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Chemistry, geometric shape and swelling behavior are the key parameters that determine

any successful use of man-made polymeric networks (gels). While understanding of

the swelling behavior of both water-swellable hydrogels and organogels that swell in

organic solvents can be considered well-advanced with respect to fossil fuel-based

polymer networks, the understanding, in particular, of wood-derived polymers in such

a network architecture is still lacking. In this work, we focus on organogels derived from

hydroxypropyl cellulose (HPC) ester. The latter polymer was functionalized with saturated

and unsaturated fatty acids, respectively. Due to their tailored chemical constitution,

we demonstrated that such polysaccharide can be crosslinked and simultaneously

surface-bound by using a photo-induced radical reaction using a photo-initiator. Based

on the choice of fatty acid used in the design of the HPC ester, and by controlling

the degree of substitution (DS) obtained during the esterification of the polysaccharide,

modular manipulation of the physical properties (e.g., polarity) of the resulting gel is

possible. Depending on the initiator employed, different wavelengths of light, from UV

to visible, can be utilized for the crosslinking reaction, which facilitates the deployment

of a range of light sources and different lithographic methods. Additionally, we showed

that altering of the illumination time allows to tailor the netpoint density, and thus,

the degree of linear deformation in equilibrium and the swelling kinetics. Finally, we

performed a proof-of-principle experiment to demonstrate the application of our material

for the generation of spatially resolved polymer patches to enrich organic molecules from

a solution within a microfluidic channel.

Keywords: hydroxypropyl cellulose, surface modification, organo gels, surface patterning, photo-crosslinking

INTRODUCTION

Swellable polymer networks have been extensively studied in recent decades, with subsequent
development for use in a wide range of applications (Osada and Gong, 1998). In addition to
hydrogels (networks that swell in water), which gained considerable attention during the last
decades, because of their great potential in medicinal applications [e.g., tissue engineering (Annabi
et al., 2014), drug delivery, and point-of-care diagnostics] (Rivest et al., 2007; van Tomme et al.,
2008; Jagur-Grodzinski, 2009), organogels, which swell in organic solvents (Suzuki and Hanabusa,
2010), are highly interesting and offer promising perspectives in areas such as drug delivery
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(Vintiloiu and Leroux, 2008; Esposito et al., 2018), food
applications (Marangoni, 2012; Chaves et al., 2018), cosmetics
(Kirilov et al., 2014), separation, and purification processes
(Venkatesan and Sarles, 2016; Lai et al., 2018; Prati et al., 2018),
as well as analytics (Hinze et al., 1996; Mukhopadhyay et al.,
2006; Xue et al., 2015). In general, the three-dimensional network
structure of a polymer gel can be stabilized by various molecular
interactions, in which the individual molecules are connected to
each other by secondary forces [such as arene-arene interactions
(Ajayaghosh and Praveen, 2007), halogen (Meazza et al., 2013),
van derWaals forces, hydrogen bonds, and combinations thereof
(Sangeetha andMaitra, 2005; George andWeiss, 2006; Hirst et al.,
2008; Datta and Bhattacharya, 2015)] or covalent chemical bonds
(Segarra-Maset et al., 2013; García et al., 2014). While adjusting
the structure and the properties of gels is not trivial, when they
are based on small molecules that are non-covalently connected,
the design of covalently bound gels is considered more modular
since various functionalities can be easily introduced, e.g., by
the co-polymerization of functional groups or by the control of
crosslinking density through the adjustment of potential cross-
linking moieties in the gel constituting molecules. Furthermore,
the use of covalently linked molecules implies highly stable
materials whose macroscopic shapes are easily controllable
when network formation is triggered by an external stimulus,
e.g., by light (Hennink and van Nostrum, 2002). To create
such a polymer network photochemically, one possibility is the
reaction of double bonds in a radical reaction, e.g., by using a
photo-initiator systems, such as camphor quinone/tertiary amine
systems (Jakubiak et al., 2003), borates (Toba et al., 1997), or
benzophenone derivatives (Merlin et al., 1980).

A variety of materials have been studied for the synthesis of
such gels; among these, bio-based polymers such as cellulose
and cellulose derivatives have been popular (Larsson et al.,
2017; Wang and Zhang, 2018). Cellulose is a highly interesting
compound because it provides a large number of valuable
benefits: For example, as the most abundant polymer on earth,
cellulose is highly available in bulk and originates from well-
developed wood-disintegration processes (Klemm et al., 2005).
However, because of the low solubility of unmodified cellulose
in common organic solvents (i.e., alcohols, THF, chloroform,
etc.), the controlled modification of the polysaccharide is highly
challenging. Typically, harsh reaction conditions are necessary
for heterogeneous functionalization, and the controlled partial
substitution of the biomolecule is not trivial (Klemm et al.,
2005). Therefore, various solvent systems have been established
to improve a specific cellulose reaction, but all of these systems
entail a range of challenges (e.g., toxicity, complex workup
procedures, or limited scope of the chemical reactions; Heinze
and Koschella, 2005). Due to this complexity, many scientists use
cellulose derivatives rather than unmodified cellulose. Presently,
a variety of cellulose-derived polymers are commercially available
as bulk material. One important example is hydroxypropyl
cellulose (HPC), which is readily available because of its
industrial use in coatings and food applications (Wüstenberg,
2014). Like native cellulose, HPC provides 3 hydroxy groups
per anhydroglucose unit (AGU) and exhibits a significantly
higher solubility in many common organic solvents compared

to the unmodified polysaccharide. Due to this property, further
modification is technologically simplified, and the molecule
can be, for example, esterified with various carboxylic acids
in a one-step reaction while retaining good control of the
degree of substitution (DS; Nau et al., 2018). Therefore, the
polysaccharide can be easily equipped with various functions,
such as fluorescence labels (e.g., pyrene; Winnik et al., 1987),
that can be used as macro initiators for further polymerization
(Ostmark et al., 2007), and control of the film formation
properties and optical properties, amongst others, is possible
(Bhadani and Gray, 1983). To use HPC as a base material
for functional polymer gels, different approaches have been
described in the literature. Gehrke et al. chemically crosslinked
HPC by treatment with divinyl sulfone and analyzed the resulting
microstructure and swelling characteristics (Harsh and Gehrke,
1991; Kabra et al., 1998). Other strategies that achieved covalent
network formation of HPC include reaction with methacrylic
anhydride (Hoo et al., 2013), p-formaldehyde (Suto, 1989),
dialdehydes (Suto and Yoshinaka, 1993), and isocyanates (Suto
et al., 1992), the formation of disulfide bonds (Tan et al., 2011),
and gamma ray or electron beam irradiation (Wach et al.,
2002). With respect to the light-induced formation of swellable
HPC polymer gels, very few reports have been published to
date. Bhadani and Gray esterified HPC with acryloyl chloride
followed by photo-crosslinking already to stabilize themesophase
structure of a cholesteric film (Bhadani and Gray, 1984). The
polymer was effectively crosslinked, and the structure was
stable over a broad range of temperatures, but the mechanical
properties of the resulting films were not optimal. An elegant
approach was very recently described by Teramoto et al. (Yano
et al., 2018). In their work, HPC was first esterified with
cinnamoyl chloride, which can be crosslinked by illumination
with UV light. The degree of crosslinking can be controlled
either by adjusting the DS or by modulating the irradiation time.
However, UV light (280 nm) is required for the crosslinking
reaction, and relatively high DS values (1.3–3) are necessary
for efficient network formation, which dramatically limits the
flexibility of the system. Therefore, it is highly desirable to
develop an alternative method that is more modular regarding
polarity and light source.

In the present manuscript, we report a different approach
for the photo-induced chemical crosslinking of HPC as films
on solid model-surfaces using radical initiators. The approach
is highly efficient and versatile with respect to the light source
and thus allows for spatially resolved network formation in well-
defined areas by using a commercially available 405 nm laser
diode combined with an x/y movement system. In contrast to
lithographic methods based on the use of photomasks (Böhm
et al., 2013; Kargl et al., 2013), this method provides more
versatile and faster approach tosurface patterning with less
instrumental effort. In the first step, we functionalized HPC
in a controlled fashion with unsaturated fatty acids, which
can be crosslinked by using a photo-induced radical reaction.
Via subsequent co-esterification steps, various functionalities
can be introduced, yielding different and tailored functions of
this polysaccharide. During the crosslinking process, in situ
attachment of the polymer network to a model surface exposing
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allyl groups is possible. Consequently, we investigated the
influence of the illumination time on network formation.
For this purpose, the swelling process of the surface-bound
gels was monitored via time-resolved confocal fluorescence
microscopy. Finally, a microfluidic device was developed as a
simple demonstration, in which a surface-attached functional
HPC gel was used for the local upconcentration of organic model
analytes, giving an interesting prospect for further research into
low-instrumented sensing and/or purification devices.

MATERIALS AND METHODS

In this section, the most relevant results of the polymer synthesis
are shown. For the clarity of the manuscript, further details for
the syntheses and preparation procedures, a complete list of all
solvents and reagents (including suppliers and purities), detailed
information of all instruments and measurement methods, and
details on reference experiments (bulk swelling) are shown in the
Supplementary Material.

Polymer Synthesis
To synthesize the photo-crosslinkable polymers, we first
dissolved HPC in THF (tetrahydrofuran) and then brought it
to reaction with fatty acid chlorides. To generate a hydrophobic
polymer, HPC was treated with stearoyl chloride (6 equiv.)
and 10-undecenoyl chloride (1 equiv.) in a one-pot synthesis
to afford a mixed HPC ester 1. Details of the synthesis can
be found in the Supplementary Material. The reaction led
to degrees of substitution of 2.75 for stearoyl and 0.25 for
undecenoyl moieties (DS were determined by NMR, see the
Supplementary Material; Figure 1). In addition to this non-
polar mixed ester, we synthesized a polar, hydrophilic polymer
via the samemethod, which after cross-linking yielded a hydrogel
rather than an organogel. To this end, we treated HPC with
small amounts (0.5 equiv.) of 10 undecenoyl chloride so that
hydrophilic reference ester 2 was obtained in quantitative yield,
exhibiting a DS of 0.3 (Figure 1). Finally, the chemical structure
of each polymer was characterized according to our recently
published work (for details see Supplementary Material).

Note that stearoyl esters of cellulose are capable to form
complexes with proteins such as bovine serum albumin
(Niegelhell et al., 2017). For this reason, the formation of stearoyl
esters, and tailored networks thereof is of particular interest.

RESULTS AND DISCUSSION

Spatially Resolved Crosslinking and in situ

Surface Attachment
Next, we were interested in designing organogels by attaching
polymer 1 to the surface of a planar solid substrate in a spatially
controlled fashion using a photo-initiator. Benzophenone
derivatives, amongst others, are capable of generating radicals
by illumination. These well-established photo-initiators provide
various highly beneficial properties for the crosslinking of many
systems: The activation and radical formation of benzophenone
(BP) itself can be accomplished at relatively high wavelengths
when compared to similar compounds (the upper absorption

FIGURE 1 | Synthesis of HPC esters 1 and 2: Hydrophobic ester 1 exhibits

0.25 undecenoyl (B) and 2.75 stearoyl groups (C) per AGU, and hydrophilic

ester 2 is esterified by 0.30 undecenoyl groups (B) per AGU, whereas 2.70 OH

groups per AGU remain unmodified (A).

maximum of BP is located at λ = 340 nm; Allen et al.,
1990). Consequently, it is not necessary to use high-energy
light, which would otherwise be likely to damage sensitive
molecules (Riga et al., 2017). Furthermore, radical formation
with BP is a reversible process, implying high efficiency as an
initiator (Dorman and Prestwich, 1994). If BP is functionalised
with electron-donating or electron-withdrawing groups, the
activation wavelength can be shifted, which allows the use
of a broad range of light sources (Allen et al., 1990). To
form the spatially controlled network of 1, we decided to
use a commercial laser diode (λ = 405 nm) as the light
source because it is readily available and inexpensive. In
addition, 405 nm light can be produced by light emitting diodes
(LEDs), which opens the opportunity for the high-efficiency
implementation of this method in a larger scale setting, in
contrast to the use of mercury vapor lamps to generate UV
radiation. Therefore, Michler’s ketone [4,4′-bis(diethylamino)-
benzophenone, DEABP] was found to be the most suitable
initiator (see the Supplementary Material). To cross-link the
reactive groups within the polysaccharide with functional groups
on the solid substrate, appropriate pre-functionalization of
the planar surface was carried out. We treated a glass slide
with a mixture of allyltriethoxysilane (All-TES) and tetraethyl
orthosilicate (TEOS; Ratio 15:85) by the method of Andrieu-
Brunsen and co-workers (Krohm et al., 2016). Extensive
characterization of this surface was reported in the literature
(Krohm et al., 2016). Thus, a stable and homogeneous surface
providing allyl functionalities was obtained. Note, allyl groups
of All-TES are predestined for radical reactions and thus enable
the polymer to be attached to the surface by a radical reaction
pathway (Burkhard, 1950).

A DEABP-containing polymer solution in chloroform was
solvent-casted onto the allyl-modified glass slide followed by

Frontiers in Chemistry | www.frontiersin.org 3 May 2019 | Volume 7 | Article 367

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Nau et al. Crosslinking of Surface-Bound HPC Esters

FIGURE 2 | (A) Schematic of the production of surface-bound polymer

network 1 crosslinked via laser treatment; (B) reaction scheme of the radical

reaction between generated polymer radicals and double bonds of the

polymer or the All-TES surface; (C) photograph of the surface-attached

polymer network swollen in CHCl3. The illumination time used to generate the

network was 20ms with a 405 nm laser diode.

air drying and treatment with short pulses of laser light (laser-
diode, 1,000 mW, 100µm spot dia., λ = 405 nm). The actual
spatial resolution of this setup is currently limited by said spot
diameter. A scheme of this process is shown in Figure 2A.
By installing the laser in a computer numerically controlled
(CNC) x/y movement system (see Supplementary Material), the
production of polymer networks with well-defined geometries
was easily accomplished (resolution: 350 DPI, limited by the
control system; see Figure 2B). Finally, any unbound polymer
was removed by rinsing with CHCl3, yielding a surface-bound
swellable polymer network in well-defined regions (see Figure 2).

Next, we examined the influence of the illumination time on
the generation of the polymer network by laser light. To this
end, the pulse-lengths during illumination were altered between
5 and 40ms, and the swelling behavior of the spatially confined
and surface-attached polymer networks was characterized by
analyzing the linear deformation parameter α (one-dimensional
relative swelling degree: the thickness of the swollen polymer
film divided by the thickness of the dry polymer film) in
equilibrium swelling. While α refers to the linear deformation
in general we introduce αm to as an additional parameter to
denote α in equilibrium state. Therefore, the film thicknesses
were determined by confocal laser scanning microscopy (CLSM;
for details of the analysis see the Supplementary Material, for
still frames captured at different times see Figure 3A). Note that
DEABP itself is non-fluorescent when excited at a wavelength of
488 nm (the wavelength used in the CLSM measurements, see

below) but becomes fluorescent after the crosslinking reaction
due to alteration of the electronic structure of the molecule.
The use of CLSM not only allows a static determination of
the film thickness in equilibrium swelling but also enables
dynamic monitoring of the swelling process (resolution: 460ms;
Figure 3B). For the comparison of the different samples, the
parameter α is always referenced to their respective dry film
thickness. By illuminating the deposited polymer film with
laser light for 5ms per spot, sufficient network points can be
generated to form a surface-bound polymer network. If the
illumination time is increased to approximately 30ms, the degree
of equilibrium linear deformation αm of the polymer network
exponentially decreases from αm,5ms = 5.8 to αm,30ms = 2.2,
to a value that is in good agreement with the theoretical
value of a quantitatively crosslinked polymer network in bulk
(for details of the calculation of this particular value, see
Supplementary Material; Figure 3C, square symbols). If the
illumination time is further increased to 40ms, the polymer
network detaches from the surface. The latter phenomenon may
be caused by decreased network flexibility, which leads to high
mechanical forces and cohesive failure during swelling.

Because of their differences in chemical network structure,
the individual samples show distinctly different swelling kinetics:
If the netpoint density n is low, the diffusion of the solvent
molecules to the substrate near the polymer layers is essentially
unhindered by diffusion through the gel. Thus, the swelling
behavior appears to follow first-order kinetics, as discussed
for a similar system in the literature (Figure 3B, black line;
Schott, 2006). If the netpoint density is increased, then the
local viscosity increases, and the swelling kinetics becomes a
product of the actual thermodynamically controlled swelling and
diffusion processes, leading to a more complex behavior that may
no longer be described by simple first-order kinetics (Figure 3B,
purple line; Schott, 2006).

To learn more about the network structure from the swelling
behavior, the netpoint density n of the surface-attached polymer
gel can be estimated by using the Flory-Rhener equation.
Because swelling is hindered by surface linkages, only one-
dimensional swelling can occur. Consequently, to determine n,
the linear deformation αm may be considered instead of using
the volumetric degree of swelling qm (Toomey et al., 2004).
Rühe and co-workers demonstrated that with surface-attached
polymer networks, qm scales as α

9/5
m and not as α3m, as could be

expected, because the surface-attached networks can only swell
in one direction, i.e., away from the surface (Toomey et al.,
2004). Finally, the Flory-Rhener equation can be transformed
into equation 1 for the determination of the netpoint density of
our polymer (for further details, see Supplementary Material).

n =

−

[

ln
(

1− 1
αm9/5

)

+
1

αm9/5 + χ

(

1
αm9/5

)2
]

V1

(

3
√

1
αm

9/5 −
1

2αm9/5

) (1)

In equation 1, V1 represents the molar volume of the solvent
(i.e., 80.66 cm3/mol for chloroform), and χ is the characteristic
Flory-Huggins polymer-solvent interaction parameter. In our
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FIGURE 3 | Data from experiments of the swelling of polymer 1 in chloroform photo-crosslinked by different laser illumination times (5, 10, 20, and 30ms) measured

via CLSM: (A) Still images of the dynamic x/z CLSM measurements (the microscopic morphology (i.e., non-flat) structure is the result of the spotwise laser

illumination); (B) plot of linear deformation α vs. swelling time; (C) plot of linear deformation in equilibrium αm vs. laser pulse time (blue plot); netpoint density calculated

by equation 1 vs. laser pulse time (black plot) (theoretical maximum/minimum values are visualized as straight horizontal dashed lines).

case here, this parameter was estimated to be χ = 0.48 for 1 in
chloroform at 22◦C, according to incremental calculations by the
method of Hoy (as shown in the Supplementary Material; van
Krevelen and te Nijenhuis, 2009). As calculated from equation
1, the netpoint density of the polymer gel increases from
n5ms = 2.4 × 10−6 mol/cm3 to n30ms = 1.8 × 10−4 mol/cm3

(Figure 3C, triangular symbols). Note that the latter apparently
corresponds to the calculated maximum of n (ntheor.max = 1.1
× 10−4 mol/cm3, determined from the number of crosslinkable
double bonds, see Supplementary Material) if the numerous
approximations within the Flory-Rhener theory and Hoy’s
incremental calculation are taken into account (Valentín et al.,
2008). Based on these findings, we are able to tailor the netpoint
density to desired values simply by modifying the crosslinking
parameters, without alteration of the polymer itself. This result
demonstrates the versatility of our surface-attached cellulose-
derived polymer network.

Application in a Microfluidic Channel
Because the prepared organogels can be attached to solid
substrates, we were also interested in using the gels in a

microfluidic demonstration device for the separation of an
organic model pollutant from an aqueous solution. For this proof
of principle a polymer patch, either made from polymer 1 or 2
was generated within a microfluidic channel comprising two
glass slides held together by double-sided adhesive tape and with
a capillary gap of 100µm (Figure 4A). As a model substance
for organic molecules (“pollutants”) in water, a saturated
aqueous solution of pyrene was transported through the channel
via capillary flow, and the gray values at different channel
areas were determined during the experiment (Figure 4B;
Supplementary Material). Note that the use of pyrene at the
same time serves as a sensor due to its intrinsic fluorescence.
If the solution comes into contact with the patch of crosslinked
polymer 1, pyrene accumulates within the patch to a very large
extent, and the gray value (i.e., fluorescence) of the polymer
patch increases as a result. Consequently, the mean gray value in
the same area before the solution has passed through the patch
is significantly higher than the value afterwards (Figure 4B),
demonstrating the absorption and upconcentration of the pyrene
in the patch. Note that pyrene did not accumulate in the channels
that were composed of hydrophilic network patches of polymer 2,
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FIGURE 4 | Microfluidic proof-of-principle device. A network of polymer 1 was

generated within a microfluidic channel and used to collect pyrene from an

aqueous pyrene solution: (A) scheme of the setup, (B,C) gray values of the

channel before and after transport of the solution.

because hydrophobic interactions are intrinsically prevented due
to missing hydrophobic side chains as compared to the network
composed of polymer 1 (see Figure 4C). Although the results
reported here are qualitative, nonetheless, this simple experiment
demonstrates that the surface-attached organogel is capable of
upconcentrating non-polar organic molecules from solution.

CONCLUSION

In conclusion, we developed a novel and versatile method to
efficiently photo-crosslink hydroxypropyl cellulose derivatives

for the generation of swellable polymer networks with a
focus on organogels. The method is highly versatile and
allows for the synthesis of organogels by esterification of the
cellulose biomolecule with different fatty acids. By using DEABP
as a photo-initiator, network formation can be induced by
illumination with a conventional 405 nm laser [equipped with a
computer numerically controlled (CNC) x/y movement system].
As a result, spatially resolved crosslinking of the polymer via
laser illumination is possible. The swelling behavior (degree
of swelling) and, thus, the netpoint density (estimated by the
Flory-Rhener equilibrium swelling theory) of the surface-linked
network, was determined via confocal fluorescence microscopy,
yielding results that matched the theoretical estimation. This
method allows the dynamic monitoring of the swelling process
and, hence, the determination of the swelling kinetics. As a
result, gels providing low netpoint densities swell through first-
order kinetics, whereas the swelling of networks with higher
crosslinking degrees follows amore complex mechanism. Finally,
as a proof of principle, we generated a microfluidic channel based
on a hydrophobic polymer network patch; our channel is able to
concentrate an organic model dye within the patch, as opposed to
a reference channel that is incorporating a hydrophilic polymer
network patch. This is a promising starting point to increase
the sensitivity of analytical devices, by locally increasing the
analyte concentration. Via specific adjustment of the netpoint
density, the control of the swelling behavior, and therefore, the
flow speed and the dye-gel interaction, will be investigated in
future trials.
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