εi(kj)), i.e., the
‘occupation numbers’ fall outside their physically meaningful
interval [0, 1]. An alternative technique, the so-called cold-
smearing of the occupation numbers (Marzari et al., 1999), avoids
the issue of negative occupation numbers, while it allows for a
subtraction technique to remove the entropy contributions from
the free energy in order to obtain a corrected expression for the
total energy.

Test calculations demonstrating the efficiency of the
Methfessel-Paxton scheme are shown in Figure 8. While the
extrapolation Te → 0, Equation (26), is necessary to render
the Fermi-Dirac or Gaussian broadening independent of the
broadening parameter σ , the Methfessel-Paxton scheme gives
practically identical values for all three quantities even for σ
values as large as 0.2 eV. Further tests for the bulk metals fcc Ru
and bcc Ir can be found in Zhang et al. (2017), and for alkali
atom adsorption on the Al(111) surface in Neugebauer and
Scheffler (1992).

One should keep in mind that there are some topics in
solid-state physics that are more sensitive to the sampling of
the Brillouin zone than others. Critical issues may arise in
particular in cases where a symmetry-lowering phase transition
in a material is driven by changes in the electronic structure.
For instance, in materials that display an instability against
the formation of charge density waves due to Fermi surface
nesting, the k-point set should be chosen carefully to include
the nesting vector. Further examples are the Jahn-Teller effect
in polar materials or a Peierls transition, that both may be
related to bands that are occupied and/or unoccupied only in
small parts of the Brillouin zone; nonetheless it is important to
resolve these ’puddles’ of electrons and holes within the k-point
sampling since their extension is driving the structural transition
one wants to study.

3.3. High-Precision Calculations for Metals
If the total-energy calculations are intended to be used as the
basis of a thermodynamics analysis, highly precise values, with
an accuracy of 1 meV per atom or better (Grabowksi et al.,
2007; Grabowski et al., 2011), are required. Test calculations
performed in an automated way for k-point grids of various
shapes and densities (Morgan et al., 2018) suggest that an
accurate sampling of the Fermi surface, and thus a dense k-point

grid in the range of 303 irreducible k-points per atom, is necessary
to achieve this goal. Here, we present case studies carried out
with the VASP code (Kresse and Furthmüller, 1996b) for four
representative materials, aluminum (Al), vanadium (V), silicon
(Si), and titanium (Ti). For the dense k-point meshes used in this
study (e.g., 30 × 30 × 30), it turns out the k-point density is the
decisive quantity, while the exact placement of the grid (e.g., if it
contains the Ŵ-point or not) is a minor issue once a sufficiently
high density is used. We plot the absolute error (relative to
the k-point mesh with the highest density used) as a function
of the number of irreducible k-points in a double-logarithmic
representation both for the free energy (Figure 4) and for the
total energy extrapolated to zero broadening (Figure 5). For all
materials, using a Fermi-Dirac function, Equation (19), for the
occupation numbers does not allow for a reliable extrapolation
of the total energy to zero temperature, or, more precisely,
it converges to a different limit (above the 1 meV threshold)
even for the highest k-point density used. For metals, the
Gaussian smearing of the Fermi edge introduces a too high free
energy on the dense grids (see Figure 4); and this error is only
insufficiently corrected by the extrapolation to zero broadening
(Figure 5). The same statement can be made for the uncorrected
(linear) tetrahedron method (Jepsen and Andersen, 1971). The
Methfessel-Paxton scheme, both in its first and second order
variant, allows to bring down the error to a few meV per
atom. The corrected tetrahedron method (Blöchl et al., 1994)
performs similar to the Methfessel-Paxton technique, with slight
advantages in the range of medium sized k-point sets (< 100
irreducible k-points), but yields no decisive improvement if a
dense k-point set is used.

For structural optimization in unit cells that contain more
than one atom per cell, the accuracy of the forces is important,
too. As a general advice, it is recommendable to use a
narrow broadening width if possible, such that the forces are
not “contaminated” by unphysical smearing of the electronic
eigenvalues and the work done by the forces in a molecular
dynamics simulation remains consistent with changes of the total
energy. For this reason, it is also advisable to work with the
Methfessel-Paxton scheme with first or second-order corrections
(L = 1 or 2) since its free energy (of which the derivatives are
taken to obtain forces) is close to the total energy, cf. Figure 8,
lower row. An analysis of the accuracy of forces as a function
of the broadening parameter σ is presented in Figure 7 for
Al and V (rows) and for a sparse and a dense k-point set
(columns). Comparing the results of the two k-point sets, one
finds that using the Methfessel-Paxton scheme with a relatively
large broadening, e.g., 0.2 eV, gives reliable results4. For a dense
k-point set, the Methfessel-Paxton results become independent
of the value of σ over a wide range. The Gaussian or Fermi-Dirac
function broadening are not recommendable since the forces
are sensitive to the broadening used. When working with small
σ , one should first make sure that the k-point set used indeed
provides a sufficiently dense sampling of the density of states
near the Fermi level. Only then the (numerical) Fermi energy

4Note that the VASP code (Kresse and Furthmüller, 1996b) uses σ = 0.2eV as
default.
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FIGURE 4 | Convergence of the free energy (total energy minus TeSe with Se the electronic entropy defined in Equation 23) as function of the number of irreducible
k-points in a double logarithmic representation. Four representative elements are shown: fcc Al as example for a free electron gas, bcc V with a partially occupied d
band, Si as semiconductor and Ti with a hcp crystal structure. The colored lines (see legend) represent the various smearing approaches. “Tet_Bloechl” is the
tetrahedron method with Blöchl correction.

is sufficiently well defined – this can be concluded from the
occupation numbers dropping from one to zero gradually, with
several fractional occupation numbers on the way, as observed
for the green and red curves in Figure 6. In some materials with
steep bands crossing the Fermi energy, e.g., in aluminum, this
issue deserves special attention. As can be seen from Figure 7,
a grid of 19 × 19 × 19 k-points is not yet sufficient to define the
Fermi energy, because only few occupations fi ∼ 0.5 exist. With
these settings (and a small σ = 0.01 eV), also the forces show
noticeable deviation from their converged values (see Figure 7,
upper left panel). The remedy in this case is provided by using
a denser set of 8125 irreducible k-points (upper right panel of
Figure 7) rather than only 550 irreducible k-points (upper left
panel of Figure 7).

We note here that the study of realistic materials at finite
temperature requires to take all physical contributions to the free
energy into account. This not only comprises the contribution of
electronic excitations to the free energy, but also contributions
from lattice vibrations or from magnetic excitations (in case
the material displays magnetic order). The “1 meV per atom”
accuracy goal not only refers to the electronic free energy, but
must also be met by the free energy of the excitations. For
the lattice contribution, this requires accurate calculations of

phonon spectra and an evaluation of their free energy including
anharmonic effects (Grabowksi et al., 2007). Somemore technical
details how to achieve this goal using a plane-wave DFT code will
be given in the next section.

3.4. Specialities for Plane-Wave Basis Sets
In plane-wave codes using large basis sets, it can be efficient to
evaluate not only the electronic density, but also the expansion
coefficients of the wave functions via an iterative scheme. Due
to the huge number of basis functions, a full diagonalization
of the Hamiltonian for a given (preliminary) electronic density
may not be advisable. Rather, one works with approximate,
iteratively improved electronic eigenvalues. In this situation,
also the occupation numbers f (εi(kj)) will be approximate as
long as the iteration cycle is not yet converged. A method
for simultaneous iteration of both the wavefunction expansion
coefficients and the occupation numbers is described in Gillan
(1989) and Freysoldt et al. (2009).

Another practical aspect concerns the interplay between
atomic relaxation and k-point sampling. While relaxation
of atomic positions (using the calculated Hellmann-Feynman
forces) is still going on, the band occupancies may still change.
Smooth changes are preferred for technical reasons – one would
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FIGURE 5 | Convergence of the zero energy (total energy extrapolated to Te = 0K; Equations 26 or 28) as function of the number of irreducible k-points in a double
logarithmic representation. Four representative elements are shown: fcc Al as example for a free electron gas, bcc V with a partially occupied d band, Si as
semiconductor and Ti with a hcp crystal structure. The colored lines (see legend) represent the various smearing approaches. ’Tet_Bloechl’ is the tetrahedron method
with Blöchl correction.

like the atoms to move on a smooth (albeit approximate)
potential energy surface to be able to use sophisticated algorithms
to locate minima and saddle points. To this end, a ’smearing’
technique, e.g., Methfessel-Paxton, is appropriate, whereas an
accurate representation of the Fermi surface (by the tetrahedron
method) is not helpful as it would lead to abrupt changes in the
forces if a band (during the course of atomic relaxation) passes
through the Fermi energy (becomes populated or depopulated
in the next atomic configuration). Moreover, the corrected
tetrahedron method (Blöchl et al., 1994) can be shown (Kresse
and Furthmüller, 1996a) to result in inconsistencies between the
calculated forces and the total energy surface on which the atom
or ions are moving. For these reasons, the tetrahedron method is
used in the plane-wave community mostly for post-processing of
an already converged self-consistent calculation.

When using plane-wave codes, one is typically working with
relative convergence of energy differences with the number of
plane-wave basis functions, e.g., convergence of the cohesive
energy of a solid (being the difference of the total energies of the
crystal and the individual isolated atoms). Absolute convergence
of total energies would require an unnecessarily large plane-wave
basis set. Under these conditions, special caution is required if

one attempts to compare the total energies of two unit cells with
different size, or if one wants to calculate the stress acting on a
(deformed) unit cell. The number of plane waves in the basis
set may change abruptly even under slight changes of the unit
cell. As long as absolute convergence has not been reached, this
implies a change of the basis set quality that leads to an artificial
(unwanted) change in the total energy. One way to correct for
such errors is obtained from the scaling hypothesis for finite-
basis set corrections (Rignanese et al., 1995). Once the sensitivity
of the total energy to the applied plane-wave cut-off has been
determined, a correction can be applied that depends both on the
cell volume and on the number of k-points used to sample the
Brillouin zone. The corrected total energy allows one to obtain
smooth curves for the volume dependence or strain dependence
of physical observables, such as the pressure or the elements of
the stress tensor.

Many modern plane-wave calculations use ultrasoft
pseudopotentials or the projector-augmented wave (Blöchl,
1996; Kresse and Joubert, 1999) (PAW) method. While these
methods are very powerful and robust for most applications,
special care must be taken if one attempts to compare the total
energies of two atomic configurations that differ only by a
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FIGURE 6 | Occupation number of the electronic states close to the Fermi level using the Methfessel-Paxton first-order method and a smearing parameter
σ = 0.01eV. The numbers in the legend give the Ŵ-centered MP mesh (19 indicates e.g., a 19× 19× 19 Monkhorst-Pack mesh). For clarity, the curves have been
shifted by 0.01 eV each.

slight atomic displacement. This situation is encountered when
phonon spectra are calculated via the frozen phonon method.
In both the ultrasoft-pseudopotential and the PAW methods,
auxiliary charges associated with each atom are stored on a
dense real-space grid (within the DFT code). Displacements of
the atoms with respect to this grid lead to slight changes in the
representation of the augmentation charge that show up as small
errors of the total energy that normally go unnoticed. However,
when phonon properties are calculated, it is recommended to
check the results for convergence with respect to the auxiliary
grid density (Grabowksi et al., 2007). The Grüneisen parameter,
which is indicative of anharmonic effects, is particularly sensitive
to convergence issues. In addition, the accuracy of k-point
sampling needs to be monitored as well in order to ensure that
the tiny energy differences that form the basis of the calculations
of phonon frequencies are converged. Such convergence issues
are particularly relevant for soft metals with low-frequency
phonon modes (e.g., Pb, In) or for the acoustic phonon branches
near the Ŵ-point. Inaccuracies may show up as unphysical modes
with imaginary frequencies.

3.5. Supercell Model for Surfaces
The modeling of surfaces of a periodic crystal poses various
challenges for first-principles calculations. First of all, it is
advantageous to retain the two-dimensional periodicity within
the surface plane5. In most DFT calculations one prefers to use

5There are alternative geometrical models for a surface, e.g., as a cluster of
atoms with one planar face representing the surface and a ’rounded’ back side,
but the uncontrolled influence of this back side calls for additional measures,

a slab, i.e., a finite number of parallel atomic layers, to model
a surface. One may use both surfaces of the slab, front and
back side, to calculate the property of interest, e.g., the surface
energy, if both sides are equivalent. Otherwise, one uses only
one side (the front side) to model the physics of the surface,
while the back side is saturated by some atoms, e.g., natural
hydrogen or artificial pseudo-hydrogen atoms with fractional
nuclear charge, cf. Kaminski et al. (2017). This is commonly
done for semiconductor or insulator slabs, while for metal slabs
passivation is not needed. For semiconductors the passivation is
needed to remove partially occupied electronic backside surface
states from the band gap which without passivation could cause
a spurious charge transfer through the slab to the surface of
interest. For metals, the efficient electronic screening prevents
such a transfer, making passivation unnecessary.

In principle, there is no periodicity in the direction of the
surface normal. Some DFT codes enable the user to model
restricted periodicity to just two (surface) or one (nanowire)
dimensions. In codes that use atom-centered localized basis sets,
it is natural to discard any wave function overlap in the third
dimension of the surface normal. This way of treating just a
single slab also helps to save computer time. In plane-wave
codes, in contrast, basis functions that are periodic on all three
spatial dimensions are used. This means that one is working
with a supercell containing a piece of the slab that is periodically
repeated. In order to eliminate unwanted interactions between

e.g., embedding strategies, to obtain converged results, which makes the cluster
approach rather complicated if reliable quantitative results should be obtained.
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FIGURE 7 | Convergence of the atomic force as function of the smearing parameter σ for two representative elements (top: Al, bottom: V) and for two different
k-point samplings (left: 550, right: 8125 irreducible k-points). The colors indicate the various smearing methods discussed in the text (Gauss, Fermi-Dirac,
Methfessel-Paxton first/second order MP_1/MP_2). The converged values are −41.9 meV/Å for Al and −56 meV/Å for V. Note the different y-scales indicating a faster
k-convergence of Al compared to V.

periodic copies of the repeated slab, one needs to include a
sufficiently large vacuum region. The thickness of this vacuum
region is a parameter that should be tested in each case. As
a starting point, one typically uses 10–15 Å of vacuum and
checks for the charge density to become zero within the vacuum
region. It is important to note that the dispersion of the energy
bands, ε(kx, ky, kz), in a slab calculation must vanish in the
direction normal to the surface (typically this is the kz direction).
It is clear that the electrons cannot propagate through the
vacuum layer, and hence there is no kz dependence. Therefore,
one uses a two-dimensional k-point grid in the (kx, ky) plane
and sets kz = 0.

If inequivalent front and back sides of the slab are used, the
workfunctions of these two surfaces are generally different, and
therefore the electrostatic potential in the vacuum must reach
different values depending whether we sample it at a position far
outside the front or the back surface. Several DFT codes allow
the user to account for this physically meaningful possibility by
including a jump of the electrostatic potential with adjustable
magnitude right in the middle of the vacuum region. This jump
corresponds to the electrostatic potential of an infinitesimally
thin dipole layer positioned in the middle of the vacuum region,
which is exactly balanced by a dipole density of equal size, but
opposite sign, built up by the electronic density inside the slab.
This feature, which allows the user to obtain more accurate

results for inequivalent surfaces, is called the dipole correction
(Neugebauer and Scheffler, 1992).

In the supercell method in general6, the cell dimensions in real
space are integer multiples nx, ny, nz of the lattice vectors of the
primitive unit cell. Therefore, the reciprocal lattice vectors of the
supercell are fractions of the primitive bi defined in Equation (9).
The Brillouin zone of the supercell is smaller by factors nx, ny
and nz in the respective directions. For this reason, the k-point
grid in the supercell calculation can be chosen much coarser
while retaining the same level of precision. For instance, if the
bulk calculation used a qx × qy × qz grid, as a rule, the surface
slab calculation with nx × ny supercell would use an (equivalent)
qx/nx × qy/ny grid. The decisive quantity is the density of the
k-points in the BZ, in other word, the volume element or areal
element represented by one k-point. This technique can be used
when differences between surface and bulk total energies need to
be calculated, e.g., for the calculation of surface energies.

However, there are exceptions from this rule where the
surface requires a denser k-point sampling than the bulk. We
mentioned already the different demands for sampling density
in semiconducting vs. metallic systems. Even if a material is
semiconducting in the bulk, it may possess surface or interface

6For the use of the supercell method in the calculations of defects, see the review
by Spitaler and Estreicher (2018) in the same issue.
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FIGURE 8 | Dependence of the three energies - total energy Etot, zero energy Ezero and free energy Ftot - as function of the smearing parameter for four approaches
(Fermi-Dirac, Gauss, Methfessel-Paxton (MP) first and second order). To demonstrate the performance of the MP approaches the identical y scaling is used. On this
scale for the MP approaches all three energies are identical, showing that even at larger electronic temperatures Te (i.e., larger σ values) Ftot(Te = 0K) can be
accurately approximated by Ezero(Te).

states that are metallic. In this case, the “Fermi lines” in the
2D Brillouin zone need to be determined, a task that generally
requires a denser sampling of the surface Brillouin zone. One
example where the convergence with the k-point grid has been
documented is provided by the Si(100) surface (Ramstad et al.,
1995): On this surface, Si atoms form dimers which have
a tendency to tilt with respect to the surface plane. Surface
reconstructions with different unit cells parallel to the surface
[p(2 × 2) or c(2 × 2) ] can be formed if the tilting angles on
neighboring Si dimers alternate in sign. The energy difference of
these reconstructions is very small, demanding a careful sampling
technique to obtain accurate results. Moreover, all these surface
reconstructions display electronic surface states in the principal
band gap of Si. Depending on the relaxed positions of the surface
atoms, these surface states may cross the Fermi level, giving rise
to parts of the Brillouin zone where an additional electronic state
is occupied, and other parts where some other electronic state is
unoccupied. These “puddles” of electrons and holes are bounded
by Fermi lines. Obviously, we must require some fraction of our
k-point set to fall into these small parts of the Brillouin zone,
only then we will be able to sample the total energy correctly,

which is also a prerequisite to obtain the correct relaxed ground
state geometry. It has been found (Ramstad et al., 1995) that at
least 8 k-points in the total BZ of the (2 × 2) cell are required
to stabilize the tilting of the Si dimers. Only by using at least
32 k-points one can assure that the energy difference of just 5
meV per dimer between the p(2 × 2) and the c(2 × 2) surface is
converged. The importance of partial occupation of bands in a
small part of the BZ for driving surface reconstructions is seen
even more clearly in the case of gold-induced reconstructions
on the Si(111) surface (Erwin et al., 2009). In particular, the
dependence of the surface energy on gold coverage, related to
the degree of filling of the partially occupied bands, requires
careful sampling of the BZ. Inhomogeneous k-point grids, with
finer sampling in the physically most important areas of the BZ,
may be required to accurately describe the observed symmetry-
breaking reconstructions.

The number of layers in the slab that is used to model
the (in principle) semi-infinite piece of the bulk crystal is
another modeling parameter that needs to be chosen carefully.
Unfortunately there is no simple rule-of-thumb. For the physical
quantity one is interested in, the convergence with slab thickness
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needs to be checked on a case-by-case basis. For metals,
the convergence with thickness is usually faster than for
semiconductor or insulator slabs due to the good screening
properties of the metal. However, some special surface features,
e.g., electronic surface states, may display a very slow decay into
the bulk of the crystal. If the physical effects of surface states
matter for a particular problem, it may be required to use rather
thick slabs of 30 layers or more. One should also keep in mind
that a slow convergence or even oscillations of the surface energy
as function of slab thickness can be due to physical reasons:
For some thin metals films, e.g., Al films (Kiejna et al., 1999)
or Pb films (Wei and Chou, 2002), quantum well states occur
that induce periodic changes not only of the surface energy,
but also of the Fermi level position, work function and other
physical quantities.

4. ANALYSIS TOOLS

The total density of states g(ε) introduced in Equation (18)
provides information at a glance if a given system is a
semiconductor, a metal, a semi-metal or a ferromagnetic half-
metal. Therefore, many DFT codes come with a software tool
to plot the DOS. In practice, the δ-function in Equation (18) is
often replaced by a Gaussian, whose width must be chosen by
the user via a separate input parameter to the DFT code. This
feature should not be confused with the Gaussian broadening σ
discussed in section 3.2. For narrow-gap semiconductors, care
must be taken not to close the gap by choosing an unsuitably large
Gaussian width. As an alternative, one can plot a histogram of
the energy eigenvalue distribution, sorting the eigenvalues into
sufficiently narrow bins, as was done in Figure 9, to achieve a
graphical representation with sharp features.

The spatially resolved local density of states (LDOS) is
given by

ρ(r, ε) =
∑

i,k

|ψi,k(r)|2δ(ε − εi,k) . (29)

As one application, the band gap in a semiconductor and
the range of surface states can be estimated by producing
an LDOS plot of ρ(z, ε) along the surface normal of a slab
calculation. In this way, one can visualize how the surface
states decay into the bulk. The simulation of images of the
scanning tunneling microscope (STM), following the Tersoff-
Hamann approximation (Tersoff and Hamann, 1983), is another
application of the LDOS. Here, one generates a 2D plot
in the (x, y)-plane (parallel to the surface) of the quantity
∫ EF+V
EF

ρ(x, y, ztip, ε) dε where ztip is the position of the STM tip
above the surface and V is proportional to the voltage applied
between tip and sample.

The atom-projected density of states (PDOS) can be used to
assign the density of states to specific layers (at or below the
surface), or specific atomic orbitals:

ρM,l(ε) =
∑

i,k

∣

∣

∣

∣

∫

8at
M,l(r)ϕi,k(r)

∣

∣

∣

∣

2

δ(ε − εi,k) dr (30)

FIGURE 9 | Electronic density of states g(ǫ) (DOS) for two representative
elements (Al and V). While Al shows a smooth and rather low density of states,
the partially occupied 3d bands in V lead to a peaked density of states. The
much higher density of states of V at the Fermi level (vertical dashed line)
compared to Al explains the denser sampling shown in Figure 6 (see e.g.,
blue crosses).

Here 8at
M,l(r) stands for an atomic orbital with angular

momentum l at the atom labeled M. The radial dependence
of this orbital and its possible truncation to avoid overlap with
neighboring atoms in the lattice are not uniquely defined and
different DFT codes use slightly different procedures. For this
reason, the PDOS should be considered as a qualitative, rather
than a quantitative tool. Nevertheless, the PDOS and more
elaborate analysis tools based on it can provide valuable insight
into the bonding and band formation in a crystalline solid.

Often it is desirable to provide information about the orbital
character of a band when plotting the band structure. For
this purpose, the band structure plot is superimposed by the
information stemming from the PDOS. For example, a color
scale is used to indicate the contribution of a certain orbital to
a band, or symbols with sizes proportional to the admixture of
a certain orbital are plotted on top of the line plot of the band
structure. This is illustrated in Figure 10 for the example of a
zirconium contact on the two-dimensional semiconductor WS2
(Kahnouji et al., 2019). The band structure and the PDOS have
been calculated with the FHI-aims code (Blum et al., 2009).

In practice, the calculation of the various densities of states
defined above, as well as of the Fermi surface, is carried out in
a post-processing step as a non-self-consistent DFT calculation
using the charge density from a previously performed self-
consistent (with a Monkhorst-Pack grid) calculation as input.
The post-processing can use a finer grid, plus additionally
improved sampling via the Blöchl-corrected tetrahedron
method (Blöchl et al., 1994).

5. CALCULATIONS BEYOND TOTAL
ENERGY REQUIRING A VERY HIGH
NUMBER OF K-POINTS

Some semiconductors (e.g., GaAs, GaN, or ZnO) possess sharp
minima (small effective masses) of their conduction bands. For
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FIGURE 10 | Band structure of the hexagonal unit cell of single-layer WS2
contacted by a Zr slab. The size of the red symbols on the bands reflects the
W 5d orbital character of the bands. Although the contact as a whole is
metallic, one can still see remainders of the valence band and conductance
band of the semiconductor WS2 in the bands marked by the red symbols.
Figure adopted from Kahnouji et al. (2019).

obtaining an accurate density of states in the conduction band,
a very dense sampling of k-space at and around the Ŵ point
is required. Fortunately, the unoccupied conduction band states
do not contribute to the total energy; thus, this issue does not
affect total energies and stabilities, but shows up when plotting
the DOS or PDOS. If this is needed, it is recommendable to
interpolate the energy eigenvalues on some already rather dense
mesh by analytical functions in the vicinity of Ŵ. Subsequently,
one can evaluate these analytical functions on as many k-points
as required to obtain the smooth DOS.

More generally, any flat parts in the band structure of low-
dimensional systems show up as van Hove singularities (van
Hove, 1953) in the density of states. If a band behaves as εi(k) ∼
(k − k0)2 (typically encountered around a high-symmetry point
k0), the density of states g(ε) shows a discontinuity (jump) in two
dimensions, and even diverges like∼ ε−1/2 in a one-dimensional
system. If such a behavior is important for the physical effects one
wishes to study (e.g., for thermoelectric properties, the skewness
of g(ε) near the Fermi energy is important), knowledge of the
position of van Hove singularities, and a very dense sampling of
k-space at the corresponding points k0 are required. Moreover,
the relevance of van Hove singularities in superconductivity of
metals with high transition temperature is well known.

Problems in magnetism regularly involve an energy scale
that is small on the scale of typical electronic energies. Tiny
total energy differences are important for magnetic properties of
materials. Therefore, highly converged calculations with many
k-points are required. One example is the magnetocrystalline
anisotropy of a ferromagnet. One wishes to find out which
orientation of the magnetization (relative to a coordinate system
defined by the crystalline lattice vectors) is the energetically
most favorable one. This defines the so-called “easy axis” of
magnetization. The energy difference between magnetization
along the “easy” axis and another, “hard” axis, is very small:
typically µeV for the light ferromagnetic elements (such as Fe,
Co, Ni) in a cubic environment, and up to meV for heavier
atoms (e.g., rare earth elements) or compound materials where
the magnetic atoms sit in a symmetry-reduced environment and
their orbitals experience crystal field splitting. The physical origin
of the magnetocrystalline anisotropy can be traced back to slight
deformations of the Fermi surface when themagnetization vector
is rotated from one crystalline axis to another. In order to sample
these small changes of the Fermi surface, very fine k-point meshes
(e.g., a 100×100×100mesh)may be required (Razee et al., 1999).

A related difficulty is observed if one wants to study transport
properties as a function of magnetization, e.g., in case of the
anisotropic magneto-resistance (Popescu and Kratzer, 2013), or
the so-called giant magnetoresistance (GMR) effect in metallic
heterostructures (Heiliger et al., 2008). Here, one is interested
in the difference in the conductivity of a magnetic metal if the
electrical current flows either parallel or perpendicular to the
direction of magnetization (or at any angle with respect to the
magnetization vector). Again, the results depend sensitively on
fine features of the Fermi surface and their change under a change
of magnetization direction.

Adaptive mesh-refinement schemes (AMR) (Bruno and
Ginatempo, 1997; Henk, 2001) for Brillouin zone integration
provide robust numerical methods which automatically find
regions with a high accuracy demand. These regions are sampled
with high density, while the other regions are sampled with
low density, resulting in considerable savings of computer
time as compared to integration methods that rely on equally
spaced mesh points. The use of AMR schemes can be traced
back to earlier work by Temmerman and Szotek (1987). Since
the Brillouin zone integral can be written as three nested
integrals over the three dimensions of k-space, it is sufficient
to illustrate the method for one dimension: The basic idea
amounts to concentrating the points at which the integrand
is evaluated in those regions where the integrand is large
and then perform a quadratic integration. Starting from an
equally spaced mesh, in each subsequent step a denser mesh
is generated in the critical regions, either by a cascading
linear method (halving integration intervals) or by simplex
mesh refinement (Henk, 2001). Various indicators may be
used to trigger mesh refinement; apart from the absolute
size of the integrand these could be sign changes [e.g., in
case of the scattering path operator of the Korringa-Kohn-
Rostoker (KKR) method (Temmerman and Szotek, 1987)],
or the difference between trapezoidal and Simpson rule of
integration (Bruno and Ginatempo, 1997).
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6. CONCLUSIONS

With the increasing role of “big data” and high-throughput
computations in materials physics and chemistry, it is important
to guarantee high accuracy for the first-principles data to be
stored in materials databases. For this reason, there is renewed
interest in convergence aspects of DFT calculations. There is
ample knowledge on the convergence with the sampling of
reciprocal space from earlier work with much more limited
computational resources. For semiconductors and insulators,
this knowledge about special k-points can be used to carry
out the calculations in the most economic way. For metals
and alloys, the accurate sampling of the Fermi surface is still
an issue and requires the use of dense k-point meshes to
ensure a convergence of the total energy per atom to better
than 1 meV. Even for simple metals, there is astounding
diversity in the shapes of their Fermi surfaces. Thus, there is
presently no general recipe available for choosing k-points that
circumvents a dense sampling of the Brillouin zone. Moreover,
for high sampling density, the exact location of each k-point,
and thus the knowledge about special k-point sets, becomes
less relevant. If the goal of the calculations is the total energy
and the relaxed atomic structure, the most efficient way to deal
with the Fermi surface is some broadening of the Fermi-Dirac
distribution function. The broadening must be chosen such that
a sufficiently large fraction of all occupation numbers shows
fractional occupation. The methods available for extrapolating
the total energy to the limit of zero broadening work well
also with a very high number of k-points. The forces on the
atoms deserve special attention, since they are calculated as
the derivative of the electronic free energy (rather than the

total energy), but for the test cases investigated this did not
cause problems as long as the Methfessel-Paxton scheme with
a broadening parameter in the range of 0.1–0.2 eV and a
sufficiently dense k-point mesh is used. For post-processing with
analysis tools and for quantities beyond the total energy (e.g.,
for transport properties), integration schemes that go beyond
the standard trapezoidal rule, e.g., quadratic interpolation or
adaptive k-point meshes, turn out to be useful and offer an area
for future research.
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