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An Ir(III) Complex Photosensitizer
With Strong Visible Light Absorption
for Photocatalytic CO2 Reduction
Yusuke Kuramochi*† and Osamu Ishitani*

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan

A cyclometalated iridium(III) complex having 2-(pyren-1-yl)-4-methylquinoline ligands

[Ir(pyr)] has a strong absorption band in the visible region (ε444nm = 67,000

M−1 cm−1) but does not act as a photosensitizer for photochemical reduction

reactions in the presence of triethylamine as an electron donor. Here,

1,3-dimethyl-2-(o-hydroxyphenyl)-2,3-dihydro-1H-benzo[d]imidazole (BI(OH)H) was

used instead of the amine, demonstrating that BI(OH)H efficiently quenched the excited

state of Ir(pyr) and can undergo the photochemical carbon dioxide (CO2) reduction

catalyzed by trans(Cl)-Ru(dmb)(CO)2Cl2 (dmb = 4,4′-dimethyl-2,2′-bipyridine, Ru)

to produce formate as the main product. We also synthesized a binuclear complex

combining Ir(pyr) and Ru via an ethylene bridge and investigated its photochemical

CO2 reduction activity in the presence of BI(OH)H.

Keywords: strong visible-light absorption, metal complex, photocatalyst, electron donor, rhenium, CO2 reduction,

photosensitizer, iridium

INTRODUCTION

Today, the consumption of fossil resources releases a tremendous amount of carbon dioxide (CO2),
which has had a serious impact on global climate change. The reduction in fossil resources in
the future will induce shortages in both energy and carbon sources. To resolve these serious
problems, the development of alternative energy systems that produce reduced volumes of
CO2 by using solar light as an energy source is desirable. To utilize a wider range of visible
light from the sun, nature-inspired artificial Z-scheme systems have been developed by using
semiconductors modified with metal complexes (Sato et al., 2011; Sekizawa et al., 2013; Kuriki
et al., 2016, 2017; Sahara et al., 2016; Kumagai et al., 2017). Some metal complex photocatalytic
systems that consist of a photosensitizer (PS) and a catalyst (CAT) can selectively induce CO2

reduction and suppress hydrogen (H2) evolution. These systems require a sacrificial electron donor
due to the relatively low oxidation power of the PS unit in the excited state (Yamazaki et al.,
2015; Tamaki and Ishitani, 2017; Kuramochi et al., 2018a) Step-by-step excitation of both the
semiconductor and the metal complex produces an electron with high reducing power and a hole
with high oxidizing power, allowing for CO2 reduction by weaker electron donors such as methanol
(Figure 1; Sekizawa et al., 2013).

Ru(II) tris-diimine complexes [Ru(N∧N)3]2+ have been frequently used as the PS unit of
supramolecular photocatalysts, which have strong absorption in the visible region, a long lifetime
of the 3MLCT excited state, and a stable one-electron reduced state. However, [Ru(N∧N)3]2+ has
a problem in that one of the N∧N ligands is relatively easily released during the photocatalytic
reaction to give [Ru(N∧N)2(Solvent)2]2+-type complexes that work as catalysts for CO2 reduction
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FIGURE 1 | The artificial Z-scheme system for CO2 (carbon dioxide)

reduction, consisting of a semiconductor (TaON) and a Ru(II) binuclear

complex (RuRu’) (Sekizawa et al., 2013).

FIGURE 2 | Structures of iridium(III) complexes.

(Lehn and Ziessel, 1990; Yamazaki et al., 2015;
Kuramochi et al., 2018a). In addition, a PS unit with
stronger absorption in the visible region compared to
[Ru(N∧N)3]2+ should be more favorable for constructing new
photocatalytic systems.

In recent years, cyclometalated iridium(III) complexes, such
as Ir(ppy)3 (ppy = 2-phenylpyridine) and [Ir(ppy)2(N∧N)]+,
have been used as PSs in various photocatalytic reactions, such as
H2 evolution (Goldsmith et al., 2005; Lowry and Bernhard, 2006),
CO2 reduction (Thoi et al., 2013; Bonin et al., 2014; Chen et al.,
2015; Rao et al., 2017, 2018), and organic synthesis (Figure 2;
Prier et al., 2013; Schultz and Yoon, 2014; Shaw et al., 2016),
even though the absorption by Ir(ppy)3 and [Ir(ppy)2(N∧N)]+

is relatively weak in the visible region. We already reported
that [Ir(piq)2(dmb)]+ (piq = 1-phenylisoquinoline, dmb =

4,4′-dimethyl-2,2′-bipyridine), which has a stronger absorption
in the visible region (ε444nm = 7,800 M−1 cm−1) than Ir(ppy)3,
acts as a PS for CO2 reduction without forming decomposed
species that catalyze CO2 reduction (Figure 2; Kuramochi
and Ishitani, 2016). The intense absorption at the longer
wavelength allowed for the selective excitation of the PS
without exciting the CAT, such as fac-Re(dmb)(CO)3Br
(dmb = 4,4′-dimethyl-2,2′-bipyridine). In addition, the

supramolecular photocatalyst, where [Ir(piq)2(BL)]+ (BL =

bridging ligand) is connected with fac-Re(BL)(CO)3Br, works
as a better photocatalyst for CO2 reduction compared to the
mixed system of the corresponding mononuclear complexes,
i.e., [Ir(piq)2(dmb)]+ and fac-Re(dmb)(CO)3Br. Although
[Ir(piq)2(dmb)]+ has a stronger absorption in the visible region
compared to Ir(ppy)3 and the advantages over [Ru(N∧N)3]2+

as mentioned above, its absorption in the visible region is
weaker than that of [Ru(N∧N)3]2+. It has been reported
that several Ir(III) complexes that have stronger absorption
bands in the visible region than [Ru(N∧N)3]2+ can act as
PSs for H2 evolution (Takizawa et al., 2012, 2014, 2018; Fan
et al., 2014). Fan et al. reported that an Ir(III) complex with
2-(pyren-1-yl)-4-methylquinoline ligands [Ir(pyr), Figure 2]
showed a very strong absorption band in the visible region,
ε(450 nm) > 60,000 M−1 cm−1. Unfortunately, it could not
photocatalyze H2 evolution using K2PtCl4 as CAT in the
presence of triethylamine (TEA). This inactivity was explained
by the lack of photoinduced electron transfer from TEA to the
excited state of Ir(pyr), as the reduction potential of the excited
state of Ir(pyr) is less than the oxidation potential of TEA (Fan
et al., 2014). We reported that the Ru(II)–Ru(II) supramolecular
photocatalyst can selectively reduce CO2 to formic acid
(HCOOH) by using 1,3-dimethyl-2-(o-hydroxyphenyl)-2,3-
dihydro-1H-benzo[d]imidazole (BI(OH)H) as an electron
donor (ED) with a high turnover number (TONHCOOH) and
a high quantum yield (8HCOOH; Tamaki et al., 2015). This
photocatalytic reaction does not proceed in the absence of
BI(OH)H even if triethanolamine (TEOA), which has a similar
oxidation potential to TEA, is used. This is because BI(OH)H has
a much stronger reducing power (E◦x1/2 =+0.02V vs.Ag/AgNO3)
(Hasegawa et al., 2006; Elgrishi et al., 2017; Kuramochi et al.,
2018a) than TEA (E◦xp = +0.67V vs. Ag/AgNO3) (Yamazaki
et al., 2015; Elgrishi et al., 2017).

Herein, we report the successful use of Ir(pyr) as a
PS for CO2 reduction by using BI(OH)H as ED and
trans(Cl)-Ru(dmb)(CO)2Cl2 (Ru) as CAT. We also synthesized
a supramolecular photocatalyst from Ir(pyr) (Ir(pyr)–Ru;
Scheme 1) and investigated its photocatalytic activity for
CO2 reduction.

RESULTS AND DISCUSSION

Synthesis of the Binuclear Complex,
Ir(pyr)–Ru
Ir(pyr)–Ru was synthesized according to Scheme 1. The di-µ-
chloride-iridium dimer (Fan et al., 2014) was reacted with AgPF6
in acetonitrile to give the mononuclear acetonitrile–iridium
complex. This complex was reacted with 1,2-bis(4′-methyl-
[2,2′-bipyridin]-4-yl)ethane (BL), and the crude product was
isolated using a silica gel column giving [Ir(pyr-mq)2(BL)](PF6)
in 43% yield, based on the acetonitrile–iridium complex.
This was reacted with [Ru(CO)2Cl2]n, which was pretreated
by refluxing in the solvent (Kuramochi et al., 2015), giving
the desired binuclear complex Ir(pyr)–Ru as a PF6 salt
in 87% yield.
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SCHEME 1 | Synthetic routes to Ir(pyr)–Ru and Ir(pyr).

Photophysical and Electrochemical
Properties
Fan et al. reported the photophysical and electrochemical
properties of Ir(pyr) in dichloromethane or tetrahydrofuran (Fan
et al., 2014). Since these solvents are less polar than the solvents
suitable for CO2 reduction, such as N,N-dimethylacetamide
(DMA), we measured the photophysical and electrochemical
properties of Ir(pyr) in DMA (Kuramochi et al., 2014). Figure 3
shows the ultraviolet–visible (UV–vis) absorption spectrum of
Ir(pyr) in DMA, which shows a much stronger absorption in
the visible region (ε444nm = 67,000 M−1 cm−1) compared to
[Ir(piq)2(dmb)]+ and [Ru(dmb)3]2+. According to the time-
dependent density functional theory (TD-DFT) calculation of the
UV–vis spectrum of Ir(pyr) in DMA (Figure 4, red bars), the
strong absorption band at 444 nm is due to the transitions from
the highest occupied molecular orbital (HOMO)-1 to the lowest
unoccupied molecular orbital (LUMO)+2 and from HOMO
to LUMO+1, which correspond to the π − π∗ transitions of
the pyrene moieties. The absorption at a wavelength >500 nm
is assigned to the transition from HOMO-1 to LUMO and
corresponds to the transition from the interligand transition
from the dmb to the pyrene moieties and might include some

FIGURE 3 | Comparison of the ultraviolet–visible (UV–vis) absorption spectra

of Ir(pyr), [Ir(piq)2(dmb)](PF6), and [Ru(dmb)3](PF6)2 in

N,N-dimethylacetamide (DMA) at 298K.
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FIGURE 4 | (A) UV–vis absorption spectrum (solid line), TDDFT theoretical excitations (red bars, >350 nm, f: oscillator strength), and emission spectrum (dotted line)

of Ir(pyr) in DMA at 298K. (B) Frontier orbitals of Ir(pyr). Calculation method: B3LYP/LANL2DZ(Ir)/6-31G(d,p) (H, C, N) levels by using polarizable continuum model

(PCM) with the default for DMA, isovalue = 0.02.

TABLE 1 | Electrochemical data in DMA (dichloromethane or THF) at 298 Ka.

E1/2
◦x/Vb E1/2

red/V E(PS·
+

/PS*)/

Vc
E(PS*/PS·

−

)/

Vc

[Ir(piq)2(dmb)]+d +0.92 −1.75, −2.07,

−2.31

−1.18 +0.35

Ir(pyr) +0.84 −1.68, −1.86,

−2.15

−0.96 +0.12

(+0.45)e (−1.70, −1.89,

−2.29)e
– (+0.23)e

Ru – −1.66f – –

aE vs. Ag/AgNO3 (10mM). bEstimated by DPV in acetonitrile. cExcited-state oxidation

and reduction potentials of the photosensitizer were calculated from E◦x1/2 – E00 and E
red
1/2

+ E00, respectively.
dKuramochi and Ishitani (2016). eThe values were correlated by using

conversion factor (−0.631V) from NHE to Ag/AgNO3, see Fan et al. (2014) and Elgrishi

et al. (2017). fKuramochi et al. (2018b).

contribution from the singlet–triplet transitions, as
described in the literature (Fan et al., 2014). The emission
spectrum of Ir(pyr) in DMA is shown in Figure 4, and
the Franck–Condon line-shape analysis (Figure S1) gave
a 0–0 band energy gap of 14,500 cm−1 for Ir(pyr), which
is lower than that for [Ir(piq)2(dmb)]+ (16,950 cm−1)
(Kuramochi and Ishitani, 2016).

The redox potentials of Ir(pyr) in DMA were obtained
by cyclic voltammetry (CV; Figure S2) and differential pulse
voltammetry (DPV) and are summarized in Table 1 together
with those of [Ir(piq)2(dmb)]+ and Ru (Kuramochi and Ishitani,
2016; Kuramochi et al., 2018b). The oxidation waves of the
Ir complexes were measured in acetonitrile due to its wide-
potential window. The CV showed three each of reversible
cathodic and irreversible anodic waves, indicating that Ir(pyr)
is stable against reduction but relatively unstable to oxidation

on the CV timescale. According to the DFT calculation, the
LUMO mainly distributes across the dmb ligand of Ir(pyr)

(Figure 4). Thus, it is expected that the first electron is injected
into the dmb ligand, which benefits the electron transfer from
the one-electron reduced species of Ir(pyr) to the Ru moiety.
This property has been previously observed in [Ir(piq)2(dmb)]+

(Kuramochi and Ishitani, 2016).

Emission Quenching by Electron Donors
The emission intensity of Ir(pyr)–Ru was similar to that of
Ir(pyr), suggesting that oxidative quenching of the excited state
of the Ir unit by the Ru unit does not proceed in Ir(pyr)–

Ru. This is reasonable because the oxidative quenching process
is endothermic; the oxidation potential of the excited state
of Ir(pyr) is much more positive (−0.96V; Table 1) than the
reduction potential of Ru (−1.66 V).

Emission quenching of Ir(pyr) by 1-benzyl-1,4-
dihydronicotinamide (BNAH) was inefficient: Stern–Volmer
constant (KSV) = 13 M−1 in DMA. Assuming that the emission
lifetime is 3.1 µs (Fan et al., 2014), the quenching rate constant
(kq) was estimated to be 4.2 × 106 M−1 s−1. When a stronger
electron donor, BI(OH)H (Hasegawa et al., 2006; Tamaki
et al., 2015), was used, the emission of Ir(pyr) was more
efficiently quenched (Figure 5); KSV reached 3,000 M−1 in
DMA/TEOA (5:1 v/v), and kq was 9.7 × 108 M−1 s−1, which
is close to the diffusion-controlled rate constant (Tamaki et al.,
2013). The KSV of Ir(pyr)–Ru by BI(OH)H was 2,800 M−1,
which is similar to that of Ir(pyr). In previous work by Fan
et al. (2014), Ir(pyr) did not work as a PS for H2 evolution
because the emission from Ir(pyr) was not quenched by TEA.
This emission is not quenched by TEOA as well because
TEOA has a similar oxidation potential to TEA. Conversely,
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FIGURE 5 | Emission quenching of the excited Ir(pyr) (closed red circle) and

Ir(pyr)–Ru (open blue circle) by BI(OH)H in DMA/TEOA (5:1 v/v) at 298K.

BI(OH)H significantly quenches the emission from Ir(pyr),
indicating efficient electron transfer from BI(OH)H to the
excited Ir(pyr).

Photocatalytic CO2 Reduction
DMA-TEOA (5:1 v/v) mixed solutions containing both Ir(pyr)

and Ru or Ir(pyr)–Ru (0.05mM) as the photocatalysts and
BI(OH)H as the ED were irradiated at λex > 480 nm under a CO2

atmosphere. In both cases, HCOOH was mainly detected with
small amounts of CO and H2. Figure 6 shows the time profiles
of product formation during the photocatalytic reaction. Blank
experiments in the absence of the Ru catalyst produced trace
amounts of CO (3.9 µmol) and formate (7.6 µmol) after 24 h.
From the Stern–Volmer constants, the quenching efficiencies of
the excited states of Ir(pyr) and Ir(pyr)–Ru by 0.1M BI(OH)H
were estimated as ηq > 99%, indicating that the excited states
of Ir(pyr) and Ir(pyr)–Ru were almost completely quenched
by BI(OH)H under these reaction conditions. Figure 6 shows
that Ir(pyr) does work as a PS for CO2 reduction when using
BI(OH)H. The time profiles for the mixture of Ir(pyr) and Ru

showed a linear increase reaching a TONHCOOH =∼2,000 during
24-h irradiation, indicating that Ir(pyr) has a high durability
during photocatalytic CO2 reduction. Although Ir(pyr)–Ru also
worked as a photocatalyst for CO2 reduction, it showed a lower
activity compared to the mixture of Ir(pyr) and Ru. While the
initial formation rates of the products were similar, the reaction
stopped after just 5 h of irradiation in the case of Ir(pyr)–Ru.
Because the reaction solution of Ir(pyr)–Ru was decolorized
during the photocatalytic reaction, the low activity of Ir(pyr)–
Ru would result from its low durability. The decoloration was
also observed in irradiation experiments of [Ir(piq)2(dmb)]+ and
ED without the CAT because of hydrogenation of the ligands

in [Ir(piq)2(dmb)]+ (Kuramochi and Ishitani, 2016). Thus, it is
also expected that the decoloration of Ir(pyr)–Ru is caused by
hydrogenation of the Ir unit. In Ir(pyr)–Ru, the accumulated
electron(s) might be stabilized because of electron hopping
between the Ir and Ru units, which might be enhanced by the
hydrogenation of the Ir unit.

Figure 7 illustrates the time profiles of the products during
the irradiation of CO2-saturated DMA/TEOA (5:1 v/v, 2.0ml)
solutions containing Ir(pyr) or [Ru(dmb)3]2+ as PS in the
presence of trans-Ru(bpy)(CO)2Cl2 (bpy = 2,2-bipyridine) and
BI(OH)H as CAT and ED, respectively. The initial formation rate
of HCOOH in the system using Ir(pyr) (Figure 7A) is slower
than that using [Ru(dmb)3]2+ (Figure 7B), although Ir(pyr) has
more intense absorption band at >480 nm than [Ru(dmb)3]2+

(Figure 3). In Figure 7, trans-Ru(bpy)(CO)2Cl2 is used instead of
Ru. Although trans-Ru(bpy)(CO)2Cl2 has a much less negative
reduction potential (−1.51V vs. Ag/AgNO3; Kuramochi et al.,
2015) than Ru (−1.66V vs. Ag/AgNO3), the initial formation
rate of HCOOH in the system using trans-Ru(bpy)(CO)2Cl2
(Figure 7A) is similar to that using Ru (Figure 6A), suggesting
that the electron transfer process from the one-electron reduced
Ir(pyr) to CAT is not the rate-determining step and does
not significantly affect the reaction rate. Considering that the
emission of Ir(pyr) is almost completely quenched, the slow
initial formation rate of HCOOH in Ir(pyr)would result from the
competitive back-electron transfer process soon after the electron
transfer from BI(OH)H to the excited state of Ir(pyr) in the
solvent cage (Kavarnos, 1993; Nakada et al., 2015).

CONCLUSION

Photocatalytic CO2 reduction using Ir(pyr) as PS, which has
a strong absorption in the visible region, proceeded efficiently
for more than 1 day when a suitable electron donor, BI(OH)H,
and Ru were used as CAT. A new supramolecular photocatalyst,
Ir(pyr)–Ru, was successfully synthesized, which exhibited a
similar reaction rate during the initial stage of CO2 reduction
to that of the mixed system, but the durability of Ir(pyr)–

Ru was lower than that of the mixed system. While Ir(pyr)
showed high durability in the mixed system, the initial formation
rate of HCOOH tended to be slower than that of the catalytic
system using [Ru(dmb)3]2+ as PS, which is possibly due to the
faster back-electron transfer from the reduced Ir(pyr) to the
oxidized BI(OH)H.

EXPERIMENTAL SECTION

General Procedure
All chemicals and solvents were of commercial reagent
quality and were used without further purification unless
otherwise stated. DMA was dried over molecular sieves
of size 4 Å and distilled under reduced pressure. TEOA
was distilled under reduced pressure. Tetraethylammonium
tetrafluoroborate was dried in vacuo at 100◦C overnight before
use. [Ir(piq)2(BL)](PF6) (Kuramochi and Ishitani, 2016), BNAH
(Mauzerall and Westheimer, 1955), BI(OH)H (Hasegawa et al.,
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FIGURE 6 | Time dependences of the products during the photo-irradiation of CO2-saturated DMA/TEOA (5:1 v/v, 2.0ml) solutions containing (A) a mixed system of

Ir(pyr) (0.05mM) and Ru (0.05mM) or (B) Ir(pyr)–Ru (0.05mM) in the presence of BI(OH)H (0.1M): CO (◦), HCOOH (�) and H2 (1). A 500-W high-pressure Hg lamp

was used for the irradiation (λ > 480 nm).

FIGURE 7 | Time dependences of the products during the photo-irradiation of CO2-saturated DMA/TEOA (5:1 v/v, 2.0ml) solutions containing (A) Ir(pyr) (0.05mM)

or (B) [Ru(dmb)3]
2+ (0.05mM) in the presence of trans-Ru(bpy)(CO)2Cl2 (0.05mM) and BI(OH)H (0.1M): CO (◦), HCOOH (�) and H2 (1). A 500-W high-pressure Hg

lamp was used for the irradiation (λ > 480 nm).

2005; Zhu et al., 2008), Ru (Anderson et al., 1995), and BL
(Sun et al., 1997) were synthesized according to literature
procedures. 1H NMR spectra were recorded on an AL400 NMR
spectrometer. IR spectra were measured in dichloromethane on
a JASCO FT/IR-610 spectrometer. Electrospray ionization–mass
spectroscopy (ESI-MS) was undertaken using a SHIMADZU
LCMS-2010A system with acetonitrile as a mobile phase. UV–
vis absorption spectra were recorded with a JASCO V-670
instrument. Emission spectra were measured at 25◦C under
an Ar atmosphere using a JASCO FP-8600 spectrofluorometer
with correlation for the detector sensitivity. Emission quenching
experiments were performed in DMA or DMA/TEOA (5:1
v/v) solutions containing a complex and several different
concentrations of BNAH or BI(OH)H.

Emission Spectral Fitting
Double-mode Franck–Condon band shape analysis was used to
fit the emission spectra. The spectral fittings were carried out
according to the following equation (Caspar et al., 1984) using

the Wavemetrics Igor software.

I (ṽ) =

5
∑

n1=0

5
∑

n2=0

(

E00 − n1ṽ1 − n2ṽ2

E00

)4 (

Sn11
n1!

) (

Sn22
n2!

)

(1)

exp

[

−4log2

(

ṽ− E00 + n1ṽ1 + n2ṽ2

ṽ1/2

)2
]

I(ν) is the relative emission intensity at frequency ν. E00 is
the energy gap between the zeroth vibrational levels in the
ground and excited states, n1 and n2 are the vibrational quantum
numbers of the high- and low-frequency vibrational modes,
respectively, S1 and S2 are theHuang–Rhys factors, and ν1/2 is the
half-width at half-maximum (fwhm) of the individual vibronic
band. The 0–0 band energy gaps between the lowest excited state
and the ground state were obtained from the emission spectral
fitting (Figure S1).

Frontiers in Chemistry | www.frontiersin.org 6 May 2019 | Volume 7 | Article 259

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Kuramochi and Ishitani Ir(III)-Complex Photosensitizer for CO2 Reduction

[Ir(pyr-mq)2(CH3CN)2](PF6)
[(pyr-mq)2Ir-µ-Cl]2 (100mg, 5.4 × 10−5 mol), AgPF4 (31mg,
1.2 × 10−4 mol), and acetonitrile (10ml) were placed in a 50-
ml flask. The mixture was stirred for 4 h at room temperature.
The resulting suspension was filtered through Celite pad to
remove AgCl. The filtrate was concentrated to ca. 1ml, and the
product was precipitated by the addition of diethyl ether (10ml).
After cooling the suspension for 30min at 0◦C, the product was
collected by filtration, giving 96mg (80%) of the titled compound
as a dark orange solid: 1H NMR (CDCl3, 400 MHz) δ 9.18 (brs,
2H), 8.73 (d, J = 8.8Hz, 2H), 8.56 (s, 2H), 8.23 (d, J = 7.2Hz,
2H), 8.15–7.95 (m, 8H), 7.85–7.70 (m, 6H), 7.27 (m, 2H), 6.40
(brs, 2H), 3.23 (s, 6H), 2.22 (s, 6H, CH3CN).

[Ir(pyr-mq)2(BL)](PF6)
The bridging ligand (BL, 80mg, 2.2 × 10−4 mol),
dichloromethane (40ml), and methanol (20ml) were placed in
a 100-ml flask, and the system was purged with argon gas. A
solution of [Ir(pyr-mq)2(CH3CN)2](PF6) (80mg, 7.3 × 10−5

mol) in dichloromethane (10ml) and methanol (5ml) was then
added dropwise at room temperature. The reaction mixture
was stirred at room temperature. The reaction progress was
monitored with ESI-MS. After stirring for 48 h, the resulting
solution was evaporated. The residue was purified with a silica
gel column (1 to 2 vol% methanol in dichloromethane). The
second red band eluted with 2 vol% methanol was collected and
evaporated to dryness, giving 42mg (43% based on the iridium
precursor) of the titled complex as a dark red solid: ESI-MS m/z:
1,243 ([M–PF−6 ]

+). 1HNMR (CDCl3, 400MHz) δ 8.94 (brs, 1H),
8.92 (brs, 1H), 8.60 (d, J = 2.8Hz, 2H), 8.51 (d, J = 5.2Hz, 1H),
8.45 (d, J = 5.2Hz, 1H), 8.24–8.12 (m, 8H), 8.02 (s, 1H), 8.00 (s,
1H), 7.91–7.76 (m, 8H), 7.58 (s, 2H), 7.52–7.38 (m, 5H), 7.35 (m,
1H), 7.25–7.21 (m, 1H), 7.09 (d, J = 4.4Hz, 1H), 6.99–6.88 (m,
3H), 6.77 (m, 1H), 3.13–3.00 (m, 4H), 2.97 (s, 3H), 2.95 (s, 3H),
2.45 (s, 3H), 2.42 (s, 3H).

Ir(pyr)–Ru
An acetone/ethenol (1:2 v/v) mixed solution (6 ml) containing
[Ru(CO)2Cl2]n (9.9mg, 4.3 × 10−5/n mol) was refluxed for 1 h,
and then [Ir(pyr-mq)2(BL)](PF6) (30mg, 2.2 × 10−5 mol) was
added to it. The reaction mixture was heated to 60◦C and stirred
for 4.5 h under Ar atmosphere. As the reaction proceeded, the
starting red solution became a red suspension. The resulting solid
was filtered and washed with ethanol. The solid was dissolved
in dichloromethane (ca. 2ml) and filtered to remove insoluble
materials. The solution was evaporated to afford 30mg (87%)
of the titiled compound as a dark red solid. ESI-MS m/z: 1,471
([M–PF−6 ]

+). FT-IR νCO/cm−1: 1,992, 2,058. Anal. calcd (%)
for C78H54Cl2F6IrN6O2PRu· 3H2O: C, 56.08; N, 5.03; H, 3.62.
Found (%): C, 55.88; N, 4.81; H, 3.21. 1H NMR (CDCl3, 400

MHz) δ 8.97–8.88 (m, 4H), 8.74 (brs, 1H), 8.65–8.62 (m, 3H),
8.42 (brs, 1H), 8.30 (brs, 1H), 8.25–8.21 (m, 2H), 8.18–8.15
(m, 2H), 8.03–8.01 (m, 2H), 7.96–7.79 (m, 8H), 7.61 (s, 1H),
7.56 (s, 1H), 7.53–7.49 (m, 2H), 7.45–7.40 (m, 4H), 7.36 (m,
1H), 7.28–7.24 (m, 1H), 7.09 (d, J = 5.6Hz, 1H), 6.98–6.88 (m,
3H), 3.05–2.94 (m, 4H), 2.99 (s, 3H), 2.98 (s, 3H), 2.61 (s, 3H),
2.47 (s, 3H).

Photocatalytic CO2 Reduction
DMA-TEOA (2ml; 5:1 v/v) solutions containing a mixture of
PS and CAT or the supramolecular Ir(pyr)–Ru complex and
BI(OH)H were bubbled with CO2 for 30min. Photo-irradiations
were carried out in 11-mL Pyrex tubes (i.d. = 8mm) with
light at λ > 480 nm using a 500-W high-pressure Hg lamp
combined with a K2CrO4 solution filter (30% w/w, optical
path length: 1 cm) using a merry-go-round apparatus. The
reaction temperature was maintained at 25◦C using an IWAKI
constant-temperature system (CTS-134A). The gaseous reaction
products (CO and H2) were quantified with GC-TCD (GL
Science GC323), and the product (formate) in the solutions
was analyzed with a capillary electrophoresis system (Otuka
Electronics Co.CAPI-3300I).

Computational Methods
DFT calculations were carried out using the Gaussian 09 package
of programs (Frisch et al., 2009). Each structure was fully
optimized using the B3LYP functional using the 6-31G(d,p)
basis set for all atoms except Ir and the standard double-
ζ type LANL2DZ basis set with the effective core potential
of Hay–Wadt for Ir. The calculation was carried out by
using the polarizable continuum model (PCM) with default
parameter for DMA. The stationary points were verified using
the vibrational analysis.
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