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This review article is intended as a practical guide for newcomers to the field of kinetic

Monte Carlo (KMC) simulations, and specifically to lattice KMC simulations as prevalently

used for surface and interface applications. We will provide worked out examples using

the kmos code, where we highlight the central approximations made in implementing a

KMC model as well as possible pitfalls. This includes the mapping of the problem onto a

lattice and the derivation of rate constant expressions for various elementary processes.

Example KMC models will be presented within the application areas surface diffusion,

crystal growth and heterogeneous catalysis, covering both transient and steady-state

kinetics as well as the preparation of various initial states of the system. We highlight the

sensitivity of KMC models to the elementary processes included, as well as to possible

errors in the rate constants. For catalysis models in particular, a recurrent challenge is

the occurrence of processes at very different timescales, e.g., fast diffusion processes

and slow chemical reactions. We demonstrate how to overcome this timescale disparity

problem using recently developed acceleration algorithms. Finally, we will discuss how to

account for lateral interactions between the species adsorbed to the lattice, which can

play an important role in all application areas covered here.

Keywords: kinetic Monte Carlo, lattice gas model, surface diffusion, heterogeneous catalysis, crystal growth,

sensitivity analysis, lateral interactions

1. INTRODUCTION

As the witty name suggests, Monte Carlo is a wide umbrella term that covers a numerous family
of approaches with one simple central idea in common: the resolution of complex problems
using random numbers. Given the versatility of the concept, it is no surprise that Monte Carlo
based approaches have gained popularity in computational chemistry and materials science
(cf. e.g., Frenkel and Smit, 2001), most prominently for the simulation of ensemble properties
usingMetropolis Monte Carlo, or methods derived from the latter such as Basin Hopping for global
geometry optimization. In addition to equilibrium properties, the Monte Carlo idea can also be
exploited to tackle dynamical properties. In this sense, a number of approaches emerged over the
decades under different names, until the term kinetic Monte Carlo (KMC) became universally used
in this context.

Nowadays KMC is a popular tool to describe a variety of phenomena related to e.g., transport
(diffusion), structures and properties of materials (e.g., crystal growth) or equilibrium and non-
equilibrium chemistry (catalysis). As will become apparent throughout the text, in the context
of atomistic simulations KMC can be considered as a form of coarse graining. This renders
it particularly suitable to find its place in hierarchical multiscale modeling approaches, where
information at different levels of accuracy or detail is integrated to provide a more comprehensive
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description. In this context, KMC is an essential method to bridge
the gap between the microscopic world (elementary processes
such as atomistic diffusion jumps or the making and breaking
of chemical bonds) and the meso- to macroscopic world (e.g., a
diffusion constant or a reaction rate).

Let us illustrate this concept by considering for example
heterogeneous catalysis, which is one of the fields where
KMC, as well as hierarchical approaches in general, have made
considerable impact (Sabbe et al., 2012; Reuter, 2016). The
design of a catalytic process requires a deep understanding
of phenomena ranging from the reactive chemistry to the
optimization of heat and mass transport within the reactor.
Numerical simulations have become an integral part in this
design process, which requires appropriate models at multiple
time and length scales, and perhaps most importantly, concepts
on how these models should be connected. One can imagine
“zooming in” from the macroscopic world where we live and an
industrial reactor operates, all the way down to the microscopic
scale where the events are ultimately governed by electronic
structure: adsorption and desorption of atoms and molecules
at surfaces, diffusion, bond breaking and bond forming (see
Figure 1). All of the latter constitute elementary processes that
can occur at the interface between the catalyst and the reaction
fluid, and can nowadays be described individually to a great level
of detail by first-principles electronic structure calculations. At
this scale, what one essentially needs is a mechanistic description
in terms of the Potential Energy Surface (PES) of the system (vide
infra). Hereby, an appropriate quantum mechanical approach is
required to capture chemical subtleties in a predictive manner.
The workhorse for this remains to this day largely Density-
Functional Theory (DFT) (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965), thanks to its unique compromise between
accuracy and efficiency that allows to access system sizes as
relevant for heterogeneous catalysis.

If one now “zooms out” a little and into the mesoscopic
scale, one can see how what globally happens is the result
of an intricate interplay of the above elementary processes
as well as the interaction with the surrounding environment.
Here, the spatiotemporal evolution at the interface is dominated
by collective behavior; dynamics and thermodynamics come
into play. At this stage, one may employ the microscopic
information (e.g., reaction barriers, adsorption energies etc.
of the elementary processes) and embed it into microkinetic
models as a form of coarse-graining. A plethora of approaches
of different complexity are available, from Sabatier analysis to
mean-field models and kinetic Monte Carlo. Finally, at the
macroscale, one needs to take into account transport phenomena
and gradients of mass and temperature in the reactor geometry.
This is a realm that is presently largely covered by continuum-
type fluid dynamical models (Janardhanan and Deutschmann,
2011). At this stage, again the information from the lower scales
can be embedded, i.e., here the outcome of the microkinetic
models is integrated as an input, for instance in form of
a boundary condition to the differential equations describing
the flow phenomena (Matera and Reuter, 2010; Matera et al.,
2014). The development of appropriate hierarchical models
to effectively describe events at such different scales, and

more so of “bridges” to transfer information between them,
constitutes the core of modern multiscale modeling approaches
(cf. Raimondeau and Vlachos, 2002; Reuter et al., 2005;
Vlachos, 2012).

Similar kind of multiscale approaches have been or are being
developed in many other areas of chemistry and materials
sciences. Microkinetic models, and there prominently KMC
simulations, are generally the approach used to capture the
statistical interplay between elementary processes whenever the
mesoscopic property or functionality to be described is outside
of thermodynamic equilibrium. Besides catalysis, notable such
application areas with a similar focus on surfaces or interfaces
are diffusion and crystal growth. In this understanding of the
use of KMC simulations we will concentrate in the following
on this particular technique in these particular application
areas. The present is, however, not intended as yet another
extensive account of the fundamental methodology. For this
we refer the reader to the many excellent reviews available in
literature (Chatterjee and Vlachos, 2007; Voter, 2007; Reuter,
2011; Stamatakis and Vlachos, 2012; Stamatakis, 2014). Instead,
what we want to provide is a practical guide of how to carry out
such simulations (especially in the context of surface kMC), with
particular emphasis on best practice recommendations as well as
a discussion of current challenges and perspectives.

2. KMC SIMULATIONS: FROM THEORY TO
CODES

2.1. Rare-Event Dynamics: A Bottleneck
Which Enables Its Own Solution
Many elementary processes involved at surfaces of solids exhibit
high activation barriers (even despite a possible reduction of
the barrier due to the presence of the catalyst in heterogeneous
catalysis). These barriers are usually much larger than kBT and
the corresponding processes are thus classified as rare events, if
only thermal energy is there to drive them. While the motion
of individual atoms (e.g., their vibrations, but also the actual
reaction events, i.e., crossing an activation barrier once the
system has reached the transition state) occurs on picosecond
time scales, the time between consecutive high-barrier events
can therefore be many orders of magnitude longer, possibly
requiring simulations up to seconds or more in order to arrive
at meaningful conclusions about the effect of the statistical
interplay within an ensemble of multiple possible elementary
processes. The “life” of our system in the long time span between
these rare events is filled with vibrational motion around a
single minimum on the PES. The relevant transitions to other
(meta)stable states aka PES basins occur only occasionally. On
a mesoscopic time scale, the time evolution of our system
therefore manifests itself as a series of consecutive jumps from
state to state (see Figure 2). Additionally, it is intuitive to
assume that the longer the time the system spends in one basin,
the more it “forgets” how it actually got there. After a while,
each possible way to escape from the basin therefore becomes
completely independent of the entire preceding history before
entering the basin. In other words, the state-to-state jumps
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FIGURE 1 | Diagram of three scales involved in a hierarchical multiscale approach to heterogeneous catalysis and the corresponding models and methods. (Bottom

left) Microscale (∼nm in length, ∼ns in time). The schematic top view of a catalyst surface shows elementary processes like adsorption and desorption of chemical

species, diffusion or reactive events in form of pictorial sketches involving the motion of spheres on a square lattice of active sites. (Center) mesoscale (∼µm in

length, ∼ms in time). Microkinetic simulations evaluate the interplay of all the elementary processes on the microscale to yield information on surface composition

(illustrated by the shown coverage of the catalyst surface with surface species) and intrinsic catalytic activity. (Top right) Macroscale (∼m in length, ∼minutes/hours in

time). Illustration of the fluid flow in a stagnation point reactor where the intrinsic catalytic activity determined by the microkinetic model enters as a boundary condition

at all finite element cells describing the catalyst surface.

FIGURE 2 | Coarse-graining of a molecular dynamics (MD) trajectory into a Markov chain. (Left) A possible MD trajectory (black) overlayed on the underlying potential

energy surface (PES) of the system with red regions representing lower-energy basins. A large fraction of time is spent in these PES basins in vibrational motion

around the respective minimum. At a certain moment in time, the systems finds an escape route to the next basin. (Center) Coarse-graining of PES minima into

positions on a suitably defined lattice. Each lattice position represents the basin of attraction of a PES minimum. (Right) Coarse-graining of the continuous MD

trajectory into a Markov chain of discrete hops between the basins/lattice positions.

of the system constitute a so-called Markov chain (cf. e.g.,
van Kampen, 2007).

In consequence, the change of the probability Pi(t) of the
system to actually be in state i at time t depends only on the
probabilities of hopping out of the current state i into any other
state j, kij, and on the probabilities of hopping into state i from
any other state j, kji. In the present context of chemical kinetics,
these hopping probabilities are expressed as rate constants of
the elementary processes with units time−1. The overall change
in Pi(t) is thus governed by a simple balancing equation, called
a Markovian master equation, that only contains these rate
constants:

dPi(t)

dt
= −

∑

j 6=i

kijPi(t)+
∑

j 6=i

kjiPj(t). (1)

From a mathematical standpoint, Equation (1) is a system
of coupled differential rate equations. Seemingly simple, it
unfortunately becomes quickly unfeasible to solve explicitly
for the number of possible states typically involved in surface
catalysis (or diffusion or growth). For a rough estimate, let
us consider a system with 100 surface sites (e.g., an fcc(100)
slab of ten atoms per edge in an otherwise periodic boundary
condition cell to simulate an extended surface). In the course of
a KMC simulation modeling a simple catalytic reaction A + B
→ AB, each of these sites can assume 3 possible occupation
states; it can be empty, occupied by species A or occupied by
species B (assuming that a formed product AB immediately
desorbs into the gas phase). Already the number of possible
configurations of such a trivial toy system is then 3100! Thematrix
kij containing all the possible rate constants between system states
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will thus have (3100)2 ≈ 2.66 1095 elements, making even its
comprehensive storage impossible, let alone its diagonalization—
and even considering that the limited number of accessible states
renders it largely sparse.

As an ingenious way out of this mess, the practical Monte
Carlo type idea behind KMC is to never even attempt to
deal with the entire matrix, but instead to generate stochastic
trajectories that propagate the system from state to state (i.e., a
Markovian sequence of discrete hops to random states happening
at random times). From this, the correct time evolution of
the probabilities Pi(t) is then obtained by ensemble averaging
over these trajectories, or, if the system is in a steady state
and ergodicity is ensured, by time averaging over a singular,
sufficiently long trajectory. The KMC method thus replaces the
analytical solution of Equation (1) with a numerical approach
based on stochastic dynamics. The “only” thing that is needed
to make this work is an algorithm that generates suitable
such trajectories that (once ensemble or time averaged) yield
the correct probabilities Pi(t). This algorithm hence needs to
determine at each step along such a state-to-state trajectory to
which state the system should jump next and after what time step
this next jump should happen. The KMC algorithm does so by
selecting elementary processes according to their rate constants,
followed by an updating of the time. We will come back to these
algorithmic details in section 3.

2.2. Mapping the Problem Onto a Lattice
The challenges in applying KMC in practice are largely connected
to the plethora of minima on the relevant PESs, and more so,
the even larger number of elementary processes connecting them
(Margraf and Reuter, 2019). In the initially sketched multiscale
view it would be desirable to employ rate constants calculated
from first principles for all of these processes in order to establish
models of predictive power. If one considers that each rate
constant calculation requires in principle the determination of
a transition state to get the activation barrier (vide infra), a
brute-force KMC approach that requires at each step of a KMC
trajectory a large number of such first-principles rate constants is
at present and for the foreseeable future in general not feasible.
There are currently a number of routes pursued to overcome
this showstopper. One obvious remedy would be to recycle first-
principles rate constants that have already been computed at
previous KMC trajectory steps and thus build up an increasing
database. In practice, this requires an unambiguous recognition
scheme though that allows to identify that elementary processes
that are possible at the present KMC step are identical to
processes that were possible in previous steps. Another possibility
is to make the rate constant calculations less demanding. This
could either be done by resorting to lower levels of theory like
using appropriate interatomic potentials instead of DFT or by
using more approximate activation barriers e.g., from Brønsted-
Evans-Polanyi relationships (vide infra) that circumvent the
costly determination of the transition state. The crucial issue here
is always whether then sufficient accuracy is retained to maintain
the desired predictive power. This applies most prominently to
surface catalysis, where activity and even worse selectivity are
highly sensitive to small changes in activation barriers. Finally,

one could consider only selective parts of all possible elementary
processes, for instance in catalysis by focusing on certain reaction
mechanisms only. If such considerations are based on reliable
insight (e.g., from experimental evidence or other simulations),
this can be very elegant. The grain of salt here is that KMC
simulations are often employed precisely to find out which of
all possible elementary processes crucially govern the statistical
interplay. In other words, the objective of KMC is to identify the
important parts of process space rather than to assume them in
the first place.

In this situation, a prevalent school of KMC implementations
resolves the problem by exploiting a crystalline order in the
studied system. Under such order, it is possible to map the
relevant PES minima onto some suitable form of periodic lattice.
Different system states, for instance in a surface catalysis KMC
simulation, differ then only in their distribution of adsorbates on
the various lattice positions. This type of KMC is referred to as
latticeKMC. Let us illustrate the idea with the simple example of a
surface process such as the diffusion of an adatom on an fcc(100)
surface. If the stable PES minima correspond to the fourfold
hollow sites, we can immediately establish a lattice model where
we include only diffusion processes that allow the adatom to start
and end up in one of the (hollow) lattice sites. For each state of
the system it is usually necessary to relax the geometric structure,
and the atoms may not be exactly on the lattice positions after
that. However, one has to choose the lattice in such a way so
that atoms at least end up close enough to the lattice positions
in order to allow for an unambiguous assignment to one lattice
site. This already significantly reduces (and ensures the finiteness
of) the number of possible processes, which however remains
rather large.

Further reduction of the number of required rate constants
can be achieved by exploiting the translational symmetry of
a crystalline lattice. Let us first assume that in our diffusion
toy system there is only one single adatom. The translational
symmetry of the crystalline lattice then tells that the elementary
processes out of any hollow site are all the same. Once we have
computed the rate constants for these processes once, we can
simply reuse them for the elementary processes out of another
hollow site. They will be the same. In the example of our toy
system and if we assume that hopping diffusion over a bridge
site is the only diffusion mechanism possible, then this means
that we have to simply compute just one single rate constant
(for such a bridge hopping process). Here, the symmetry refers
to the symmetry of the lattice positions per se, since (remember)
we considered only one adatom in our toy diffusion example.
If we have other species occupying nearby lattice positions, this
symmetry will readily be broken. What helps in this case is
the nearsightedness of chemical interactions as formulated by
Walter Kohn. The interaction to some nearby species on the
lattice may thus already be so small, that it has a negligible
influence on the rate constant. If we neglect such influences
between neighboring species to an increasing degree, we restore
a complete locality of the elementary processes to the level that
we have an as simple and high-symmetry situation as we had in
the case of the isolated adatom. For this particular example, the
most local approximation would for instance be to completely
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neglect any interaction with nearby other species—except for
preventing diffusion processes in which an adatom would end up
in an already occupied site (so-called site blocking). Despite the
enormous number of possible configurations of a system with an
arbitrary number of adatoms on the lattice, still only one single
rate constant for hopping processes over bridge sites would be
required. If we consider a (10× 10) lattice, then the state-to-state
matrix kij in Equation (1) is still of the order 2100. However, it
only contains elements that are either zero or have this single rate
constant as their value. More generally, translational (and maybe
any rotational) symmetry does thus not reduce the state space.
However, it can dramatically reduce the number of inequivalent
rate constants that need to be computed.

As a less drastic approximation we may consider only the
lateral interactions of the adsorbate with species in nearest
neighbor sites. As illustrated in Figure 3 in our simple diffusion
example we will then need to compute five distinct rate constants,
one for each possible occupation of the four nearest neighboring
sites: one with no nearest neighbors, two with one neighboring
site occupied, one with two and one with three neighboring
sites occupied. The generalization to different lattices is a
straightforward exercise. Augmenting the local environment that
would affect the rate constants would improve the accuracy of
the simulation (if such further reaching lateral interactions are
indeed still non-negligible), but obviously requires even more
rate constant computations. In practice, this gradual inclusion
of lateral interactions on a lattice proceeds through cluster-
expansion techniques, which we will further discuss in section
9. Essentially, cluster expansions then allow to modify the
fundamental rate constant of a given elementary process in the
absence of other species to the rate constant of the same process
with any distribution of nearby neighbors.

In the lattice approximation one can therefore scan all
possible configurations and transitions, compute the associated
rate constants for any local configuration beforehand and save the
latter in a so-called rate catalog. During the KMC run, the current
configuration at a trajectory step is examined and the possible
processes and their rate constants are extracted from the rate
catalog. An alternative is to identify the possible processes and
calculate the cluster-expansion correction to the fundamental
process rate constants only on-the-fly at each KMC step. This
can be numerically more efficient when many lateral interactions
are taken into account, and the size and cost of searching a
comprehensive rate catalog becomes intractable. Examples of this
will be provided in section 9.

The approximations used so far can be extremely efficient and
may allow for the possibility of using very large supercells in
the performed simulations. However, detailed PES information
is required and an ordered lattice is assumed as the structural
motif. If the lattice model is not suitably chosen, it may neglect
important minima of the PES. Simultaneously, any changes of the
lattice induced by the simulated dynamical processes cannot be
captured by construction (Reuter, 2016). This includes important
aspects such as reaction-induced surface reconstruction, other
surface morphological transitions or loading-induced lattice
transformations in intercalation diffusion. The purpose of off-
lattice KMC is precisely to overcome such limitations and we will
discuss in section 5 how the number of rate constant calculations
can then be dealt with.

2.3. Mean-Field Approximation
An alternative to the full numerical solution of the Master
equation (Equation 1) with KMC is to introduce further
approximations (on top of the lattice approximation) that make
the equation easier to solve or allow even for an analytical
solution. The most common of such approaches is the mean-
field approximation (MFA), where the detailed spatial resolution
over the extended lattice is sacrificed and replaced by the mean
coverage of each considered species at any of the site types
exhibited by the lattice. Mathematically speaking, the MFA
assumes that the occupation of the different sites on the lattice
is statistically independent, i.e., that there are no correlations
between different sites on the lattice. In the context of surface
adlayers, one says that the adlayer is well mixed.

Let us begin from the (time-dependent) rate rij(t) of an
elementary process, which is given by

rij(t) = Pi(t)kij. (2)

For a start, let us consider only first- and second-order processes,
i.e., we assume that at most two lattice sites are involved in
the elementary process. Per definition, first-order processes do
not involve more than one lattice site, i.e., the assumption
of uncorrelated lattice sites holds trivially. As an example of
a second-order process, let us consider the reaction of two
neighboring species A and B. We will denote the (time-
dependent) pair-probability of finding species A at site a and
species B at a neighboring site b with Pab(A,B, t). In the absence
of correlations, and assuming that the distribution of the species

FIGURE 3 | Hopping diffusion process (red arrow) of a particle on a quadratic lattice for all possible configurations of the nearest neighbor lattice sites in the initial

state. Configurations that are equivalent by symmetry are shown only once. The site where the particle diffuses to must be empty for the process to be possible.
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on the lattice is thus spatially homogeneous, we can write this pair
probability as a simple product

Pab(A,B, t) = 2a(A, t)2b(B, t), (3)

where 2a(A, t) and 2b(B, t) are the (time-dependent) spatially
averaged coverages of species A at sites of type a and species B
at sites of type b, respectively. Generalizing this to any reaction
order, the MFA hereby condenses the high-dimensional Master
equation into much simpler rate equations of the form

rij(t) = Nijkij
∏

a∈i
2a(A, t), (4)

where Nij is a geometrical factor accounting for the connectivity
of the sites involved in the initial and final states i and j
and the species A occupies the site a in the initial state i
(Matera et al., 2011).

The MFA thus yields a set of coupled differential equations,
which are solvable by standard algorithms (Medford et al., 2015).
In catalysis, this is often combined with certain assumptions
about the rate-determining step (see section 7) to arrive even
at an analytical solution for the reaction rate. While these
approximations and the MFA approximation itself simplify
the problem at hand enormously, one should always keep in
mind that they do represent approximations. In particular the
MFA is in general only fulfilled for infinitely fast diffusion
and in the complete absence of lateral interactions. We will
come back to this point in section 8. The first-principles
input required for a MFA model is largely the same as for a
KMC model, that is, all possible processes and their associated
rate constants. However, due to the assumption of (infinitely)
fast diffusion inherent to the MFA model, kinetic barriers for
diffusion between sites of identical type do not need to be
explicitly calculated.

2.4. Codes
Even though in particular in the context of surface catalysis MFA
microkinetic models are still prevalent, one can clearly discern
a trend toward KMC simulations. In one way or the other, it
is often said that the maturity of a new simulation technique
can be judged by the emergence of general-purpose software
packages that are user friendly (maybe even up to providing a
graphical user interface). If one takes the latter argument at face
value, KMC has indeed matured dramatically in the last couple
of years. A number of high-end KMC codes have appeared in an
astonishingly short period of time. Referring for a more detailed
(and maybe exhaustive) account of such codes to the review by
Stamatakis (2014), we here compile only a brief presentation of
a number of such codes to provide an impression of what is
presently available:

One of the first general-purpose KMC implementations was
provided by Lukkien et al. in the code CARLOS (Gelten et al.,
1998). In CARLOS one can specify any kind of reaction as
input, then the program uses pattern recognition to identify
possible reactions. CARLOS also implements time-dependent
rate constants.

SPPARKS, developed by Slepoy et al. (2008), implements
several KMC solvers and is structured modularly to facilitate
expansion and implementation of new models and solvers.
Currently implemented models include both lattice and off-
lattice applications, as well as a general purpose model for the
simulation of biochemical reaction networks.

Stamatakis and Vlachos (2011) developed an approach
that employs graph-theoretical ideas to overcome the limiting
assumption that each participating species occupies a single site
and that elementary events involve a maximum of two sites.
Here, lattice structure and elementary events are represented as
graphs, and lattice processes are identified by solving subgraph
isomorphism problems during the simulation. Building on the
latter code, Nielsen, Nielsen et al. (2013) developed ZACROS,
which incorporates cluster expansion Hamiltonians in order to
accurately account for long-range lateral interactions. The latter
two approaches are suitable for treating systems with rather
complex surface chemistry, including organic adlayers and more
generally situations where the reactants may adsorb on the
surface on multiple sites.

The recently developed MonteCoffee (Jørgensen and
Grönbeck, 2018) exploits similar ideas to the graph-theoretical
approach, geared toward the simulation of nanoparticles. The
code uses neighbor lists to represent the site connectivity, rather
than mapping the problem onto a lattice. With respect to the
graph-theoretical approaches, hereby the user directly controls
the site connectivity.

Adaptive KMC (aKMC) approaches (vide infra) were mostly
developed by Henkelmann and coworkers (Henkelman and
Jónsson, 2001; Xu and Henkelman, 2008). The code EON

currently includes a set of algorithms to model mesoscale
dynamics (parallel replica dynamics, hyperdyamics, and basin
hopping as well as aKMC). For aKMC, the code implements
a server-client architecture where the client processes are
responsible for saddle point searches (see section 4) to escape the
current basin, then report the calculated rates back to the server
which executes the KMC algorithm.

kmos (Hoffmann et al., 2014) is an application programming
interface based KMC framework that facilitates the generation
of an abstract model definition in Python, which is then used
to automatically generate efficient Fortran code. The code was
instigated by Max Hoffmann and is mainly being developed
in our group. We will use it for the hands-on examples in
the later sections, providing a detailed practical account on
how to run KMC simulations. In the following section we will
further describe the KMC algorithm underlying kmos as one
example of present-day codes, while in general we emphasize that
different codes may implement different algorithms to solve the
Master equation.

3. GETTING PRACTICAL: ALGORITHMS
AND INPUT DATA

As discussed above, the real trick of KMC is the KMC algorithm
that generates stochastic trajectories in such a way that their
appropriate averaging yields the time evolution of the probability
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Pi(t) in the Master Equation (1). One of the most commonly
used such KMC algorithm, initially developed by Bortz et al.
(1975) for Ising spin systems, is known as the BKL algorithm
(after the authors) or the "n-fold way". It also goes under the
names of Variable Step Size Method (Jansen, 1995) or Direct
Method (Gillespie, 1976). For a simple, practical rationalization
of the algorithm, let us consider a toy system which can assume
only two states A and B connected by a barrier with associated
rate constants kAB and kBA for the forward and backward
transitions, respectively. In this system, only two elementary
events are possible; if, say, the system is sitting in state A, it
can hop to state B. As the rate constant for this hop is kAB
(with unit time−1), one may naively think that the average
time that will have passed until such a hop occurs is 1tAB =
k−1
AB. Obviously for the hop back from state B to state A, the

average time would be 1tBA = k−1
BA . Accordingly, a KMC

algorithm would generate a trajectory where after each hop
the time is incremented by 1tAB or 1tBA (depending on what
hop occurred).

Mathematically, this naive thinking is not entirely correct. In
reality, while being in state A for each short increment of time
the system will have the same probability of finding the escape
path. This generates an exponentially decaying survival statistics,
whose derivative represents the probability distribution pAB for
the true time of first escape:

pAB(t) = kAB exp(−kABt). (5)

The average escape time thus has to be appropriately weighted
by this Poisson distribution. It can be shown (Gillespie, 1976;
Fichthorn andWeinberg, 1991) that this is achieved by advancing
the system clock by

1tAB = − ln(ρ2)

kAB
, (6)

where ρ2 ∈ [0, 1] is a randomly drawn number.
When we now generalize this to an arbitrary system, where

at each step along a KMC trajectory a multitude of processes
i → j from the current state i to other states j are possible, the
theory of Poisson processes allows to straightforwardly derive the
average time that will have passed until any process has occurred.
Since the elementary processes are independent, each has its own
probability distribution pij given by

pij(t) = kij exp(−kijt), (7)

and the probability of the time of first escape from state i through
any of the processes i → j follows as

pescape(t) = ktot exp(−ktott), (8)

where

ktot =
∑

j

kij (9)

is the total escape rate constant obtained as the sum of all the
individual elementary rate constants. Just as for the single process
case, the average escape time is then

1tescape = − ln(ρ2)

ktot
, (10)

where ρ2 ∈ [0, 1] is a randomly drawn number. It is crucial to
highlight that this escape time only depends on the total rate
constant, and is independent of the actual process that actually
occurs to bring the system out of the current state i. This actual
process nevertheless needs to be identified, since this is what
determines to which state j the system propagates. This state j is
then the starting point for the next KMC step, i.e., the next KMC
step evaluates the escape from this particular state j.

The BKL algorithm determines this executed process out of
all possible processes again by rolling the dice. Imagine a stack
of segments of height proportional to the rate constants kij of
the possible processes, which correspondingly sums up to a total
height of ktot. We can choose a process to execute out of this
stack by drawing a random number ρ1 and multiplying it by ktot.
The resulting number will “point” at the process with correct
probability in the process stack, as illustrated in Figure 4. The
selected process is then executed, bringing our system into a
different state for the next KMC step. This way of choosing out of
the stack ensures that faster processes are selected with a higher
probability than slower ones: They have a larger rate constant,
have correspondingly a thicker segment in the stack and are
correspondingly chosen more often. We therefore have a recipe
to generate trajectories that satisfy the Master equation, obtained
stochastically via the extraction of only two random numbers
ρ1, ρ2 ∈ [0, 1]. An important parameter is thereby also the
random number seed used to generate the sequence of random
numbers, as recalculating the trajectory with a new seed value will
lead to the new trajectory that is statistically independent of the
former.

The algorithm, also illustrated in Figure 4, may thus be
summarized as follows:

• Make a list of possible processes p for the system to escape the
current state i, with associated rate constants kp;

• draw two random numbers ρ1, ρ2 ∈ [0, 1];
• calculate ktot =

∑
p kp;

• extract process q, which has to fulfill the constraint
∑q

p=1 kp >

ρ1ktot >
∑q−1

p=1 kp;

• execute randomly drawn process;
• update clock: t → t − ln(ρ2)/ktot.

4. RATE CONSTANTS FROM FIRST
PRINCIPLES: TRANSITION STATE THEORY

As discussed in the previous sections, KMC requires rate
constants for all considered elementary processes as an input.
For the surface applications focused on here, these rate constants
are at present predominantly obtained through Transition State
Theory (TST). Making a number of assumptions, for instance
that the flux of trajectories passing the transition state (TS)
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FIGURE 4 | (Left) Flowchart of the BKL algorithm as implemented in kmos. (Right) Graphical illustration of random process selection in the process stack.

from state i to j will never come back to the state i (no-
recrossing rule) and that the barrier crossing is a purely
classical event (no tunneling), TST provides a simple expression
for the rate constant, known as Eyring (or Eyring-Polanyi)
equation: Laidler (1987)

kTSTij =
qvibTS

qvibi

kBT

h
exp

(
−

1Eij

kBT

)
= ko

kBT

h
exp

(
−

1Eij

kBT

)
, (11)

where T is the absolute temperature, h is Planck’s constant, qvibTS
and qvibi are the partition functions at the transition state and at
the initial state, respectively, and 1Eij is the activation barrier of
the process. The latter is directly available from PES information
and therefore accessible to first-principles calculation (e.g., semi-

local DFT). The prefactor ko
kBT
h

may in principle be calculated.
Most popular is harmonic TST, where the partition functions are
obtained from the vibrational modes at the initial state i and at
the TS. In the predominant number of studies the considerable
computational costs of these vibrational calculations are avoided
though, and one simply approximates ko ≃ 1 − 10, yielding a
prefactor in the range 1012 − 1013 s−1. This is never really fully
justified, and if at all only when the vibrational properties of the
TS do not differ much from those of the initial state. A prominent
class of processes where this common approximation is not
valid are non-activated adsorption processes, where the prefactor
needs to account for the strong entropy reduction from the gas
phase to the surface-bound state. In this case the rate constant
is better estimated as: (Reuter and Scheffler, 2006; Chorkendorff
and Niemantsverdriet, 2017)

kadsn,B(T, pn) = S̃n,B(T)
pnAuc√
2πmnkBT

, (12)

where pn is the partial pressure of species n of mass m, and
the local sticking coefficient S̃n,B(T) governs the fraction of

impinging particles sticking to a site B located in a surface unit
cell of area Auc.

4.1. Master Equation and Detailed Balance
We will next motivate some practical guidelines that the input
(processes and rate constants) to any microkinetic model (KMC
or MFA) must adhere to. Let us consider a system that has
reached steady state. This imposes the constraint of vanishing
derivative in the Master equation (Equation 1), which leads to
the condition

∑

j 6=i

[
kijP

∗
i − kjiP

∗
j

]
= 0, (13)

where P∗i (P
∗
j ) is the time-independent probability that the system

is in state i (j). This condition is a conservation law stating that
the sum of the rates of all transitions out of any state i (j) must
equal the sum of the rates of all transitions into state i (j). At
thermodynamic equilibrium, microscopic reversibility and the
principle of detailed balance (Tolman, 1925) imposes the even
stronger constraint that the average rate of every microscopic
process must exactly balance its reverse process

kij

kji
=

P∗j
P∗i

. (14)

The right-hand side of Equation (14) is thereby proportional to
the states’ Boltzmann weights and can thus be expressed in terms
of the free energy difference between states i and j:

kij

kji
= exp

(
−
Fj(T)− Fi(T)

kBT

)
. (15)

The above derivation motivates two practical guidelines for
constructing KMC (or MFA) models. The first guideline is that
every microscopic process must have defined a corresponding
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reverse process, and the second guideline is that the rate constant
expressions used for the forward and reverse processes must
fulfill (Equation 15).

For the latter point it is particularly crucial to realize that
this also extends to computing the free energies of both states
Fi and Fj with the same numerical approximations. In practice,
this is often neglected (different supercells/configurations, mix of
first-principles and empirical data etc.) and can then have drastic
consequences as the kinetic model is not thermodynamically
consistent (Schmitz, 2000; Mhadeshwar et al., 2003). Quite
some work has therefore been devoted to achieve an overall
thermodynamic consistency, e.g., Mhadeshwar et al. (2003) and
Nielsen et al. (2013).

4.2. Obtaining Rate Constants: Transition
State Search
In the context of determining rate constants, it is natural to
put a primary focus on the lowest activation barriers that
need to be overcome, e.g., in catalysis on the minimum energy
path connecting reactants and products. From the mathematical
standpoint, locating the lowest barrier(s) translates into locating
the lowest first-order saddle point(s) on the PES, which is a
particularly challenging task for which—in contrast to locating
PES minima—there is yet no general approach that is guaranteed
to work. In the following we will briefly discuss the reliability,
accuracy and performance of different available methods. Always
keeping in mind that “your mileage may vary,” there is
nevertheless a general guideline as to which family of approaches
would be preferable depending on the nature of the problem
at hand. For lattice KMC one would assume or derive the
mechanism (e.g., the reaction mechanism in the context of
heterogeneous catalysis) and subsequently compile a list of the
elementary processes that constitute this mechanism. In this case,
initial and final states are therefore pre-determined, enabling
the use of so-called interpolation methods. For adaptive KMC,
more often than not no previous assumption of mechanism is
made and one may need to blindly explore the possible and most
probable escape pathways from a current state. So-called local
methods are then mandatory, as only information on the initial
state is available.

4.2.1. Interpolation Methods
The simplest form of interpolation-based TS search consists in
identifying a reaction coordinate guess in one or a small number
of internal degrees of freedom, preferring those that describe
the main structural differences between initial and final state.
The selected coordinates are subsequently constrained to specific
values between the initial and final structures, while all remaining
degrees of freedom are optimized. Such TS searches are often
referred to as coordinate-driving (drag) methods (Halgren
and Lipscomb, 1977; Rothman and Lohr, 1980; Williams and
Maggiora, 1982). The success of drag methods depends critically
on the ability to choose a good set of reaction coordinates and
on the topology of the PES in the direction of the remaining
degrees of freedom. In general, if the reaction path is dominated
by only one or two degrees of freedom, the coordinate driving
may work, and the constrained optimized geometry (with the

smallest residual gradient) is a good approximation to the TS. On
the other hand, a bad choice of reaction variable(s) may lead to
hysteresis and converge to (unphysical) discontinuous reaction
paths (Halgren and Lipscomb, 1977; Henkelman et al., 2002).

Drag methods operate on one structure at the time.
A significant improvement is achieved by simultaneously
optimizing multiple points along the initial guess of the reaction
path. An example is the ridge method (Ionova and Carter,
1993), which iteratively refines an initial guess of the TS
by simultaneously relaxing two replicas of the latter, slightly
displaced across the ridge of the PES, until they contract
to the actual TS. Methods that operate with more than two
structures are often referred to as “chain-of-state” methods.
The initial distribution of structures will typically be along
a linear interpolation of coordinates between the initial and
final, or any convenient form of continuous variation along a
chosen reaction path. All intermediate states or images are then
optimized simultaneously in some concerted way, providing not
only the saddle point, but also a good approximation of the entire
reaction path.

Among those, the Nudged Elastic Band (NEB) method
(Jónsson et al., 1998; Henkelman and Jónsson, 2000) is arguably
most popular as it incorporates strong points of older approaches
in order to cure their shortcomings. After initializing an initial
chain of images Ri, NEB minimizes a target function (“elastic
band”) defined as the sum of energies of all intermediate images
and an additional penalty term which distributes the points along
the path through a single spring constant k (see Figure 5):

SEB(R1, . . . ,RN) =
N∑

i=1

E(Ri)+
N−1∑

i=1

1

2
k(Ri+1 − Ri)

2. (16)

In general, a straightforward minimization of SEB would exhibit
a tendency to “cutting corners” if the spring constant k is too
large, and “sliding down” toward the extrema if k is too small
(thus undersampling the actual TS region). These problems are
alleviated by “nudging” the elastic band, i.e., by using only the
component of the spring force parallel to the tangent of the
path (to cure for corner-cutting), and only the perpendicular
component of the energy force (to cure for down-sliding). The
total force acting on each image is then

Fi,NEB = Fsi‖−Fi⊥ = k (|Ri+1 − Ri| − |Ri − Ri−1|) τ̂i−∇E(Ri)⊥,
(17)

τ̂i being the tangent unit vector at image i. In the Climbing-Image
NEB (CI-NEB) (Henkelman et al., 2000) variant, the image with
the highest energy is selected after a few iterations and driven
up toward the saddle point by turning off its spring force and
reversing the component of the potential force parallel to the
chain. This yields exactly the saddle point (which in the non-
climbing version is obtained by interpolation) at no additional
computational cost.

TheNEBmethod is still likely to run into trouble when dealing
with a PES for which the energy varies largely along the reaction
path, but very little perpendicular to it. Regarding this problem,
it has been pointed out that for CI-NEB corner cutting does not
affect the accuracy of the TS, and that a more robust relaxation
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FIGURE 5 | Transition states and most popular transition state (TS) search methods. (Left) An arbitrary PES exhibiting multiple minima (indicated by red colors). Black

crosses mark two local minima, e.g., initial state (IS) and final state (FS) of a known elementary reaction. A violet star marks the location of the TS; a violet dashed line

represents the minimum energy path connecting IS and FS. (Center) Illustration of the NEB method. The magnified panel shows the composition of forces which

determines the effective NEB force acting on an image i at a certain optimization step. (Right) Illustration of the dimer method. The magnified panel shows the

composition of forces which determines the effective force acting on the dimer at a certain optimization step, after the constrained minimization with respect to

orientation.

to the TS may be achieved by using the full spring force rather
than only the component parallel to the tangent of the path
(Kolsbjerg et al., 2016). Furthermore, as all such algorithms in its
category, NEB comes at a high computational cost as it involves
the optimization of many structures and typically requires a
rather large number of iterations. Technical parameters such
as the number of images and the value of the spring constant
must be wisely chosen beforehand. The latter issue in particular
may prove to crucially influence the optimization efficiency:
a small value causes an erratic coverage of the reaction path,
while a large value focuses the effort on distributing the points
rather than on finding the reaction path, and consequently
slows down the convergence. In the traditional NEB method
the number of images are fixed during the simulation and it
can be challenging to reach a good compromise between a
sufficient coverage of the reaction path and the computational
cost. To mitigate this, an automated NEB (AutoNEB) algorithm
has been proposed (Kolsbjerg et al., 2016), which can save
computational resources by focusing first on converging a rough
path before improving on the resolution around the TS. An
alternative solution to the same problem has been proposed in the
truncation-based energy weighting string method (Carilli et al.,
2015), which uses energy weighting to focus the computational
effort on the physically interesting images within the barrier
region. Finally, it is also worth mentioning the growing string
method (GSM) (Peters et al., 2004), which circumvents the need
for a (good!) initial guess of the reaction path by separately
evolving two string fragments, one associated with the reactants
and the other with the products, until the fragments converge
and thereby define the reaction path. The combination of GSM
with an eigenvector following TS search (Zimmerman, 2013) has
shown promising results for a benchmark set of more than 100
elementary reactions.

4.2.2. Local Methods
Keeping in mind that transition states are points where the
gradient vanishes, theymay in principle be located byminimizing
the gradient norm. This is exactly the working concept behind

the so-called local methods. In contrast to interpolationmethods,
local methods only use information of the PES function and
its first and possibly also second derivatives at each point, i.e.,
they require no knowledge of the initial-state and/or final-state
geometries. They do, however, usually require a good estimate of
the TS to use as a starting geometry in order to converge. This is
one of their main limitations.

A most common member of the local group of methods
is the Newton-Raphson (NR) approach, which locates the TS
directly, given that one starts the search sufficiently close to
the TS. Sufficiently close here means already in the harmonic
region with the Hessian having exactly one negative eigenvalue.
Under these conditions, computing the Hessian and inverting
the second order Taylor expansion directly yields the step which
maximizes the energy along the TS eigenvector and minimizes
the energy along all other directions, converging exactly to the TS.
The main drawback of the NR method is the need for generating
and manipulating the full Hessian matrix.

However, the main function of the Hessian for saddle point
optimization is to provide the direction along which the energy
should be maximized (lowest ascent if sufficiently near the
TS). The dimer method (Henkelman and Jónsson, 1999) can
be employed to determine this direction without calculating
the Hessian explicitly, employing two symmetrically displaced
replicas–the dimer (see Figure 5), which is used to transform
the force in such a way that optimization leads to convergence
at a saddle point rather than at a minimum. In general, the
strategy for the dimer method is to try many different initial
configurations around a minimum, usually taking them from the
extrema of a short high-temperature MD trajectory in order to
find the saddle points that lead out of that basin. In a first step,
the dimer is minimized with respect to orientation by imposing
a constrained distance between the images. The lowest mode
direction is then given by the line connecting the two images,
and this can be used for displacing the central structure, i.e.,
translating the dimer, which is then followed by a new dimer
optimization and so on. The force acting on the center of the
dimer gets modified by inverting the component in the direction

Frontiers in Chemistry | www.frontiersin.org 10 April 2019 | Volume 7 | Article 202

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Andersen et al. Kinetic Monte Carlo

of the dimer: minimization of this force drives the dimer to
a saddle point. A dimer optimization can be done using only
first derivatives, and thus alleviates the need for calculating
the Hessian matrix. In general, however, performance scaling
with system size is not really known. It is unclear in particular
whether the added computational cost of optimizing each dimer
configuration eventually outweighs the saving by not requiring
an explicit Hessian.

4.2.3. BEP and Scaling Relations
An alternative, cheaper approach to determine activation
barriers, which still retains grounds in first principles, is provided
by the employment of approximate energy relations. The most
prominent example is the Brønsted-Evans-Polanyi (BEP) relation
(Nørskov et al., 2002;Michaelides et al., 2003), which yields linear
relationships of the kind

1E ≃ c1(EFS − EIS)+ c2, (18)

where c1 and c2 are constants and EFS and EIS are the total
energies of the final and initial states, respectively. The latter
are obtainable from local geometry relaxations, and hence
significantly cheaper than even the sloppiest TS search. The two
parameters c1 and c2 need to be determined by linear fitting to
appropriate first-principles calculations. The parameters are in
general only transferable to site types that are similar to those
used in the fitting, e.g., the fcc(111) sites of transition metal
surfaces, but they can be rather universal among different kinds
of reactions (Wang et al., 2011).

Furthermore, it has been shown that the binding energies of
many reactants, products and intermediates at transition metal
surfaces correlate with the binding energies of the few base
elements (mostly C, N, O, S, halogens) with which the molecules
typically bind to the surface (Abild-Pedersen et al., 2007). The
employment of such scaling relations, combined with BEP
relations, enables an enormous reduction of the computational
cost of getting first-principles rate constants for applications such
as catalyst screening, where a large number of rate constants have
to be computed for “similar” processes.

5. GARBAGE IN–GARBAGE OUT

As always in modeling, it is important to realize that the
predictions made from a model are limited by the quality of the
input data to the model, commonly expressed as the garbage
in – garbage out (GIGO) principle. The necessary input data
to a KMC model are the possible processes as well as their
associated rate constants. As discussed above, in the context of
first-principles KMC simulations where the rate constants are
determined by DFT or other electronic structure calculations,
these input data are at present typically determined beforehand.
In other words, rather than the KMC simulation identifying by
itself what processes are important or should be considered and
at which accuracy, the simulation depends on a fixed given list
of such processes with rate constants that come with the typical
uncertainty imposed by the underlying DFT calculation (the rate

catalog). This rigid setup leads to a high sensitivity of the KMC
simulation results on this input data.

As already mentioned initially, advanced KMC approaches
that overcome at least some of the limitations of this prevalent
rigid input-data setup are a long sought goal and topic of
current research. One possibility to automatically identify the
relevant processes in a system would be to use (accelerated)
MD approaches like hyperdynamics, temperature-accelerated
dynamics or replica-exchange dynamics beforehand (Voter et al.,
2002). In adaptive (on-the-fly) KMC a process search using the
dimer method or high-temperature MD simulations is directly
integrated into the KMC algorithm (Henkelman and Jónsson,
2001; Chill and Henkelman, 2014). A great advantage of the latter
methods is also that the KMCmodel does not necessarily have to
be implemented on a fixed lattice. However, they are generally
also much more computationally demanding, as they require
many orders of magnitude more energy and force evaluations
to determine all processes and their barriers. Applications have
therefore been limited to rather simple systems or systems where
the energy and force evaluations can be done with classical force
fields instead of DFT (Xu and Henkelman, 2008; Konwar et al.,
2011; Pedersen et al., 2015). At least for the time being, first-
principles KMC simulations in the application areas covered here
are instead in practice only tractable within the rigid setup, which
is why we concentrate on it from now on in this practical guide.

In the following we will illustrate the above-described
concepts using a simple model for the diffusion of Au adatoms
on a Au(100) surface. This will highlight possible pitfalls,
but will also provide guidance for best practice. All discussed
KMC models have been implemented in the kmos software
package (Hoffmann et al., 2014) and are available in the
Supplemental Data.

5.1. Adatom Diffusion on Au(100)
The simplest diffusion process one can think of in this system
consists of the hopping of Au atoms between the 4-fold hollow
adsorption sites offered by the Au(100) surface lattice (see
Figure 6A). For a simple KMC model of this system we will
consider a (20×20) square lattice of adsorption sites. The possible
processes are the hops of particles from one site into one of the
four neighboring sites up, down, left and right. Neglecting any
possible lateral interactions between Au adatoms, the barrier for
any of these processes is the same and at the DFT-LDA level it
has been calculated to 1Ediff = 0.83 eV (Yu and Scheffler, 1997).
We will use the TST expression (Equation 11) to express the rate
constant of the diffusion processes in terms of this barrier. For
simplicity we will ignore any entropic corrections to the barrier
and zero-point vibrational energy corrections, i.e., ko = 1. In
order to run the KMC model we need to fill some of the lattice
sites with particles. If we were to initialize the simulation with
an empty lattice, we would directly hit a deadlock where no
processes are possible. In this example we prepare the initial state
by randomly filling sites with Au adatoms corresponding to a
coverage of 0.25monolayer (ML), i.e., every fourth surface site
is occupied. As the output of the simulation we calculate the
diffusion coefficient of the Au adatoms by tracking the mean
squared displacements (MSD) (Garhammer, 2017) as a function
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FIGURE 6 | Illustration of the mechanism for (A) hopping and (B) exchange diffusion (see text).

of time. The diffusion coefficient D can then be calculated as

D = 〈MSD(t)−MSD0〉
2dt

, (19)

where t is the simulation time and d is the lattice dimension (2 in
this case). The averaging 〈〉 is performed over all Au adatoms. In
order to improve the statistics 25 independent simulations were
run, which differed from each other in the random initialization
of the lattice and in the random number seed used. The pink line
in Figure 7 shows the average of these 25 simulations from which
the diffusion coefficient is determined to be 0.0022 nm2/s.

Such hopping diffusion processes are, however, not the
only mechanism possible for self-diffusion on metal surfaces.
Both experimentally and theoretically an alternative exchange
diffusion mechanism has been described (Bassett and Webber,
1978; Wrigley and Ehrlich, 1980; Feibelman, 1990; Yu and
Scheffler, 1997), in which a metal adatom replaces a surface
layer atom and pushes it to a neighboring adsorption site (see
Figure 6B). With the adatom and surface atom of the same
species, this effectively also results in a net displacement. In Yu
and Scheffler (1997) it was found that this process occurs with the
lower barrier of only 0.65 eV on Au(100), and should therefore
dominate over hopping diffusion. When we additionally allow
for this diffusion process in the model, the output of the
simulation changes indeed dramatically, since the barrier enters
the rate constant for diffusion exponentially. Including exchange
diffusion, the diffusion coefficient is now determined to be 4.7
nm2/s, see brown line in Figure 7, i.e., more than three orders
of magnitude higher than before. It can also be noted that
the timescale reached in the simulation (for the same number
of total KMC steps) is much shorter with exchange diffusion.
In general, the time advanced with a KMC step, 1tescape, and
therefore the total timescale that is computationally reachable
during a simulation, depends on the sum of all rate constants
(see Equation 10), which is dominated by the fastest process in
the system.

The above example thus highlights the extent to which the
outcome of a KMC simulation is dependent on knowing and
allowing for all relevant processes in the model. This is a severe

limitation and requires utmost caution and care in setting up a
KMC model. The likelihood to overlook a non-intuitive process
such as exchange diffusion cannot be overemphasized and then—
alas—the GIGO principle applies with full might. Another
drawback of first-principles KMC is that the DFT energies
entering the rate constants can have rather large errors associated
with them. For processes at extended surfaces often low-rung
semi-local DFT functionals (possibly with some +U correction)
are still the state-of-the-art. This means that DFT errors on
barriers may easily be on the order of 0.1–0.2 eV. Considering
that these barriers enter the rate constants exponentially, see
Equation (11), the associated rate constants could be wrong by
orders of magnitude. However, in general, errors associated with
the various rate constants entering a KMC model do not all have
a similar effect on the output of the simulation. To illustrate this,
we plot in Figure 7 the output of the diffusion model including
both hopping and exchange diffusion, when lowering the barrier
for hopping diffusion by 0.05 eV (dark green line) and by 0.1 eV
(blue line). As can be seen, the result only begins to change
significantly when the barrier for hopping diffusion comes within
few tens of meV of the barrier for exchange diffusion. In contrast,
lowering the rate constant for the dominant exchange diffusion
process by only 0.05 eV (light green line) leads to a seven times
higher diffusion constant. Again, this is a result of the exponential
dependence of the rate constant on the barrier. In other words, a
DFT error of 0.1 eV on hopping diffusion would not change the
output of the simulation, while the same DFT error on exchange
diffusion would lead to huge changes in the output.

While this behavior is trivial to guess in this simple two-
parameter model, KMC models, particularly in catalysis, can
be much more complicated with very many reaction steps and
competing pathways. It is then of interest to identify more
systematically those processes and their input rate constants
that are most important for the outcome of the simulation.
Within the more general context of multiscale modeling, viewing
first-principles KMC simulations as a hierarchical multiscale
modeling setup combining an electronic structure with a
mesoscopic statistical technique, such endeavors are called
sensitivity analyses. As has hopefully become clear from this
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FIGURE 7 | Averaged mean squared displacements and diffusion constants of adatoms on Au(100) for hopping and exchange diffusion processes and various

associated barriers.

simple adatom diffusion model, for the rigid KMC setup such
analyses are absolutely pivotal to assess the meaningfulness of
the obtained results. In addition, such analyses also provide
important insight into which processes are those that control the
kinetics, as it is the rate constants of these processes that critically
determine the simulation outcome. Such mechanistic insight is
another important reason for conducting KMC simulations. In
catalysis, these controlling processes are called rate-determining
steps, and identifying rather than assuming them for a catalytic
cycle is one of the big assets of comprehensive KMC simulations.
We will come back to this topic in section 7 after having discussed
examples for such more complex catalysis KMC models in the
next section.

6. STEADY-STATE AND TRANSIENT
SIMULATIONS FOR SURFACE CATALYSIS

For catalysis applications one is often interested in the
behavior of the system once it has reached steady state (see
Equation 13). Since the system is open (constant influx of
reactants, constant outflux of products), this still requires
kinetic simulations even though the quantities of interest are
per se generally not time-dependent. Major such quantities
of interest are the surface composition (for instance in
form of averaged coverages of different adsorbates/reaction
intermediates), reaction mechanisms and production rates of
various chemicals. The latter reaction rate is often expressed
as a turnover frequency (TOF), which is the average rate
of production of a certain molecule per second per surface
site (or surface area). Alternatively, for analysis methods like
temperature programmed reaction (Jansen, 1995; Rieger et al.,
2008), cyclic voltammetry (Rai et al., 2006) or titration (Piccinin

and Stamatakis, 2014) one might be interested in the transient
behavior of a system prepared in a given initial state. In the
next section we will introduce a simple catalysis KMC model
for CO oxidation on RuO2(110) and illustrate the preparation of
various initial states and possible pitfalls with the relaxation to
the steady-state solution.

6.1. CO Oxidation on RuO2(110)
The CO oxidation model is taken from Reuter et al. (2004) and
we refer to this publication for its more detailed motivation.
In this model, the RuO2(110) surface is considered to contain
two types of active sites, br (bridge) and cus (coordinately
unsaturated) sites, arranged in an alternating rectangular lattice
as shown in Figure 8. Each site can be either empty or occupied
by O or CO. A total of 26 processes are possible in this
system, covering non-dissociative CO adsorption/desorption,
dissociative O2 adsorption/desorption, diffusion of O and CO,
as well as CO2 formation, where for each reaction type all
combinations of site types are taken into account. The formed
CO2 is assumed to desorb instantaneously and irreversibly due
to its weak binding to the surface.

In Figure 9A we show the temporal evolution of the system
beginning from an initial state corresponding to an empty (20×
20) lattice and at 1 bar O2 and CO pressure and a temperature of
450K. At these high pressures, it is clear that a substantial fraction
of the surface will be covered with O or CO in the final steady
state. Indeed, in the very first KMC steps (i.e., on nanosecond
timescales!), this coverage builds up quickly. The O coverage
builds up roughly double as fast as the CO coverage, since every
O2 adsorption event leads to the appearance of two O atoms
on the surface in contrast to only one CO in a CO adsorption
event. Already after about 20-30 ns one could be mistaken to
assume that the system has reached the steady-state solution,
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FIGURE 8 | Top view of the structure of the RuO2(110) surface. To the left, the surface unit cell is shown as a black rectangle. Big green spheres = Ru atoms, small

red spheres = O atoms. To the right, the coarse-grained lattice structure is sketched. It consists of alternating columns of cus (coordinately unsaturated) and br

(bridge) sites.

since both the TOF and the surface coverages become constant.
These coverages roughly reflect the impingement situation, with
about 2/3 of all cus and br sites covered by O and about 1/3
of all cus and br sites covered by CO. However, this is not the
true steady state! During prolonged KMC simulation (now on a
timescale of seconds!) the coverages change again dramatically,
until only about 1/3 of all br sites are covered by O (the rest
by CO) and essentially all cus sites are covered by CO. In the
course of these longer term changes, the TOF decreases by more
than three orders of magnitude as compared to the premature
apparent steady state. The reason for this two-timescale behavior
is that the double as high impingement of O atoms onto the
initially empty lattice fills a lot of br sites with oxygen. These
Obr atoms are very strongly bound and quite unreactive. They
will definitely not desorb readily and it requires CO oxidation
reactions with comparably high barriers (small rate constants)
to remove these Obr atoms once they have formed. The latter
processes therefore take much longer than the initial filling, and
since in this longer-term transformation CO also replaces almost
all of the highly reactive Ocus species, the TOF also collapses.

As impressively demonstrated by this example, identifying
what is the true steady state in a KMC simulation can be a
major challenge. In fact, this holds even more since what one
would really want is to have some form of automatized algorithm
that would flag once a simulation has reached steady state.
In practical applications, dozens, if not hundreds of different
KMC simulations need to be conducted, for instance evaluating
different gas phase conditions or determining the influence
of changes in the catalyst surface composition (doping with
certain metal atoms etc.). It becomes increasingly impractical
and cumbersome to having to monitor central quantities of
interest during an ongoing KMC simulation and then judge
manually whether steady state has been reached. Unfortunately,
fully automatic and fool-proof such steady-state detection (SSD)

is not yet available for KMC simulations. In contrast, quite
some knowledge is for instance available in the area of signal
processing and process control (Cao and Rhinehart, 1995; Kelly
and Hedengren, 2013). Only very recently such algorithms have
also found their way into the KMC community (Núñez et al.,
2017; Nellis et al., 2018). Typically, they are applied to several
properties of interest (reaction rates, coverages, total lattice
energy etc.) in order to avoid a false-positive detection of the
steady state. Even so, further testing and method development
will probably be needed to ascertain whether they can always be
applied in a foolproof manner.

In the absence of such sophisticated SSD algorithms, one
pragmatic approach is often to have a lot of knowledge of the
studied system and be really cautious (certainly not a foolproof
and elegant solution though). The other, complementary
approach is to start simulations from mindfully chosen varying
initial conditions and then monitor if the same steady state
is reached. This implies that the system does not exhibit true
multiple steady states. Such behavior is well known from the
solution of differential equations, for instance in the context
of MFA microkinetic models (Ramachandran et al., 1981). For
KMC simulations in the context of surface catalysis such true
multiple steady states that are not the result of a prematurely
assumed convergence of the simulation have not been reported,
and differentiating between the two cases would likely also
be involved. In any case, it never hurts to run several KMC
simulations starting from different initial conditions and then
monitor where they converge to. Obviously, the closer the
initialization is chosen to the final steady state, the faster the
simulation will likely converge.

Notwithstanding, one might also be trapped in preconceived
configurations, when for instance initializing a simulation
with a steady-state configuration determined in a preceding
(similar) simulation. For the CO oxidation model we illustrate
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FIGURE 9 | Temporal evolution of (top panel) CO oxidation TOF and (bottom panel) surface coverage of CO, O and vacancies on the cus and bridge sites of the

RuO2(110) lattice. The system is prepared in an initial state corresponding to (A) an empty lattice and (B) 1 ML oxygen coverage on cus sites and vacant bridge sites.

The temperature is 450 K and the gas phase CO and O2 pressures are both 1 bar.

in Figure 9B how starting from a completely different initial
population does in fact lead to the same steady state. Here,
the initial state corresponded to 1 ML oxygen coverage on the
cus sites and vacant bridge sites. For nanosecond timescales
we see again the appearance of a (different!) quasi-steady-state
solution where the cus sites remain occupied by O, while the
bridge sites are covered by about 0.35 ML CO and about 0.65
ML O. However, similar as for the other initialization, on the
timescale of seconds the system then transforms again and we
arrive at the same steady-state solution as found there. Having
understood the reason for this two-timescale behavior, a most
suitable initialization would instead be to prepare all br sites with
CO to prevent the initial massive buildup of Obr. In this case, the
true steady state is in fact reached extremely quickly (not shown).
Yet, such detailed insight into the chemistry of the system is rarely
present in the first place and the approach of starting from largely
different initializations is often the best and hopefully reliable
shot we have.

Once the steady-state solution has been reached, one
can make use of the (hopefully present) ergodicity of the
KMC simulation to calculate the desired quantities (surface
composition, occurrence of various elementary steps, TOFs) as
time averages instead of ensemble (trajectory) averages. The
average reaction rate, 〈rβ〉, for the production of a given molecule
β can for instance be calculated as

〈rβ〉 = 1

tKMC

NKMC∑

n=1

∑

j

k
β
ij1tescape,n, (20)

where tKMC is the total KMC simulation time, the first sum
runs over all KMC steps n (up to a total of NKMC steps), the

second sum runs over all states j that are accessible from the

current state i, k
β
ij is the rate constant for a process involving

the production of the molecule β , and 1tescape,n is the escape
time for KMC step n. The total simulation time should be
chosen long enough to reduce the statistical error on the sampled
quantities to a desired value. When calculating statistical errors
over successive trajectory fractions, the fraction simulation time
must also be chosen long enough that each trajectory fraction
is statistically independent of the other fractions. The required
time is known as the decorrelation time and it describes the time
it takes before the current system configuration is uncorrelated
from the initial system configuration in the trajectory fraction.
In case the quantity of interest is the transient behavior of the
system prepared in a given initial state (e.g., to simulate the
aforementioned temperature programmed reaction Jansen, 1995;
Rieger et al., 2008, cyclic voltammetry Rai et al., 2006, or titration
Piccinin and Stamatakis, 2014 experiments), several statistically
independent trajectories must be calculated and averaged. The
statistical independence can for example be achieved by using
different random number seeds, as was done for the adatom
diffusion model in section 5.1 above.

7. SENSITIVITY ANALYSIS AND
UNCERTAINTY QUANTIFICATION

As already motivated in section 5.1 it can be of particular
interest to know the extent to which the rate constants
of the various processes in a model influence the model
predictions and to thereby quantify the uncertainty of those
predictions. This is generally known as sensitivity analysis and
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uncertainty quantification (UQ). Some of the main questions
these methodologies seek to answer are the following: (i) Error
propagation: How do errors introduced at the level of theory used
to calculate rate constants propagate to the model predictions?
Which rate constants are most important to calculate with a high
accuracy (maybe then recursively refine such calculations once
the critical rate constants are known)? What conclusions can be
reliably drawn despite the errors? (ii) Design and optimization:
What are the limitations to achieve an optimal performance
of e.g., a given catalyst or battery material? How should rate
constants be varied (e.g., by varying the material) to achieve such
optimal performance?

One sensitivity measure introduced specifically for catalysis is
Campbell’s degree of rate control (DRC) XRC,I for reaction step I
(Campbell, 1994)

XRC,I =
kI

〈rβ〉

(
∂〈rβ〉
∂kI

)

kJ 6=I ,KI

, (21)

where the average reaction rate 〈rβ〉 should be calculated for
the product β of interest and the derivative is evaluated holding
constant the rate constants kJ of all other reactions steps J and
the equilibrium constant KI for step I. A positive (negative)
DRC signifies that the reaction rate will increase (decrease) when
increasing kI , whereas a value of zero signifies that the reaction
rate is insensitive to variations in kI . The DRCs follow a sum rule,
which states that the sum of all DRCs is equal to one (Meskine
et al., 2009; Hoffmann et al., 2017). A single non-zero DRC equal
to one then signifies a single rate-limiting step in the reaction
mechanism, while in general several steps can be rate-limiting
at the same time. The fact that the equilibrium constant for
step I is held constant means that both the forward and reverse
rate constants for step I are varied simultaneously, which can
also be viewed as a variation of the TS energy of step I (for
activated processes). Later, the DRC concept was extended to a
thermodynamical version where instead the energies of reaction
intermediates are varied (Stegelmann et al., 2009). Obviously,
these sensitivity measures can easily be extended to other
quantities of interest than reaction rates. From a practical point of
view, the main challenge in evaluating the derivative entering the
DRC expression is that we don’t have an analytical expression for
the reaction rate in KMC. Relying instead on a finite-difference
sampling, very long simulation times are typically required to
reduce the statistical error sufficiently (Meskine et al., 2009). A
more efficient three-stage approach has recently been proposed
(Hoffmann et al., 2017), which allows for the direct sampling of
sensitivity measures from a single KMC trajectory.

DRC sensitivity measures are formulated as a linear response
theory, meaning that the result is only valid locally in the
input parameter space. However, kinetic models are most often
highly non-linear and the DRC can change substantially over
rate constant variations corresponding to a DFT error of e.g.,
±0.2 eV on reaction barriers. Recently, a number of methods
have therefore been developed for global sensitivity analysis and
UQ, i.e., to assess which conclusions about the model can be
reliably drawn despite uncertainties in the input parameters
(Sutton et al., 2016; Döpking and Matera, 2017). Sutton et al.

(2016) furthermore addressed the fact that the errors in the input
parameters for KMC models are often highly correlated. Such
correlations can arise because the used DFT functional might
generally over- or underestimate certain kinetic parameters.
Corresponding DFT functional correlations have been exploited
to assess the uncertainty of reaction rates in a MFA microkinetic
model for ammonia synthesis (Medford et al., 2014) carried
out using the Bayesian error estimation functional with van
der Waals correlation (BEEF-vdW) (Wellendorff et al., 2012).
The latter functional provides not only a single value for a
given kinetic parameter, but an ensemble of values generated
by sampling known uncertainties in the exchange-correlation
model parameters. Another source of correlations in kinetic
parameters is the existence of correlations in the adsorption
energies of chemically related intermediates and TSs, generally
known as scaling relations (Nørskov et al., 2002; Michaelides
et al., 2003; Abild-Pedersen et al., 2007) (see section 4.2.3).
Both sources of correlation were considered in the sensitivity
analysis and UQ carried out in Sutton et al. (2016) and applied
to a kinetic model for ethanol steam reforming. The method
allows to assess whether a proposed reaction mechanism can
be considered to agree with experimental data within the
known DFT errors and can reveal limitations such as the
failure to take into account support effects in heterogeneous
catalysis models.

To be quite honest, no such sophisticated sensitivity analysis is
yet really on the agenda of the large majority of practitioners. As a
very crude and simple advise in the context of this practical guide
to surface Monte Carlo simulations, we would thus recommend
to always at least vary some of the key rate constants in a KMC
model by hand and see how this changes the simulation result.
This is straightforward to do and it provides a crude (possibly
incomplete, but still better than none) picture of what could be
the critical input and what are the dependencies in the studied
reaction network. In case this flags a critical sensitivity, one can
and should escalate from there. Honestly, if the gist of the story
one extracts from KMC simulations depends critically on highly
specific numerical values of one or a few rate constants and one
knows that there is a large uncertainty in these values, then who
wants to stick their neck out?

8. TIMESCALE DISPARITY PROBLEM

KMC achieves an enormous speedup over MD simulations
by avoiding the explicit treatment of the vibrational degrees
of freedom of the system, and instead considering only the
rare events such as adsorption/desorption, diffusion or reaction
steps (see section 2.1). However, also those rare events that are
treated in the KMC simulation can occur at largely different
timescales. When this is the case, almost all of the CPU time
is spent simulating the fast processes, while the (maybe truly
important) dynamics arising from the slow processes is sampled
insufficiently or not at all. This is especially problematic for
KMC models of surface reactions on metals, where often very
fast surface diffusion processes and slow surface reactions occur
simultaneously in the reaction network.
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A wide variety of methods has been developed to deal
with this timescale disparity problem. The τ -leap method is
an approximate procedure in which the KMC simulation is
accelerated by the firing of multiple processes at once (Gillespie,
2001). The underlying assumption (leap condition) of this
method is, however, only fulfilled when surface populations
are approximately constant during the coarse time increment
τ . Hence, the method does not apply to surface reactions
on microscopic lattices, where site populations can change
dramatically (e.g., from zero species to one species) from one
KMC step to the next. In practice, the method is only applied
to coarse-grained lattices where the concentration of species
within one larger coarse-grained cell is approximately constant
in time. Other methods rely on a separation of the processes
into "slow" and "fast" processes. They treat then only the slow
process dynamics stochastically at the KMC level, while the fast
process dynamics is treated deterministically or using a Langevin
equation (Haseltine and Rawlings, 2002; Salis and Kaznessis,
2005). A main drawback of this class of methods is that the
process timescale separation has to be specified by the user in
advance and remains fixed throughout the simulation.

In practice, recent KMC works have therefore often relied
on simple acceleration schemes that function by decreasing the
rate constants of the fastest processes in the system in order to
make the span in process timescales tractable (see Figure 10).
For simple reaction networks such rate constant scaling, together
with verification that the model output is not affected by
the scaling, can be carried out manually (Rogal et al., 2008;
Piccinin and Stamatakis, 2014; Lorenzi et al., 2016; Jørgensen and
Grönbeck, 2017). Recently, algorithms have also appeared that
take care of the scaling of fast processes automatically, without
the user having to specify those processes in advance (Chatterjee
and Voter, 2010; Dybeck et al., 2017). A main assumption of
these methods is that fast processes become quasi-equilibrated
after a limited number of executions, i.e., it is assumed
that continued simulation of these processes is not necessary
to correctly describe the system dynamics. The accelerated
superbasin KMC (AS-KMC) method from Chatterjee and Voter
(2010) defines a superbasin as a set of lattice configurations
that the system can jump between through the execution of
quasi-equilibrated processes only (see Figure 10). The execution
of a non-equilibrated process then defines the entering of a
new superbasin. The goal of the acceleration algorithm thereby
becomes to encourage the system to leave the current superbasin
at an earlier time through the scaling of fast, quasi-equilibrated
processes. A drawback of this method for complex systems is
that the total number of system configurations can be very large,
whichmay cause the algorithm to become inefficient since the full
sampling of even a single superbasin becomes exceedingly slow.

This problem was addressed in the method presented in
Dybeck et al. (2017), where rather than tracking both system
configurations (superbasin states) and processes, only the
executions of some user-defined reaction channels are tracked. A
reaction channel could for example be the adsorption/desorption
of some species at a given site type, independently of where on
the lattice this reaction occurs, and the scaling of rate constants
is then applied to the whole reaction channel. Scaling still only

FIGURE 10 | Potential energy surface (PES) for a system with processes

occurring at disparate timescales due to large differences in the barriers. A set

of states connected by fast (low-barrier), quasi-equilibrated processes

constitutes a superbasin. The system can escape from one superbasin to

another through the execution of a slow (high barrier), non-equilibrated

process. The KMC simulation is accelerated by scaling the rate constants

(increasing the barriers) of fast, quasi-equilibrated processes. This decreases

the time it takes for the system to leave the current superbasin and thereby

enhances the sampling of neighboring regions of the PES (other superbasins).

occurs for processes that have been executed a minimum number
of times within the current superbasin and for which the number
of forward executions is roughly equal to the number of reverse
executions to within some tolerance. Once a non-equilibrated
process was executed, the rate constants are unscaled again
to allow for sufficient sampling of the new superbasin—and
the process is started over again. The algorithm was shown to
work well for a reaction model of Fischer-Tropsch synthesis
over ruthenium nanoparticles (Dybeck et al., 2017). Very similar
approaches to KMC acceleration, but excluding the unscaling
step, have been followed in Núñez et al. (2017) and Hoffmann
and Bligaard (2018). In Núñez et al. (2017) the acceleration
scheme was employed together with efficient sensitivity analysis
beyond finite differences (similar to the method from Hoffmann
et al. (2017) that was discussed in the preceding section) for
improved sampling of sensitivity measures also in KMC models
characterized by large disparities in the timescales.

In Andersen et al. (2017) the algorithm from Dybeck et al.
(2017) was implemented in the kmos code and applied to a
trend study of CO methanation over stepped surfaces of the
transition metal series using scaling-relation-based rate constant
expressions. Also for this more complex reaction mechanism
and the consideration of many different catalyst surfaces, the
acceleration algorithm generally performed well. However, some
challenging cases leading to a breakdown of the algorithm were
also identified. A particularly problematic case for the algorithm
was shown to be the occurrence of reactions between two low-
coverage species, which are both produced in independent,
quasi-equilibrated reaction steps. In this case the algorithm
may scale the rate constants of the quasi-equilibrated steps too
aggressively, leading to insufficient or no sampling of lattice
configurations where the two low-coverage species are found
at neighboring lattice sites, as required for their reaction. This
problem is likely related to the fact that the algorithm from
Dybeck et al. (2017) does not track system configurations and
therefore cannot verify if all configurations within a superbasin
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have been sufficiently sampled. A simple correction scheme that
takes into account lattice configurations of the nearest neighbor
sites in the definition of the reaction channel was proposed
in Andersen et al. (2017). This was shown to work well for
the simple case of a reaction between two low-coverage species
formed directly at neighboring sites. However, it does not apply
if the low-coverage species are produced at distant lattice sites
and rely on diffusion steps before the reaction step.

In some sense it is ironic that KMC is so particularly
challenged by fast diffusion steps, considering that its effective
competitor in form of MFAmicrokinetic models is challenged by
slow diffusion steps. Even in the absence of lateral interactions,
which would generally be used to argue in favor of the validity
of the MFA, such slow diffusion processes can prevent the
system to ever reach the well-mixed state assumed in the MFA.
At metals, this was shown to happen at strongly binding step
sites (Andersen et al., 2017), whereas at oxides this might arise
simply from the higher diffusion barriers at these more open
compound materials. For the KMC model of CO oxidation
on RuO2(110) discussed in section 6.1 a corresponding MFA
breakdown could for instance be traced back to a relatively high
barrier of approximately 1.6 eV for O diffusion (Temel et al.,
2007; Matera et al., 2011; Exner et al., 2015). In this respect,
this leaves essentially no system of interest in surface catalysis
where one could generally expect mean-field kinetics to yield
the right answers: At metals, the MFA is typically invalidated by
strong lateral interactions at nearby sites (see next section), at
compounds like oxides high diffusion barriers prevent a sufficient
mixing of the adsorption layer. The problem is then that even
though modern KMC implementations like those discussed in
section 3 have become dramatically more efficient, they are
typically still more demanding than mean-field models. The
timescale disparity problem adds significantly to this and even
though most recent acceleration algorithms have become better,
this problem is not yet fully solved. This still leaves many users to
resort to MFAmicrokinetic modeling, even though it is likely not
correct. Alternatively, algorithms that are intermediate between
MFA and KMC in terms of accuracy and computational cost
such as the quasichemical approximation have also been applied
to catalytic reactions (Hellman and Honkala, 2007) and have
in some cases been shown to reproduce KMC simulations at
significantly reduced cost.

9. LATERAL INTERACTIONS

Lateral interactions are interactions between species adsorbed to
a lattice. They can be either attractive or repulsive depending on
the chemical nature of the involved species and the surface or
bulk material defining the KMC lattice. Several recent studies
have found that lateral interactions are essential to take into
account for a correct description of the system dynamics
(Stamatakis and Piccinin, 2016; Jørgensen and Grönbeck, 2017;
Piccinin and Stamatakis, 2017; Vignola et al., 2017; Hus
and Hellman, 2019). As already discussed in section 2.2,
lateral interactions are taken into account within the lattice
approximation in KMC by assigning an individual hopping rate

constant to each neighbor configuration (see Figure 3). In case
of repulsive interactions, the particle will be more likely to jump
away from an initial configuration with occupied neighboring
sites as compared to empty neighboring sites. This will cause
the particles to spread out over the lattice to maximize the
inter-particle distances. For attractive interactions, the situation
is exactly opposite and the particles will show a tendency for
island formation. Both cases can lead to the formation of ordered
structures on the lattice. They may therefore lead to inaccuracies
of mean-field treatments of the system kinetics, since the MFA
assumes a random distribution of the particles without any
correlations between sites (Liu et al., 2016; Stamatakis and
Piccinin, 2016; Pineda and Stamatakis, 2017).

In practice, lateral interactions can be accounted for in lattice
KMC models through the general cluster expansion method
(Sanchez et al., 1984; Stampfl et al., 1999; Müller, 2003). In
this method, the lattice energy is expanded into a sum of
discrete interactions (clusters) such as pairwise interactions,
three-body interactions etc. through a lattice-gas Hamiltonian.
For any adsorbate on the lattice, one would thus evaluate
how many neighbors of which type sit at which kind of
distances (nearest-neighbor, next nearest neighbor etc.). For each
such neighbor the adsorption energy (or more generally rate
constant) of an isolated particle on the lattice at this site type
would be corrected for by a certain amount prescribed by the
lattice-gas Hamiltonian. Summing up all these contributions
defines the pairwise interactions. Then one looks up all possible
motifs of two simultaneously present neighboring species, for
which again there are energy (rate constant) corrections. This
defines the three-body corrections to the pairwise interaction
correction, and formally this goes on to higher and higher
many-body interactions. While cluster expansions considering
up to three- and four-body terms have been parametrized
with DFT for simple systems (Jansen and Offermans, 2005;
Zhang et al., 2007; Schmidt et al., 2012; Wu et al., 2012;
Piccinin and Stamatakis, 2014), presently cluster expansions
are typically truncated already after the first nearest neighbor
pairwise interaction term in more complex systems with many
species and site types in order to keep the computational cost
tractable (Stamatakis and Vlachos, 2011; Yang et al., 2013). A
particularly crude form of this are so-called site-blocking rules
(Hoffmann and Reuter, 2014; Liu et al., 2016; Lorenzi et al.,
2016), where strongly repulsive first neighbor interactions are
simply modeled by suppressing any KMC processes that would
lead to such immediately neighboring species. Furthermore,
cluster expansions are typically used only for adsorbates in
their stable and metastable adsorption sites, since taking into
account also transition states, i.e., changes in barrier heights
due to lateral interactions, could make the DFT parametrization
intractable. In the ZACROS KMC code cluster expansion is
built-in for adsorbates and the effect of lateral interactions
on transition states is instead taken into account through an
approximate Brønsted-Evans-Polanyi relation (Nielsen et al.,
2013). A main drawback of the cluster expansion method is that
the computational cost of both the DFT parametrization and
the KMC simulation can quickly become intractable for complex
systems. A benchmarking of the cluster expansion parametrized
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in Wu et al. (2012) showed that the computational cost of the
KMC simulation increased with about 5 orders of magnitude
when the number of clusters considered increased from 3 to 12
(Nielsen et al., 2013). Of course, this depends on the actual KMC
implementation and algorithm used, and in particular codes
like ZACROS are written to mitigate the additional costs when
considering lateral interactions.

Despite the added cost, we emphasize again that lateral
interactions often play an important role not only for surface
diffusion, but also for crystal growth and heterogeneous catalysis.
In the following we will thus provide two example kmosmodels
for the application areas crystal growth and heterogeneous
catalysis that take into account lateral interactions. For more
realistic growth and lateral interaction models we refer to the
literature (Fichthorn et al., 2002; Ruan and Schuh, 2010; Shirazi
and Elliott, 2014).

9.1. kmos Models With Lateral Interactions
We will begin this section with a short description of two of the
available kmos backends and the way they each handle lateral
interactions. The local smart backend is the original backend and
has been used as a basis and inspiration for the other backends. It
was built with the implicit objective of offering the best run time
possible at the expense of memory usage. For this reason, a key
element in this backend is a pre-calculated list of rate constants,
i.e., a rate catalog. Together with an efficient local updating of the
available processes after each KMC step, this makes it the most
efficient backend when the number of different rate constants in
the list is reasonable small. The local smart backend implements
the most simple treatment of lateral interactions, in which any
new neighbor configuration defines a new KMC process with
a rate constant associated with this particular configuration.
There are several drawbacks of this approach for models with
lateral interactions since these generally feature an exponentially
growing number of processes with the number of interactions
taken into account: (i) Several routines whose execution time
scale with the total number of processes can become slow, (ii)
the bookkeeping data structures, which scale in size with the
total number of processes, can become too big for available
memory, (iii) the size of the source code can become very
large, making compilation very slow or even impossible due to
memory requirements.

The on-the-fly backend was constructed to alleviate the
problems encountered in the local smart backend and to enable
KMC simulations of complex lateral interaction models. As
the name implies, it calculates rate constants on-the-fly instead
of making use of a pre-calculated rate catalog. In the on-the-
fly backend the local environment is taken into account for
each process through a bystander list. Here a bystander is a
neighboring site whose occupation influences the rate constant of
the process according to the on-the-fly-calculated rate constant.
The benefit of this approach is that the total number of
processes in the model is constant with respect to the number of
interactions taken into account. On the other hand, the drawback
is that now the compute time of each KMC step scales linearly
with the system size due to the need to scan through the lattice

and sum up all rate constants explicitly in order to evaluate the
total escape rate constant ktot (Equation 9).

Now moving to examples, we will first present a kmos model
for crystal growth with lateral interactions that is simple enough
that it can be handled efficiently in the local smart backend. For
this model we consider a three-dimensional quadratic lattice and
a single species that is deposited onto a solid substrate with a
constant adsorption rate constant kads = 3 · 10−3 s−1. The low-
coverage desorption barrier 1E0 is set to 1 eV. In addition, we
consider attractive pairwise lateral interactions ǫint = 0.5 eV with
the nearest neighbor species. Thereby, the rate constant for the
desorption process kdes becomes

kdes =
kBT

h
exp

(
−1E0 + nNN · ǫint

kBT

)
, (22)

where nNN is the number of nearest neighbor species in the
lattice configuration. For the desorption process to be possible the
species must be located in the surface layer, i.e., the site just below
it must be occupied and the site just above it must be empty.
Lateral interactions are then taken into account for the four
neighboring sites at the same z height (see Figure 11A). Since
there are only two possible configurations for each neighbor
site (empty or occupied) this leads to merely 16 inequivalent
desorption process types and this model can therefore be
efficiently treated in the local smart backend.

In Figure 11B we show snapshots of the grown crystal
structure for temperatures of 350 K and 450 K. In both
simulations the system is prepared in an initial state
corresponding to one layer of fixed substrate species (blue
atoms) onto which adsorption can take place. As expected, the
grown structure becomes smoother at higher temperatures,
where atoms deposited onto unfavorable adsorption sites with
no attractive interactions to neighboring species will be more
likely to desorb. The model could be made more realistic by
including also diffusion processes and by considering a more
detailed cluster expansion model for the lateral interactions.

As the next example we return to the catalysis model for
CO oxidation on RuO2(110) already discussed in section 6.1.
To explore how the kmos performance of the local smart and
on-the-fly backends are each affected by increasingly complex
lateral interaction models, we step-wise add pairwise interactions
to each process in the model. Possible pairwise interactions are
illustrated with black arrows in Figure 11C for a second-order
process (e.g., O2 desorption) involving two neighboring sites
(marked with black circles). The performance of each backend
as a function of the number of interactions included is shown in
Figure 11D For the local smart backend (rate catalog) the cost
grows exponentially with the number of interactions and we are
effectively limited to simple interaction models with a maximum
of four pair-wise interactions. This happens because the number
of processes in the rate catalog grows exponentially with the
number of interactions, i.e., the three possible occupations of
each neighboring site (O, CO or empty) to the power of the
number of neighboring sites (interactions) taken into account.
In the on-the-fly backend the cost grows only linear with the
number of interactions and remains tractable at all considered
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FIGURE 11 | (A) Illustration of the lateral interaction model for the desorption process of the crystal growth model. The site just below the desorbing species is always

occupied and its interaction energy is therefore included in the low-coverage desorption barrier. The four neighboring sites at the same z height can be either empty or

occupied and modify the desorption rate constant accordingly. (B) Snapshots of grown crystal structures at two different temperatures. (C) Illustration of pairwise

interactions in the CO oxidation on RuO2(110) model. (D) kmos performance for the CO oxidation model as a function of the number of pairwise interactions

considered for two different backends (rate catalog or on-the-fly calculation of rate constants). Using a rate catalog, the performance is independent of the lattice size.

In the on-the-fly implementation the cost instead grows linearly with the lattice size (quadratic growth with the length N of an (N× N) simulation cell) as illustrated for N

equal to 10, 20, 30, 40, 50 (different red lines).

system sizes, despite the quadratic scaling of the cost with the
length N of the (N × N) simulation cell used (linear scaling with
system size). It is worth noting in this context that the on-the-fly
algorithm presented here specifically for kmos is not new. For
example, also the ZACROS code (Nielsen et al., 2013) calculates
rate constants on-the-fly.

As has hopefully become evident from the above examples,
lateral interactions are a double-edged sword for KMC models.
On the one hand, the ability to systematically take into account
effects of the local environment through systematic cluster
expansion enables models of potentially very high accuracy
and constitutes a great advantage over MFA models. On the
other hand, the inclusion of lateral interactions counteracts the
reduction in the number of needed first-principles rate constants
that was obtained by making use of the lattice approximation
(see section 2.2) and introduces additional complexity and cost to
the KMC simulation. In practice, the choice of lateral interaction
model therefore (unfortunately) often becomes a pragmatic one
determined by what is computationally feasible, even if it is well-
known that an appropriate interaction model can be crucial for
the validity of the kinetic model.

10. SUMMARY AND OUTLOOK

The last decade has witnessed an impressive growth, not only in
the number of studies employing predictive, first-principles KMC
modeling, but also in the number of new codes that have become
available. Especially for heterogeneous catalysis applications, the
employed models are increasingly able to deal with complexity,
both in the employed reaction mechanisms and in the structure

of the catalytic material modeled. These advances have been
powered by algorithmic developments for the determination of
the input processes and rate constants, as well as for the actual
algorithms that carry out the KMC simulation.

With many new KMC users entering this exciting field, the
aim of this tutorial review has been to provide the necessary
practical guidelines and examples for constructing and evaluating
KMC models, and to highlight the pitfalls met along the way
as well as current challenges and perspectives. We discussed in
detail how to make use of the lattice approximation in order
to exploit a crystalline symmetry of the underlying surface
lattice and thereby reduce the number of required first-principles
rate constants. This also involves pitfalls and challenges, in
particular when a dynamical restructuring of the surface takes
place, or if well-defined adsorption sites of the surface species
do not exist. We briefly discussed how off-lattice (adaptive)
KMC attempts to overcome these limitations, as well as the
limitations associated with a pre-defined—possibly incomplete—
list of possible processes, through the automatic identification
of possible states and processes. However, despite this exciting
perspective, these methods are still hampered by their high cost
in practice.

Even for lattice KMC models the number of required
first-principles rate constants can be daunting. Prevalent TST
approaches require the location of the TS and often also the
determination of prefactors and zero-point vibrational energies,
at least to the level of determining the harmonic frequencies of
the system. While it is desirable to carry out these calculations
by DFT or other electronic structure methods to achieve a
predictive-quality model, the development of cheaper methods
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could dramatically increase the complexity that it is possible
to tackle. To this end, we discussed commonly employed BEP
and scaling relations as one prevalent example today. For the
future, the development of increasingly accurate semi-empirical
methods such as Density-Functional Tight-Binding (DFTB),
reactive force fields or machine-learning-based force fields is an
interesting perspective to which we ascribe a high potential. The
actual determination of the TS is typically the computational
bottleneck, and for this we discussed a number of methods
and their respective strong and weak points. Furthermore, we
discussed how the accuracy of the employed rate constants can
be systematically improved in lattice KMC models through the
cluster expansion method in cases where the local environment
significantly influences the rate constant.

For KMC models constructed using first-principles DFT rate
constants, one still has to bear in mind that the expected error
on barriers can easily be on the order of several hundreds
of meV. This may lead to rate constants that are potentially
wrong by orders of magnitude. A practical way to tackle
this significant drawback is to estimate the sensitivity of the
model predictions on the input rate constants and to quantify
the uncertainties on those predictions. For this, we discussed
various approaches ranging from a simple parameter variation
to sophisticated models taking into account correlations between
the input rate constants. An exciting perspective here is a
recurrent refinement of the used rate constants, possibly also
regarding the lateral interaction model employed, as information
about the importance of the various input processes becomes
increasingly available.

While KMC has come a long way, there are also a number
of challenges to be met in the future. One example of this
is the inevitable timescale disparity problem, which continues
to challenge practical applications of KMC. We discussed a
wide variety of methods that have appeared in the last decades,
with a particular focus on recent acceleration algorithms that

automatically identify the simulation bottlenecks, i.e., the fast,
quasi-equilibrated processes. While these approaches can work
well in many cases, there are also examples where they break
down. Likely, this is an area where further improvements are to
be seen in the coming years.
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