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The insertion of azobenzene moiety in complex molecular protein or peptide systems

can lead to molecular switches to be used to determine kinetics of folding/unfolding

properties of secondary structures, such as α-helix, β-turn, or β-hairpin. In fact, in

azobenzene, absorption of light induces a reversible trans ↔ cis isomerization, which

in turns generates a strain or a structure relaxation in the chain that causes peptide

folding/unfolding. In particular azobenzene may permit reversible conformational control

of hairpin formation. In the present work a synthetic photochromic azobenzene amino

acid derivative was incorporated as a turn element to modify the synthetic peptide

[Pro7,Asn8,Thr10]CSF114 previously designed to fold as a type I β-turn structure

in biomimetic HFA/water solution. In particular, the P-N-H fragment at positions 7–

9, involved in a β-hairpin, was replaced by an azobenzene amino acid derivative

(synthesized ad hoc) to investigate if the electronic properties of the novel peptidomimetic

analog could induce variations in the isomerization process. The absorption spectra of

the azopeptidomimetic analog of the type I β-turn structure and of the azobenzene amino

acid as control were measured as a function of the irradiation time exciting into the

respective first ππ∗ and nπ∗ transition bands. Isomerization of the azopeptidomimetic

results strongly favored by exciting into the ππ∗ transition. Moreover, conformational

changes induced by the cis↔ trans azopeptidomimetic switch were investigated by NMR

in different solvents.

Keywords: azobenzene, cis/trans photoisomerization, photoswitchable peptide, optical control, NMR

spectroscopy, UV/Vis spectroscopy

INTRODUCTION

Azobenzene has been recognized as a potential molecular photoswitch in various fields, such as
polymer science, material science, chemistry, and life sciences (Marchi et al., 2012; Goulet-Hanssens
and Barrett, 2013; Dong et al., 2015; Bushuyev et al., 2018; Miniewicz et al., 2018). Azobenzene
amino acids protected for solid phase synthesis proposed by Sewald et al. opened possibility the for
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incorporation into photoswitchable peptides (Juodaityte
and Sewald, 2004; Renner and Moroder, 2006; Aemissegger
and Hilvert, 2007). In particular, compounds containing
a methyl spacer between the phenyl ring and the amino
group, as [3-(3-aminomethyl)-phenylazo]phenylacetic acid
(AMPP) acid or (4-aminomethyl)phenylazobenzoic acid
(AMPB), give more flexibility to the chemical structure of
a Xaa–AMPB–Yaa fragment than the rigid chromophore,
4-[(4-amino)phenylazo]benzoic acid (APB).

When inserted into larger molecular systems, like protein
chains or peptides, azobenzene can be used as a molecular switch
and/or as a probe to determine kinetics of folding/unfolding of
the corresponding secondary structure, like α-helix, β-turn, or
β-hairpin (Behrendt et al., 1999; Kumita et al., 2000; Renner
et al., 2000; Spörlein et al., 2002; Komarov et al., 2018). In fact,
absorption of light by azobenzene induces a reversible trans ↔
cis isomerization, which in turns generates a strain or a structure
relaxation in the chain that causes peptide unfolding/folding.
The process can be easily monitored looking at the absorption
spectrum of azobenzene itself, that is strongly different in the two
forms, trans and cis (Schultz et al., 2003; Satzger et al., 2004; Quick
et al., 2014). In particular, the AMPP chromophore incorporation
in a peptide sequence led to a β-hairpin structure after irradiation
(Dong et al., 2006, 2017; Rampp et al., 2018), and the AMPB
was described as a trigger molecule in cyclic peptide structures
(Ulysse et al., 1995; Renner et al., 2005).

When a chromophore unit is integrated into a linear
or cyclic peptide, the trans ↔ cis isomerization of
an azobenzene derivative induced by UV/VIS photo-
irradiation, has been demonstrated to induce a reversible
change in the peptide structure modulating its biological
activity (Ali et al., 2015). For example azobenzene
amino acid has been reported for antigen-antibody
photocontrol (Beharry et al., 2008; Parisot et al., 2009).
In a cyclic polypeptide ligand, azobenzene trans ↔ cis
isomerization induced drastic changes in recognition by
neural NO synthase leading to reversible photocontrol
of muscle fibers (Hoppmann et al., 2011). Finally, in an
amyloid azobenzene containing peptide, isomerization
plays an active role in self-assembly into β-amyloid
fibrils (Deeg et al., 2011).

β-Hairpins are very interesting structures as they are involved
in many biological processes i.e., often constitute binding
epitopes and are implied in protein–protein or protein–DNA
interactions (Hillier et al., 1999; Gajiwala et al., 2000; Wong
et al., 2000; Schumacher et al., 2001; Zavala-Ruiz et al., 2004).
Thus, the development of highly stable β-hairpins based on
introduction of molecules as azobenzene allowed to control the
hairpin structure and initiate a folding or unfolding transition
with high isomerization yield, remarkable photostability, and
ultra-fast kinetics.

In previous studies, the family of structure-based designed
β-hairpin peptides termed CSF114(Glc) has been developed
to expose aberrant post-translational modifications (PTMs) to
characterize antibodies as biomarkers of autoimmune diseases
in patient sera (Lolli et al., 2005a,b; Papini, 2009; Pandey et al.,
2012). In fact, we demonstrated that the β-turn structure is

crucial for the correct exposure of the PTM and allows a specific
and high affinity antibody interaction in the context of solid-
phase immunoenzymatic assays (Carotenuto et al., 2006, 2008).
In this work, a modified sequence of [Pro7,Asn8,Thr10]CSF114
was selected as an optimized type I β-turn structure. Aim of the
present work is the design and synthesis of a photocontrolled
probe, based on AMPB azobenzene as a turn element in the
central part of the amino acid sequence, to investigate if the
electronic properties of the newmolecule could induce variations
in the isomerization process of the azobenzene unit and to study
the effect of the photoswitch on its conformation.

MATERIALS AND METHODS

Reagents
All Fmoc-protected amino acids, Fmoc-Wang resins, DIC (N,N

′

-
Diisopropylcarbodiimide), and Oxyma were purchased from Iris
Biotech GmbH (Marktredwitz, Germany). The following amino
acid side-chain-protecting groups were used: OtBu (Asp, Glu),
tBu (Ser, Thr), Pbf (Arg), Trt (Gln, His), and Boc (Lys). Peptide-
synthesis grade N,N-dimethylformamide (DMF) was purchased
from Scharlau (Barcelona, Spain); acetonitrile (ACN) from Carlo
Erba (Milan, Italy); dichloromethane (DCM), trifluoroacetic
acid (TFA), piperidine were purchased from Sigma-Aldrich
(Milan, Italy).

MW-Assisted Solid-Phase
Peptide Synthesis
The azopeptide 1 was synthesized by microwave-assisted solid-
phase peptide synthesis (MW-SPPS) following the Fmoc/tBu
strategy, using the Liberty BlueTM automated microwave peptide
synthesizer (CEM Corporation, Matthews, NC, USA) following
the protocol described elsewhere (Rizzolo et al., 2011). The
resin used was a Fmoc-Lys(Boc)-Wang (loading 0.24 mmol/g).
Modified amino acids were introduced using the synthesized
protected building-blocks suitable for Fmoc/tBu SPPS (Paolini
et al., 2007; Rentier et al., 2015). Coupling was performed with
the azobenzene amino acid AMPB (2.5 eq), HATU as activator
(2.5 eq), and DIPEA (3.5 eq) for 30min at room temperature.
Uncertain peptide coupling steps were checked by the ninhydrin
test as described by Kaiser (Kaiser et al., 1970), ormicro-cleavages
performed with a microwave apparatus CEMDiscoverTM single-
mode MW reactor (CEM Corporation, Matthews, NC, USA).
Final cleavage was performed using a mixture of TFA/TIS/H2O
(95:2.5:2.5 v:v:v) for 3 h at room temperature.

The crude azopeptide was pre-purified by Reverse Phase
Liquid Chromatography (RP-HPLC) using a Li-Chroprep C-18
column on an Armen Instrument (Armen Instrument, Saint-
Avé, France) working at 20 ml/min with H2O (MilliQ) and
CH3CN as solvent systems. The second step of purification was
performed by semipreparative RP-HPLC on aWaters instrument
(Separation Module 2,695, detector diode array 2,996) using a
Phenomenex (Torrance, CA, USA) Jupiter column C18 (10µm,
250× 10mm), at 4 mL/min with solvent systems A (0.1% TFA in
H2O) and B (0.1% TFA in CH3CN).

The azopeptide 1 was characterized by RP-HPLC-ESI-MS,
obtaining a final purity ≥ 98% (Figure S1). HPLC: tr =
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3.17min (cis isomer) and 3.78min (trans isomer), gradient
35–55% of B in 5min; Mr = calcd. for C116 H170 N29

O25 S1: 2402,88 ESI-MS: m/z: 1202,47 [M+2H]2+; 802,02
[M+3H]3+ RP-HPLC system is an Alliance Chromatography
(Waters, Milford Massachusetts, USA) with a Bioshell A160 C18
(Sigma Aldrich, Milano Italy; 1.7µm 2.1 × 50mm) column
at 35◦C, at 0.6 mL/min coupled to a single quadrupole ESI-
MS Micromass ZQ (Waters, Milford Massachusetts, USA). The
solvent systems used were A (0.1% TFA in H2O) and B (0.1%
TFA in CH3CN). Peptides were lyophilized using an Edward
Modulyo lyophilizer (Richmond scientific Ldt., Lancashire,
Great Britain).

UV/Vis Spectra Experiments
The experimental set up used for the irradiation procedure
consists of a Xe “Ozone free” Orion lamp emitting 450W
in the spectral range 200–2,000 nm. The light is focalized
through a lens (f = 200mm) onto the entrance slit of
a monochromator. The exit beam, having 1 nm bandwith,
is shaped by means of a pin-hole and collimated with a
50mm lens on the sample cuvette (quartz, 1 cm optical path
length). A magnetic stirrer placed inside the cuvette ensures
that the irradiating beam always interacts with fresh solution.
Incident beam cross section has been estimated 0.8 × 0.8
cm2. Incident power has been measured with a Coherent Field
Max II power meter. The power we used for the irradiation
was around 500 µW for all the three excitation wavelengths
used 313, 440, and 330 nm. Absorption spectra have been
obtained with a Varian Cary 5 spectrophotometer, with 2 nm
bandwith resolution.

Azobenzene was purchased by Sigma-Aldrich (purity
98%). [(4-aminomethylphenyl)diazenyl] phenylacetic acid
was synthesized as described by Juodaityte and Sewald
(2004) and azopeptide 1 was synthesized as described. Solution
concentrations were all around 10−4 M, using ethanol (Merck,
purity grade: Uvasol) as a solvent. Unknown molar extinctions
were determined for the new synthetic azopeptide 1 in the trans
form (amino derivative εt,(326) = 9,000 cm−1M−1; aminopeptide
εt,(330) = 5,090 cm−1M−1). The extinctions of the corresponding
cis form was calculated considering still valid the ratio εcis/εtrans
in azobenzene 3.

NMR Experiments
NMR experiments were recorded on a 500 MHz Bruker
Avance III spectrometer (Wissembourg, France) equipped with
a TCI 1H/13C/15N cryoprobe. The lyophilized azopeptide 1

was dissolved in 550 µL of 50% TFE-d3/50% H2O, 50%
TFE-d3/50% D2O, or 50% ACN-d3/50% H2O at ∼0.5mM
concentration for experiments before irradiation. For induction
of azobenzene trans ↔ cis isomerization, the sample was
irradiated in 100% TFE-d3 or 50% ACN-d3/50% H2O with a
VL-6.L UV-lamp (Vilber, Germany) emitting 6W at 365 nm for
1–5 h. Suitable volumes of solvents were added after irradiation
to recover the same solvent conditions as for experiments
before irradiation. 1H and 13C resonance assignments were
obtained from the analysis of 2D 1H-1H TOCSY (DIPSI2
isotropic scheme of 66ms duration), 1H-1H NOESY (200 or

400ms mixing time), 1H-1H ROESY (250, 300, or 400ms
mixing time), 1H-13C HSQC, and 1H-13C HSQC-TOCSY. NMR
experiments were processed with TOPSPIN 3.5 (Bruker) and
analyzed with NMRFAM-Sparky program (Lee et al., 2015).
NMR chemical shifts were calibrated with respect to the
residual protiated solvent signal on 1D 1H or 2D 1H-13C
HSQC experiments.

RESULTS AND DISCUSSION

In this work we designed, synthesized and studied the reversible
cis↔ trans photoisomerization of the [Pro7,Asn8,Thr10]CSF114
analog peptide 1, where from the original sequence
the P-N-H tripeptide was replaced by the photoswitch
(4-aminomethyl)phenylazobenzoic acid (AMPB). The
photoisomerization of the synthetic azopeptide 1 was explored
and its reversibility was compared with more simple systems, the
azobenzene amino acid 2 and the azobenzene 3.

Design of the azopeptide 1. In the literature photochromic
compounds, i.e., azobenzene, have been reported as molecules
able to isomerize reversibly, when exposed to light of
appropriate wavelength.

The 21-mer peptide [Pro7,Asn8,Thr10]CSF114, derived from
the family of structure-based designed β-turn peptides termed
CSF114(Glc), is characterized by a type I β-turn motif
(Carotenuto et al., 2006, 2008). In this sequence the β-turn
structure was shown around the proline and asparagine residues
in positions 7-8. The role of conformation in the recognition and
binding of this synthetic antigenic probe to autoantibodies in the
context of an immunoenzymatic assay (ELISA) was previously
determined to be fundamental.

Because of the importance of the conformation and of
the correct exposure of epitopes involved in autoantibody
recognition, the light-induced conformational change of
the synthetic peptide [Pro7,Asn8,Thr10]CSF114, after the
introduction of the azobenzene moiety into the sequence is
the object of the present study (Figure 1). Starting from the
[Pro7,Asn8,Thr10]CSF114 sequence, the P-N-H segment was
targeted for replacement by an AMPB azobenzene amino acid,
as a turn element.

The photoswitch (4-aminomethyl)phenylazobenzoic
acid (AMPB) was obtained by the condensation of
a 4-nitrophenylacetic acid with 4-aminobenzylamine
as described previously (Ulysse and Chmielewski,
1994; Juodaityte and Sewald, 2004; Aemissegger et al.,
2005). The amino function of 4-aminobenzylamine was
protected as Fmoc to obtain 4-[2-[4-[[[(9H-fluorenyl-9-
methoxy)carbonyl]amino]methyl]phenyl]diazenyl]benzenacetic
acid to be used in Fmoc solid-phase peptide synthesis. Its
incorporation into the peptide sequence proceeded into a
straightforward manner applying the standard Fmoc-solid phase
methodology, using HATU as coupling reagent. The synthesis
of the azobenzene-containing peptide 1 was carried out on a
0.1 mmol scale following the standard Fmoc/tBu solid phase
peptide synthesis (SPPS) starting from Fmoc-Lys(Boc)-Wang
resin. After coupling the amino acids of the sequence protected
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for SPPS, the peptide was cleaved from the resin and purified
and characterized by RP-HPLC coupled to Mass Spectrometry.
The ability of AMPB to induce variations in the isomerization
process was elucidated by UV-Vis and NMR.

FIGURE 1 | (A) azopeptide 1 (X = T-P-R-V-E-R-;Y = T-V-F-L-A-P-Y-G-W-

M-V-K); trans-(4-aminomethyl)phenylazobenzoic (AMPB) acid (X = CH2NH2,Y

= CH2COOH) 2; trans-azobenzene (X,Y = H) 3, (B) their possible

cis conformation.

The Azobenzene Peptide as
Molecular Switch
In order to propose the synthetic azobenzene as a molecular
switch, a deep characterization of its response to light excitation
is mandatory to fully understand the effect of substituents on
isomerization (Figure 2).

The trans-azobenzene 3 spectrum showed in Figure 2 (left),
is characterized by a strong absorption centered around 317 nm
and a medium one at 230 nm, both assigned as ππ∗ electronic

transitions. At longer wavelength, about 440 nm, a weak band
is observed due to the nπ∗ state. Appearance of the cis form
is revealed by the intensity decrease of the main band and
a simultaneous growing of a medium intensity absorption at
238 nm.

The absorption spectra of the trans isomers of amino-
azobenzene 2 and azopeptide 1 are shown in Figure 2 (right).
While the correspondence of the electronic transitions is
maintained, a small red shift of the bands is observed in

the amino-derivative probably due to a moderate conjugation
and/or electron-donor effect induced by the substituents on
the aromatic rings. In the azopeptide 1, on the blue side of

FIGURE 2 | Left side: UV-Vis absorption spectra of the trans-azobenzene 3 (solid line) and the equilibrium mixture trans/cis (dash-dotted line). Right side: UV-Vis

absorption spectra of the trans isomers of azobenzene 3 (solid line), aminoazobenzene 2 (dash-dotted line) and azopeptide 1 (short dash line).

FIGURE 3 | UV-Vis absorption spectra at several irradiation time for (A) azobenzene 3, (B) aminoazobenzene 2, and (C) azopeptide 1, exciting at the wavelength of

the absorption maxima (313 nm for azobenzene and aminoazobenzene, and 330 nm for the azopeptide 1).
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the aromatic ππ∗ transition whose maximum is red-shifted
at 330 nm, the characteristic absorption of tryptophan is also
observed at 290 nm.

Addition of substituents to azobenzene affects the electronic
distribution and can also modify the trans-cis isomerization
process and its photochemical yields (Crecca and Roitberg, 2006;
Bandara and Burdette, 2012). Therefore, the absorption spectra
of the three compounds have been measured as a function of
the irradiation time, exciting into the respective first ππ∗ and
nπ∗ transition bands. For all the three examined compounds,
the trans→cis conversion is more effective when excitation is
performed into the maximum of the ππ∗ band rather than
into the nπ∗. For this reason we focused our attention only
on the trans→cis conversion obtained exciting into the ππ∗

absorption band (Figure S2). The resulting absorption spectra
of azobenzene, aminoazobenzene and azopeptide are shown in
Figures 3A–C, respectively.

In the absorption spectra, isosbestic points are observed,
indicating the presence of the trans-cis equilibrium in solution.
Azobenzene absorption spectrum shows up to four isosbestic
points, at 373, 270, 236, and 213 nm. On the opposite
the azopeptide 1 shows only one isosbestic point at longer
wavelength, due to the overlap in the blue side of the spectrum,
with the large tryptophan absorption. In all three cases, after some
time, a photostationary state is obtained, where the trans→cis
and cis→trans isomerization rates equalize and no further
variation is observed in the absorption intensity.

In Figure 4, the absorption maxima are plotted as a function
of the irradiation time at those wavelengths. From this graph,
quantitative information can be gained about the isomerization
kinetics and the relative photochemical yields, following known

FIGURE 4 | Absorbance decrease of the ππ* transition as a function of the

irradiation time (azobenzene, squares; aminoazobenzene, circles; azopeptide

1, stars). The time evolution is due to the conversion between the trans and cis

forms. In the inset the photoconversion quantum yields are reported, along

with the respective decay times obtained by fitting the absorbance data (solid

lines in the graph).

kinetic procedure (Zimmermann et al., 1958; Bortolus and
Monti, 1979).

In Figure 4, the absorption maxima are plotted as a
function of the irradiation time at those wavelengths. From
this graph, quantitative information can be gained about the
isomerization kinetics and the relative photochemical yields,
following known kinetic procedure (Zimmermann et al., 1958;
Bortolus and Monti, 1979). In this respect, we have considered
the kinetic equation:

d [cis]

dt
= 8tIλ,t − 8cIλ,c − k [cis] (1)

where [cis] = C0·Y, being C0 the initial molar concentration
of the trans isomer and Y the cis molar fraction appearing in
time. 8t is the photochemical yield of the trans→cis reaction,
while 8c of the cis→trans one. k is the constant relative to the
thermic isomerization. Since this last mechanism is much slower
than the photochemistry, it can be neglected in our experiment
(Zimmermann et al., 1958). Iλ is the power density absorbed
by the trans/cis isomer. After some manipulations, the kinetic
equation assumes the following aspect:

d [Y]

dt
= 8tI0,λ

[εt (Y∞ − Y)]

FY∞

(2)

where εt is the extinction coefficient of the trans form,
F = A/(1–10−A), being A the absorbance plotted in Figure 4.
This last equation may be integrated giving a function
whose time dependence is linear. The slope m of this line
is related to the photochemical yield of the trans isomer
(Zimmermann et al., 1958):

8t =
−mY∞

I0,λεt
(3)

By using this kinetic analysis, the photochemical yield 8t shown
in the inset of Figure 4 is obtained.

In agreement with previous data (Bortolus and Monti, 1979;
Siampiringue et al., 1987; Satzger et al., 2004), azobenzene
photochemical yield in ethanol was found to be 0.15. In the
amino derivative 2, the ring substitution has the effect to increase
the yield to 0.22. The major change is observed in the case of
azopeptide 1, where the isomerization results strongly favored
giving a yield of 0.70.

Adding electron-donor or electron-attractor groups to the
aromatic rings alters the isomerization process due to the
modification of the electron density on the molecule (Crecca
and Roitberg, 2006; Bandara and Burdette, 2012). In the amino
derivative AMBP, the presence of CH2 spacers reduces the
electron-donor effect of the amino groups. Nevertheless, a small
change in the isomerization yield is observed. Also in the
azopeptide 1, the ring substituents are bonded through CH2

spacers. However a strong increase in the trans–cis quantum yield
value is observed according to a faster isomerization kinetics
(Yamamura et al., 2014). Such a different behavior can then
be ascribed to some effective interactions involving the amino
acid residues of the side chains, which stabilize the cis form
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of the azobenzene moiety. However, from the absorption data,
the nature of this interaction cannot be known. The NMR data
suggest the presence of interactions between the azobenzene
aromatic protons and the side chains of amino acid residues,
influencing the isomerization kinetic and the thermodynamic
parameters (Renner et al., 2000).

Further investigations on thermal cis→trans reconversion
kinetics confirm the stability of the final compound, accordingly
to the NMR results. In fact, keeping irradiated solutions of the
azopeptide 1 48 h in the dark at 50◦C, only half trans form
is thermally recovered, while for azobenzene and α-helix short
peptide chain derivatives the recovery is complete, on this time
scale, also at room temperature (Kumita et al., 2000).

Conformational Analysis
The effects of azobenzene trans ↔ cis isomerization on
azopeptide 1 (Figure 5) conformation were investigated by
NMR under different solvent conditions. Azopeptide 1 was
found to be poorly soluble in water and organic solvents
such as methanol and acetonitrile. Azopeptide was soluble in
DMSO but exhibited poor spectrum quality with large HN

signals. A previous NMR study of CSF114 analogs exhibiting
β-hairpin propensity was carried out in HFA:water mixture
(1:1) to stabilize folded conformations (Carotenuto et al., 2008).
However, in the case of azopeptide 1, this solvent condition
led to broad NMR signals that precluded conformational
studies. We then turned to trifluoroethanol (TFE) as a different
fluorinated cosolvent, which is commonly used to stabilize

peptide structures. TFE/water 1:1 mixture yielded satisfactory
quality of NMR spectra (Figures S3, S4). The stabilization
of secondary structures by TFE is well-known for α-helices
(Roccatano et al., 2002) but far less documented for β-hairpin
structures (Blanco et al., 1994). Therefore, we also decided to
investigate the use of ACN/water 1:1 mixture to analyze the effect
of organic cosolvent on azopeptide folding.

Complete 1H assignments of the trans form were obtained
both in TFE/water 1:1 and ACN/water 1:1 mixtures, using 2D
TOCSY and 2D NOESY (or ROESY) experiments (Tables S1, S3,
supporting information). Upon irradiation, the resonances
of the cis form was observed on NMR spectra, with a
population reaching 75–80% after 5 h irradiation. The cis→
trans conversion was slow enough (>2 weeks) to record
NMR spectra over several days, enabling to fully assign the
cis form (Tables S2, S4). The cis form was characterized by
a large (∼1 ppm) upfield shift of aromatic meta resonances
(with respect to methylene group) of azobenzene moiety,
confirming the trans→cis isomerization of the N = N
azo-bond (Figure S4).

A comparison of backbone Hα and HN chemical shift
differences between cis and trans forms is shown in Figure 6,
for both solvents. Large chemical shift variation is observed for
the azobenzene group and neighboring residues Arg6 and Thr9.
Interestingly, more distant residues in the two peptide arms are
also affected, mostly in segment 9-13 and 4-5. Similar trends are
observed under both solvent conditions, albeit to a lesser extent
in ACN/water. The chemical shift changes can be ascribed to

FIGURE 5 | Structure of the cis-azopeptide 1 with observed NOEs indicated by arrows.

FIGURE 6 | 1δ chemical shift differences between the cis and the trans forms of azopeptide 1, calculated for Hα (A) and HN protons (B).
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magnetic susceptibility anisotropy effects as the two aromatic
groups get closer in space and/or to conformational effects.

The analysis of backbone and sequential NOEs reveals
the presence of complex equilibria between extended and
turn/helical folded conformations, in both cis and trans forms.
HN-Hα sequential NOEs are stronger than intraresidual ones,
indicating that extended backbone conformations are largely
populated. However, the observation of sequential HN-HN NOEs
(V4/E5, E5/R6, Y15/G16, G16/W17 in particular) can be ascribed
to turn or helical conformations. These folded conformations
are further supported by weak NOEs of azobenzene aromatic
protons with methyl protons of Val4 and Leu12. Importantly, no
NOEs could be detected between the two peptide arms in both
forms. This result is in agreement with the observation that the
trans→cis isomerization does not stabilize a β-hairpin structure.

CONCLUSION

In this work photoisomerization of the azopeptide 1was explored
and its reversibility was compared with more simple systems,
such as azobenzene amino acid 2 and azobenzene 3. To this
aim azopeptide 1 was modified introducing the photoswitch
(4-aminomethyl)phenylazobenzoic acid (AMPB) to replace in
[Pro7,Asn8,Thr10]CSF114 the P-N-H tripeptide on the tip of
the β-hairpin.

The absorption spectra of azobenzene 3, AMPB amino acid 2,
and azopeptide 1were measured as a function of irradiation time,
exciting into theππ∗ band. Themajor differences are observed in
the case of 1, where the isomerization results favored by exciting
into the ππ∗ transition and the corresponding cis isomer results
strongly stabilized.

Detailed NMR structural studies of azopeptide 1 confirmed
that the AMPB chromophore insertion into the sequence allowed

reversible control of peptide conformation in solution, but the
trans→cis isomerization does not stabilize a β-hairpin structure,
characteristic of the original sequence. Thus, incorporation of
different photocontrolled switches, such as AMPP, will require
further investigations to verify their possible role in controlling
β-hairpin conformations.
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