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Electrospraying, a liquid atomization-based technique, has been used to produce

and formulate micro/nanoparticular cargo carriers for various biomedical applications,

including drug delivery, biomedical imaging, implant coatings, and tissue engineering. In

this mini review, we begin with the main features of electrospraying methods to engineer

carriers with various bioactive cargos, including genes, growth factors, and enzymes.

In particular, this review focuses on the improvement of traditional electrospraying

technology for the fabrication of carriers for living cells and providing a suitable condition

for gene transformation. Subsequently, the major applications of the electrosprayed

carriers in the biomedical field are highlighted. Finally, we finish with conclusions and

future perspectives of electrospraying for high efficiency and safe production.
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INTRODUCTION

Electrospraying, also known as electrodynamic spraying, is capable of producing diminutive
droplets with submicron sizes by means of an electric field (Khan et al., 2017). Electrospraying can
also be used to produce fine polymeric particles, which are widely used for biomedical applications,
particularly drug encapsulation. For the purpose of polymeric particle production, the common
setup of electrospraying consists of a high-voltage power supply, a plastic/glass syringe capped by
a metallic capillary (e.g., a 16- to 26-gauge needle) to hold a polymer solution, a syringe pump to
control the flow of the solutions, and a grounded collector. When a high electric field is applied at
the needle, a charged liquid jet will break up into droplets, which form small particles with generally
narrow size distribution on the collector; the general setup can be found in Figure 1. The size and
morphology of electrosprayed particles can be controlled to a certain extent by the factors related to
polymer solutions [e.g., concentration, shear viscosity (Kim et al., 2015), polymermolecular weight,
solvent (Bohr et al., 2015; Felice et al., 2015; Lu et al., 2015)] and electrospraying process [e.g., flow
rate, electric potential difference, distance between the tip of the needle and the collector (Smeets
et al., 2017)]. More details about the setup of electrospraying and its physical operating conditions
can be found in other reviews (Bock et al., 2011; Ganan-Calvo et al., 2018; Jaworek et al., 2018).

Compared to the other conventional methods to produce particles, electrospraying has a
few advantages, making it attractive to produce cargo carriers for biomedical applications.
Firstly, the process can be performed at ambient conditions (temperature and pressure), which
is beneficial for sensitive biomolecules and even living cells; secondly, due to the possible
absence of an external medium that allows the dissolution or migration of water-soluble cargos,
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the encapsulation efficiency using electrospraying can be
maximized (Sosnik, 2014). Thirdly, it can reproducibly provide
drug-loaded nano/microparticles (5 nm−100µm) with a narrow
size distribution (Chen and Pui, 1997); Coulombic repulsion
between the highly charged electrosprayed droplets results in self-
dispersion particles without coalescence (Xu and Hanna, 2006).
Last, but not least, through adjustment of the above-mentioned
solution factors and processing parameters, carriers in different
structures can be obtained, such as hollow microspheres (Jafari-
Nodoushan et al., 2015; Zhou et al., 2017), nanocups (Kiran et al.,
2016), porous microcarriers (Gao et al., 2015; Karimian et al.,
2016; Huang et al., 2017), cell-shaped microparticles (Khanum
et al., 2015; Ju et al., 2017), core–shell/multilayered microspheres
(Rasekh et al., 2017; Zhang et al., 2017a), and Janus particles
(Sanchez-Vazquez et al., 2017; Li et al., 2018). The schematic
diagram of the structures can be found in Figure 1, and the real
images can be found in the referred publications.

In the past decades, there are several comprehensive reviews
published about electrospraying from different perspectives,
including electrohydrodynamic technique, naturematerial-based
systems, type of encapsulated drugs, and its applications (food,
drug delivery, bone tissue engineering, etc.; Bock et al., 2012;
Jayaraman et al., 2015; Arzi and Sosnik, 2018; Jacob et al., 2018;
Jacobsen et al., 2018; Pawar et al., 2018; Rosell-Llompart et al.,
2018). Recently, this technique continued to evolve in the field
of bioengineering. Bioactive compounds, as well as cells, have
been electrosprayed apart from conventional drugs. This mini
review focuses on the novel bioactive cargo carriers prepared by
electrospraying technique and the conditions used to maintain
the bioactivity during the process. Then, we summarize the most
recent development of this technology in biomedical applications
regarding drug delivery, diagnostic and therapeutic biomedical
imaging, implant coating, and tissue engineering. Figure 1 gives
an overview of this mini review.

BIOACTIVE CARGOS ELECTROSPRAYED
INSIDE CARRIERS

Due to the special character of bioactive cargos which is
sensitive to the ambient environment, it has been a challenge
to fabricate the bioactive cargo-loaded carrier. Here, we
highlight the technical aspect of loading different bioactive
cargos in terms of cells, genes, growth factors, and enzymes
via the electrospraying method. Small-molecule drugs are not
included in this section, which have been reviewed before
(Nguyen et al., 2016).

Cells
Electrospraying has been explored to handle living cells and
whole organisms (Jayasinghe, 2011), which is now known as “bio-
electrospraying” (BES). BES has become an appealing tool for cell
delivery in scaffolds for tissue engineering applications. BES is
considered safe for cells due to the low current (usually in the
nanoampere range) albeit the high voltage up to several kilovolts.
Recently, a variety of cells have been electrosprayed, including
fibroblasts, adipose-derived stem cells (ADSCs), periodontal

ligament cells, retinal pigment epithelial cells, umbilical vascular
endothelial cells, gastric epithelial cells (Xin et al., 2016), and
bone marrow-derived mesenchymal stem cells (McCrea et al.,
2018). The overall results demonstrated no distinct negative effect
of the electrospraying process on cell vitality, morphology, and
proliferation. This confirms the safety and efficiency of BES to
encapsulate cells into different carriers and extracellular matrix
for the study of diverse diseases.

Many polymers have been proven to be compatible with
BES, including natural polymers subject to ionotropic or
physical gelation (e.g., alginate, chitosan) (Qayyum et al.,
2017) and some synthetic hydrogels [e.g., polyethylene glycol
(PEG)]. The achieved cell encapsulation efficiency in PEG
can be up to 90% (Qayyum et al., 2017). Cell aggregation
was observed within the PEG hydrogel microspheres due to
the lack of cell attachment site of PEG. Arg–Gly–Asp–Ser
peptide-tethered PEG showed improved cell attachment, and the
microencapsulated cells remained viable in the tethered PEG
hydrogel microspheres for up to 7 days. Esfahani et al. (2017)
encapsulated cells into semipermeable poly(lactide-co-glycolide)
(PLGA) microspheres to release biologicals produced by the
encapsulated cells. A coaxial system was adopted to avoid the
toxicity of the solvent (chloroform/dimethylformamide) used to
dissolve PLGA. Consequently, the cells and PLGA solution were
only in contact at the tip of the needle before electrospraying.

BES has also been combined with electrospinning to obtain
cellular tissue constructs. Yunmin et al. (2015) developed a micro
integration scaffold by simultaneously electrospraying ADSCs
and electrospin polyvinyl alcohol (PVA). Compared to scaffolds
prepared by electrospinning a solution of ADSCs suspended in
PVA, the integrated electrospraying/electrospinning one showed
a larger number of surviving cells.

For further development, the BES parameters, such as cell
concentration, nozzle size, polymer flow rate, voltage, and
distance between the needle and the collector, need to be
optimized. For example, voltage is very critical as it affects the cell
vitality. Therefore, a low voltage is preferred (3–6 kV; McCrea
et al., 2018). Ye et al. (2015) found that ADSCs were still viable
when an electrospraying voltage of 10 kV was used, whereas
cell viability became reduced at 20 kV and the spraying process
became unstable.

In summary, BES extends the available toolkit for cell
microencapsulation, and integration with other techniques,
such as electrospinning, provides the possibility to form
simultaneously complex living three-dimensional (3D)
architectures for potential applications in regenerative medicine
(Jayasinghe et al., 2015).

Genes
Gene therapy is developing rapidly as a new treatment strategy
for cellular, tissue, and organ disorders, ranging from diabetes
to cancer (Ward et al., 2010). To transform bacterial cells with
exogenous DNA, chemo-transformation and electroporation are
commonly used. However, these methods are complex and
expensive, and the step of preparing competent cells is time-
consuming (Abyadeh et al., 2017). Electrospraying of DNA
plasmid (pDNA) in a suitable buffer (such as high-conductivity
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FIGURE 1 | Electrosprayed carriers: fabrication and applications.

culture medium) had been suggested as an alternative for
bacterial/cell transformation with high efficiency (Boda et al.,
2018). Abyadeh et al. pioneered a rapid transformation method
to electrospray chitosan/pDNA into a bacterial culture to evoke
a mild damage to the cell surface to increase the penetration
of plasmid into bacteria. The transformation efficiency of this
method was 1.7 × 108 CFU/µg plasmid, which is comparable to
the traditional methods (Abyadeh et al., 2017).

Growth Factors
Growth factor delivery with good efficiency and efficacy is still
a challenge for tissue regeneration therapies. As mentioned
above, electrospraying has great benefit of reducing growth
factor denaturation due to the limited exposure to organic
solvents and the possibility of the dry encapsulation method
(Bock et al., 2016). Zhang et al. (2017b) prepared rhBMP-2-
loaded PLGA microspheres with a core–shell structure via the
coaxial electrospraying method and the microspheres promoted
cell proliferation of bone marrow stromal cells. In order to
assist growth factor bioactivity, stabilizer PEG and trehalose
were added to PLGA to prepare vascular endothelial growth
factor (VEGF)- or bone morphogenetic protein 7 (BMP-7)-
loaded carriers via electrospraying (Bock et al., 2016). Growth
factor bioactivity was verified, when tested with cells, at all stages
of microparticle preparation (including protein aggregation
and contact with an organic solvent) and in the presence
of a stabilizer in the formulation. Moreover, pre-osteoblasts
(MC3T3-E1) directly co-cultured with the BMP-7-loaded carriers
showed significant cell differentiation into osteoblasts. In a dual
growth factor release system, double-layered microspheres were
prepared by a two-step electrospraying (Xu et al., 2018). The
inner layer ofmicrospheres was first fabricated by electrospraying

BMP-2/alginic acid sodium salt solution to a dish filled with
CaCl2 solution to form alginate microspheres. After being coated
with chitosan, the microspheres were mixed with stromal cell-
derived factor-1 (SDF-1) in alginic acid sodium salt solution
to go through a second electrospraying process to form the
outer layer of the microspheres. The retention of bioactivities
of both growth factors after the electrospraying process
was confirmed.

Enzymes
A few studies explored the possibility of using electrospraying to
encapsulate enzymes. Fung et al. (2016) electrosprayed coenzyme
Q10 in copovidone (Kollidon R© VA64) using acetone as the
solvent. Both in vitro and in vivo evaluation showed enhanced
bioavailability of the electrosprayed microparticles. Compared
with the physical mixture of raw materials, electrosprayed
microparticles revealed also enhanced dissolution properties.
Yaghoobi et al. (2017) electrosprayed streptokinase-loaded PLGA
nanoparticles, but found the activity of streptokinase decreased
to 19.2% after electrospraying. Therefore, more research has to
be done to maintain the biological activity of the enzyme during
the electrospray process.

APPLICATION OF THE ELECTROSPRAYED
CARRIERS IN BIOMEDICINE

Electrosprayed cargo carriers have been widely explored
for various biomedical applications. In this part, the
most recent applications related to electrosprayed
carriers were summarized to follow the newest trend of
this technique.
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Drug Delivery
Electrospraying has been widely studied to prepare and
encapsulate drugs in particles that can function as a drug delivery
system. This topic has been covered by the other reviews (Nguyen
et al., 2016; Boda et al., 2018; Pawar et al., 2018). In Table 1, we
summarize the most recent, published from year 2015 onward,
drug delivery systems developed by electrospraying to achieve
particular therapeutic effects.

Diagnostic and Therapeutic Biomedical
Imaging
Electrospraying has been combined with the sol–gel synthesis
technique to prepare ternary phosphate-based glass nanospheres,
which can be used as contrast agent for ultrasound imaging
(Foroutan et al., 2015). These nanospheres are not cytotoxic at the
used doses, and their function has been confirmed in vivo. The
nanospheres also degrade in aqueous media, and the degradation
products are easily metabolized in the body.

Taking a step ahead, Rasekh et al. (2017) applied coaxial
electrospraying to encapsulate genistein (model drug),
superparamagnetic iron oxide nanoparticles (10–15 nm),
PEG, and a fluorescent dye in triglyceride tristearin, and
demonstrated a drug release time of over 30 h. The stable
process and high drug encapsulation efficiency (around 92%)
make coaxial electrospraying a promising choice to encapsulate
nanoparticles together with sensitive drugs for combined
imaging and therapeutic application.

In another study, Zhang et al. (2017a) engineered particles
with combined diagnostic and therapeutic functions using a tri-
needle coaxial electrospraying. The particles were constructed
with a core–shell structure separated by an oil layer. Magnetic
Fe3O4 nanoparticles were embedded in the polymeric shell
to enable both ultrasound and magnetic resonance imaging
capacity. Meanwhile, therapeutic drugs could be incorporated
in both the core and the shell compartments and their release
could be regulated by an external auxiliary magnetic field. A
similar study was performed by electrospraying Janus particles
composed of [PLGA/TbLa3(Bim)12]/[PLGA/Fe3O4] (Li et al.,
2018). These Janus particles showed good magnetic properties,
thermal stability, biocompatibility, and enhanced fluorescent
properties, displaying their potential use for biological probing
and biomedical imaging.

Implant Coating
As mentioned in the Introduction, electrospraying is a versatile
technique that can produce an aerosol of charged droplets
with precise control of size and shape. This feature can be
used to produce different morphologies of polymeric coatings
on medical implants, which can guide cellular functions at
the cell–implant interface. Biodegradable polyurethane with
tailored microtopography was electrosprayed onto commercial
coronary stents (Guo et al., 2015). The authors found the
topography of coating could be manipulated by tuning the
processing conditions, which influences Coulombic fission of the
electrosprayed droplets. Li et al. (2017a) prepared heparin (an
effective natural anticoagulant)-loaded polycaprolactone/PEG
microspheres by coaxial electrospraying to coat blood vessel
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substitutes. Heparin could maintain its activity and sustained
release for 15 days under the protection of the shell layer.
This coating was able to prevent platelet adhesion and blood
coagulation (Li et al., 2017a).

Montelukast is a selective cysLT1 receptor antagonist and
able to preserve the proliferation and migration of coronary
artery endothelial cells (Zamani et al., 2016). Drug-eluting
stents coated by electrosprayed montelukast-loaded PLGA was
developed to inhibit the formation of neointimal hyperplasia
(Zamani et al., 2016).

As the conventional polymer coatings may lose mechanical
properties after implantation, novel poly (polyol sebacate)-
derived polymers have been explored to be used as the
electrospraying coating material for metallic stents (Navarro
et al., 2016). The coating can be tuned from flexible to rigid and
shows no cytotoxicity on ADSCs.

Tissue Engineering
Electrosprayed particles have been widely used as biomolecule

carriers for tissue regeneration, particularly bone tissue
engineering. In most studies, the electrosprayed carriers were
implanted into the defects or combined with a 3D scaffold.
Modified coaxial electrospraying was used to prepare carriers

consisting of a shell (PLGA with VEGF for angiogenesis)
and core (PLGA with BMP-2 for osteogenesis; Wang et al.,
2015). The obtained carriers showed an initial burst release

of VEGF and a sustained release of BMP-2 with maintained
bioactivity. An in vivo experiment in a rat cranial bone
defect model demonstrated that growth factor-loaded spheres
enhanced significantly new bone formation. In another study,

nanoparticles of cartilage-specific proteins, e.g., collagen type
II, hyaluronic acid, and chondroitin sulfate, were developed by
electrospraying for articular cartilage repair (Yang et al., 2018).

Those nanoparticles could be taken up by chondrocytes via
nonspecific pinocytosis, and the gene expression of collagen
type II, aggrecan, and transforming growth factor beta 1 was
up-regulated, suggesting enhanced chondrocyte functionality.

In another study, hydroxyapatite and calcium-deficient
hydroxyapatite particles were synthesized via a sol–gel-assisted

electrospraying process (Chakrapani Venkatesan et al., 2018).
The calcium-deficient hydroxyapatite particles tend to display
the capability to differentiate rBMSCs into the osteogenic
lineage. They showed a better drug loading and release compared

to the microwave-synthesized particles, with the advantages
in both osteogenic differentiation and drug release for bone
tissue engineering.

To enhance bone regeneration, electrospraying was combined
with electrospinning to prepare a nanofibrous structured
bone graft substitute. Zhu et al. (2015) used this combined
fabrication method for neural tissue regeneration and engineered
a highly aligned polycaprolactone microfibrous framework with
embedded PLGA core–shell nanospheres for bioactive factor
encapsulation. The released bioactive factor promoted rat
pheochromocytoma cell proliferation and the highly aligned
scaffold directed neurite extension along the fibers.

CHALLENGES AND POSSIBILITIES FOR
ELECTROSPRAYED CARRIERS

Electrospraying is capable to produce fine carriers with
controlled shapes/sizes and high encapsulation efficiency.
It is not a complex biological or chemical modification but
involves delicate engineering and material manipulation
(Naqvi et al., 2016). From a technical perspective, it is a
rapid, single-step approach to prepare carriers for biomedical
use. However, the upscaling of this process needs a lot of
investigation. To increase the preparation efficiency, Jordahl
et al. (2017) invented a novel preparation process using
a needleless apparatus with two parallel glass plates with
narrow spaces in between (0.35mm) as microchannels for
electrospraying fluid. The plate edge at the outlet of the
microchannels was sharpened and grooved to aid in the fluid
flow. Multiple spraying jets were formed after application
of electric potential, resulting in a very high production
rate. In the other report, Zhang et al. (2015) described a
flute-like multipore emitter device to replace conventional
electrospraying capillaries for large-scale production. In BES,
Zhang et al. (2016) designed a customized multihole spinneret
that could produce continuous, stable jets with a five to seven
times increased efficiency without affecting morphology,
viability, and proliferation of human umbilical vascular
endothelial cells.

Another limitation is the organic solvents used during
electrospraying that may damage the bioactivity of genes,
enzymes, and cell vitality. “Green electrospraying,” which makes
use of benign or aqueous solvents, would be the alternative to
reduce toxicity (Agarwal and Greiner, 2011). Also, BES gives
us an opportunity to encapsulate cells directly in scaffolds. This
technique also has great potential to be used for organs-on-
chip, which are used to mimic the real organ to replace part of
animal experiments.

In conclusion, electrospraying is a versatile technique to
prepare polymeric carriers for genes, drugs, proteins, enzymes,
growth factor, and cells. The application of multiple needles to
improve the spraying process brings the technology closer to
commercial production. Without, the use of organic solvents,
green electrospraying and BES both allow the application for
tissue engineering.
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