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A palladium-catalyzed three-component reaction between 5-(2-chloroquinolin-3-yl)

oxazoles, isocyanides, and water to yield 3-(oxazol-5-yl)quinoline-2-carboxamides is

described. Interestingly, sulfonylation occurred when the same reaction was performed

with toluenesulfonylmethyl isocyanide (TosMIC) as an isocyanide source. The reaction

with 5-(2-chloroquinolin-3-yl)oxazoles and TosMIC in the presence of Cs2CO3 in DMSO

afforded 5-(2-Tosylquinolin-3-yl)oxazoles. In basic media, TosMIC probably decomposed

to generate Ts− species, which were replaced with Cl−. Tandem oxazole formation

with subsequent sulfonylation of 2-chloroquinoline-3-carbaldehydes to form directly

5-(2-tosylquinolin-3-yl)oxazoles was also investigated.

Keywords: palladium acetate, carboxamidation, isocynides, sulfonylation, TosMIC

INTRODUCTION

Quinolines are heterocyclic compounds exhibiting diverse and well-documented bioactivity and
physical properties as well as existing as scaffolds in complex structures of natural products
(Michael, 2002; Hranjec et al., 2017). Accordingly, quinoline synthesis, and functionalization has
attracted much attention from synthetic organic chemists (Marco-Contelles et al., 2009; Shiri et al.,
2011; Prajapati et al., 2014; Sharma et al., 2018; Nainwal et al., 2019).

However, isocyanides play an important role in synthesizing N-containing heterocycles and are
particularly widely applied in Ugi and Passirini reactions (Domling and Ugi, 2000; Domling, 2006).
Amides are especially valuable as precursors in synthesizing of bioactive and natural structures, in
medicinal chemistry as well as protein synthesis (Bode, 2006; Rönn et al., 2008).

Many natural products such as urukthapelstatin A have been isolated from marine sources,
these contains, several aminocarbonyl and oxazole functional groups with cytotoxic activity against
human lung cancer (Yu et al., 2009). Similarly, venturamides A and B showed in vitro antimalarial
activity (Linington et al., 2007; Davyt and Serra, 2010). Additionally, aerucyclamid C, a hexameric
cyclopeptide, extremely active against T. brucei rhodesiense, which causes sleeping sickness, and
exhibits lower activity against P. falciparum, the deadliest species of Plasmodium, which causes
malaria (Davyt and Serra, 2010). Microcyclamide A is a cyclic hexapeptide with three five-
membered heterocycles. It is isolated from cyanobacterium M. aeruginosa, and it has exhibited
cytotoxic effects against P388 murine leukemia (Ishida et al., 2000; Davyt and Serra, 2010; Raveh
et al., 2010) (Figure 1).
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FIGURE 1 | Several natural products with amide and oxazole moieties.

Classical procedures for amide bond formation include
reactions between carboxylic acids and amines (Linington
et al., 2007; Davyt and Serra, 2010). Another route involves
reactions of acyl halides, acyl azides, acyl imidazoles,
anhydrides, or esters (activated carboxylic acid species)
with amines (Ulijn et al., 2002; Montalbetti and Falque,
2005). As well as classical routes for amides synthesis which
have own merits and demerits, direct aminocarbonylation
from aryl halides in metal-catalyzed reactions has attracted
attention from chemists due to its significant advantages
benzamide preparation (Åkerbladh et al., 2017). In this
regard, many synthetic methods have been introduced,
including copper-catalyzed reactions of aryl halides and
isocyanides in DMSO (Yavari et al., 2014). A palladium-
catalyzed reaction was developed for amidation of aryl
halides (Jiang et al., 2011), as well as the synthesis of 4-
aminophthalazin-1(2H)-ones in a palladium-catalyzed reaction
with isocyanide insertion in a multi-component reaction,
which is difficult to achieve via a classical route (Vlaar
et al., 2011). Palladium-catalyzed isocyanide insertion was
applied to a carboxamidation/hydroamidation reaction to
synthesize isoindolin-1-one derivatives (Pathare et al., 2016).
Another example is the synthesis of isoquinolin-1(2H)-one
derivatives via a palladium-catalyzed cascade reaction from
isocyanide and amides (Wang et al., 2002; Tyagi et al., 2012;
Chaudhary et al., 2013). Very recently, Guan et al reported
an efficient method for the synthesis of multisubstituted
1H-imidazo-[4,5-c]quinoline derivatives via sequential
van Leusen/Staudinger/aza-Wittig/carbodiimide-mediated
cyclization (Guan et al., 2018).

MATERIALS AND METHODS

General
The solvents and chemicals purchased from Merck and Aldrich
chemical companies. Unless otherwise mentioned they used
without further purification. Melting points are taken on an
Electrothermal 9100 apparatus and are uncorrected. IR spectras
recorded on a Shimadzu Infra-Red Spectroscopy IR-435. Nuclear
magnetic resonance (NMR) spectra recorded on a Bruker
AVANCE Spectrometer (400 MHz for 1H, 100 MHz for 13C) in
DMSO-d6 and CDCl3 as solvent, TMS used as internal standard.
The elemental analysis carried out with a Leco CHNS model
932. Mass spectra recorded on Agilent Technology (HP) 5973
Network Mass Selective Detector operating at an ionization
potential of 70 eV.

The Typical Procedure for the Synthesis of

5-(2-chloroquinolin-3-yl)oxazole 3a
A mixture of 2-chloro-quinoline-3-carbaldehyde 2a (191mg,
1.0 mmol), p-toluenesulfonylmethyl isocyanide 1 (234mg, 1.2
mmol) and K2CO3 (341mg, 2.5 equiv.) was added to EtOH
(5.0ml) and stirred for 3.5 h, at room temperature. After
completion of the reaction, monitored by TLC, the mixture
poured into cool water and stirred for 30min. The product 3a
filtered, washed with water two times and dried on the air.

The Typical Procedure for the Synthesis of

N-cyclohexyl-3-(oxazol-5-yl)quinoline-2-

carboxamide 5a
A mixture of 5-(2-chloroquinolin-3-yl)oxazole 3a (230mg,
1.0 mmol), of Pd(OAc)2 (11mg, 5 mol%) and Cs2CO3 (325mg,
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1.0 mmol) stirred in DMSO:H2O, 9:1 (5mL) at 80◦C for 15min.
Cyclohexyl isocyanide 4a (120mg, 1.1 mmol) was added and the
reaction stirred for 4 h. After completion of the reaction (the
progress of the reaction was monitored by TLC) organic layer
was extracted by DCM, washed with brine, dried over Na2SO4

and its solvent evaporated on a rotary evaporator. The residue
was washed with 2-propanol and recrystallized in methanol to
give 5a. It is noteworthy that 5a and 5h purified by washing
with 2-propanol but other derivatives were purified by a column
chromatography (n-hexan: ethyl acetate 3:1) and recrystallized
in EtOH.

The Typical Procedure for the Synthesis of

5-(2-tosylquinolin-3-yl)oxazole 6a-e
A mixture of 2-chloro-quinoline-3-carbaldehyde 2a (191mg,
1.0 mmol), p-toluenesulfonylmethyl isocyanide 1 (468mg, 2.4
mmol) and Cs2CO3 (810mg, equiv.) was added to DMSO
(5.0ml) and stirred for 5 h at 80◦C. After completion of the
reaction and monitored by TLC, the mixture poured into cool
water and stirred for 30min, then extracted with DCM. The
product 6a purified by a column chromatography (n-hexan: ethyl
acetate 4:1).

Supplementary Material
N-Cyclohexyl-3-(oxazol-5-yl)

quinolone-2-carboxamide (5a)
Copies of NMR spectra are provided as
Supplementary Materials. White powder, mp.: 123–128◦C.
1H-NMR (400 MHz, CDCl3): δ = 1.25–1.52 (m, 5H), 1.68–171
(m, 1H), 1.80–1.85 (m, 2H), 2.10–213 (m, 2H), 3.99–4.02 (m,
1H), 7.60 (s, 1H), 7.67 (t, J = 8.0Hz, 2H), 7.82 (t, J = 7.8Hz,
1H), 7.90 (d, J = 8.4Hz, 1H), 8.03 (s, 1H), 8.14 (d, J = 8.4Hz,
1H), 8.44 (s, 1H) ppm. 13C-NMR (100 MHz, CDCl3): δ = 25.0,
25.6, 33.0, 48.6, 120.4, 125.9, 127.9, 128.0, 128.6, 129.5 131.0,
137.9, 145.9, 148.5, 148.8, 151.0, 164.3 ppm.Mass: m/z 321 (M+)
(calcd. For C19H19N3O2: 321.37). FT-IR (KBr): νmax: 1604, 3444
cm−1. Anal. calcd. for C19H19N3O2: C, 71.01; H, 5.96; N, 13.08.
Found: C,71.10; H,5.81; N,13.17.

N-Cyclohexyl-8-methyl-3-(oxazol-5-yl)quinolone-2-

carboxamide (5b)
White powder, mp: 181–185◦C. 1H-NMR (400 MHz, DMSO-
d6): δ = 1.15–1.74 (m, 10H), 2.75 (s, 3H), 3.83 (m, 1H), 7.52
(s, 1H), 7.63 (d, J = 8.0Hz, 1H), 7.73 (d, J = 6.8Hz, 1H), 7.97
(d, J = 8.0Hz, 1H), 8.60 (s, 1H), 8.74 (s, 1H) ppm. 13C-NMR

(100 MHz, DMSO-d6): δ = 17.8, 25.0, 25.6, 25.8, 32.5, 33.8,
48.5, 118.6, 121.8, 125.0, 126.7, 127.6, 128.3, 131.4, 135.2, 136.9,
145.0, 147.8, 153.0, 167.0 ppm. Mass: m/z 335 (M+) (calcd. for
C20H21N3O2: 335.40). FT-IR (KBr): νmax: 1646, 2853, 2922, 3310,
3444 cm−1. Anal. calcd. for C20H21N3O2: C, 71.62; H, 6.31; N,
12.53%. Found: C, 71.55; H, 6.47; N, 12.42%.

N-Butyl-6-methyl-3-(oxazol-5-yl)quinoline-2-

carboxamide (5c)
White powder, mp: 124–127◦C. 1H-NMR (400 MHz, CDCl3):
δ = 1.01 (t, J = 7.2Hz, 3H), 1.45–1.54 (m, 2H), 1.67–1.74 (m,
2H), 2.61 (s, 3H), 3.53 (dd, J =13.4Hz, J = 6.8Hz, 2H), 7.60

(s, 1H), 7.65 (s, 1H), 7.68 (s, 1H), 7.77 (s, 1H), 8.03 (t, J =

5.2Hz, 2H), 8.37 (s, 1H) ppm. 13C-NMR (100 MHz, CDCl3): δ =
13.8, 20.2, 21.8, 31.7, 39.5, 120.4, 125.7, 125.8, 126.5, 126.6, 128.1,
129.0, 133.4, 137.2, 138.9, 142.9, 150.9, 165.2 ppm.Mass: m/z 309
(M+) (calcd for C18H19N3O2: 309.36). FT-IR (KBr): νmax: 1542,
1652, 2858, 2928, 2956, 2922, 3114, 3299 cm−1. Anal. calcd. for:
C18H19N3O2, C, 69.88; H, 6.19; N, 13.58%. Found C, 67.03; H,
6.24; N, 13.65%.

N-Cyclohexyl-6-methoxy-3-(oxazol-5-yl)quinoline-2-

carboxamide (5d)
White powder, mp: 157–162◦C. 1H-NMR (400 MHz,DMSO-
d6): δ = 1.04–1.27 (m, 5H), 1.57–1.74 (m, 5H), 3.93(s, 3H),
3.93 (m, 1H), 7.52 (dd, J = 9.2, J = 2.8Hz, 1H), 7.61 (d, J
= 2.8Hz, 1H), 7.92 (d, J = 9.2Hz, 1H), 7.96 (s, 1H), 8.71 (s,
1H), 8.77 (s,1H) ppm. 13C-NMR (100 MHz, DMSO-d6): δ =

24.9, 25.8, 30.8, 31.2, 33.8, 47.9, 56.2, 106.7, 115.8, 121.3, 124.6,
127.5, 128.3, 129.6, 135.9, 142.4, 143.1, 146.5, 153.4, 158.7 ppm.
Mass: m/z 351 (M+) (calcd. for C20H21N3O3:351.40). FT-IR
(KBr): νmax: 1666, 2927, 2966, 3286, 3423 cm−1. Anal. calcd.
for C20H21N3O3: C, 68.36; H, 6.02; N, 11.96%. Found: C, 68.47;
H, 6.14; N, 12.11%.

N-Cyclohexyl-3-(oxazol-5-yl)benzo[h]quinoline-2-

carboxamide (5e)
White powder, mp: 224–267◦C. 1H-NMR (400 MHz, CDCl3): δ
= 1.28–1.58 (m, 6H), 1.85–1.88 (m, 2H), 2.16–2.19 (m, 2H), 4.07-
4.10 (m, 1H), 7.30 (s, 1H), 7.74 (d, J = 2.4Hz, 1H), 7.79-7.85
(m, 3H), 7.93 (d, J = 8.8Hz, 1H), 7.97 (d, J = 7.6Hz, 1H), 8.07
(s, 1H), 8.49 (s, 1H), 9.19 (d, J = 7.6Hz, 1H) ppm. 13C-NMR

(100 MHz, CDCl3): δ = 24.9, 25.7, 29.7, 33.2, 48.5, 77.2, 121.3,
124.3, 124.7, 126.6, 126.9, 127.7, 128.2, 129.1, 130.1, 130.6, 134.1,
137.5, 144.2, 146.7, 148.5, 151.1, 164.5 ppm.Mass: m/z 371 (M+)
(calcd for C23H21N3O2:371.43). FT-IR (KBr): νmax: 1646, 2852,
2936, 3119, 3294, 3448 cm−1. Anal. calcd. for: C23H21N3O2,

C, 74.37; H, 5.70; N, 11.31%. Found: C, 74.29; H, 5.84;
N, 11.52%.

6-Chloro-N-cyclohexyl-3-(oxazol-5-yl)quinoline-2-

carboxamide (5f)
White powder, mp: 226–232◦C. 1H-NMR (400 MHz, CDCl3): δ
= 1.25–1.52 (m, 5H), 1.68–1.83 (m, 3H), 2.09–2.12 (m, 2H), 3.94–
4.04 (m, 1H), 7.54 (d, J = 8.0Hz, 1H), 7.63 (s, 1H), 7.71 (dd, J =
9.0Hz, J = 2.4Hz, 1H), 7.86 (d, J = 2.4Hz, 1H), 8.02 (s, 1H),
8.05 (d, J = 9.2Hz, 1H), 8.34 (s, 1H) ppm. 13C-NMR (100 MHz,
CDCl3): δ = 24.9, 25.6, 33.0, 48.7, 77.3, 121.2, 126.4, 126.6, 128.5,
131.0, 131.9, 134.5, 136.3, 144.1, 147.9, 149.0, 151.2, 164.2 ppm.
Mass: m/z 355 (M+) (calcd. for C19H18 ClN3O2: 355.82). FT-
IR (KBr): νmax: 663, 1649, 2852, 2923, 3279, 3443 cm−1. Anal.
calcd. for: C19H18ClN3O2, C, 64.13; H, 5.10; N, 11.81%. Found:
C, 64.20; H, 5.16; N, 11.70%.

N-(tert-Butyl)-6-chloro-3-(oxazol-5-yl)quinoline-2-

carboxamide (5g)
White powder, mp: 190–197◦C. 1H-NMR (400MHz, DMSO-d6):
δ= 1.43 (s, 9H), 7.75 (s, 1H), 7.86 (dd, J = 9.2Hz, J = 2.4Hz, 1H),
8.14 (d, J = 8.8Hz, 1H), 8.28 (d, J = 2.4Hz, 1H), 8.46 (s, 1H), 8.64
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(s, 1H), 8.76 (s, 1H) ppm. 13C-NMR (100 MHz, DMSO-d6): δ =
28.8, 51.5, 119.5, 125.5, 127.4, 128.3, 131.3, 131.8, 132.7, 133.8,
144.5, 147.4, 153.4, 167.1 ppm. Mass: m/z 329.78 (M+) (calcd.
for C17H16N3O2: 329.09). FT-IR (KBr): νmax: 1626, 2852, 2928,
3334, 3423 cm−1. Anal. calcd. for C17H16 ClN3O2: C, 61.91; H,
4.89; N, 12.74. Found: C, 62.04; H, 4.95; N, 12.89.

N-(tert-Butyl)-3-(oxazol-5-yl)quinolone-2-

carboxamide (5h)
White powder, mp: 102–106◦C. 1H-NMR (400 MHz, DMSO-
d6): δ = 1.43 (s, 9H), 7.56 (s, 1H), 7.72 (t, J =7.4Hz, 1H),
7.87 (t, J =7.6Hz, 1H), 8.13 (t, J = 8.8Hz, 2H), 8.41 (s,
1H), 8.61(s, 1H), 8.77 (s, 1H) ppm. 13C-NMR (100 MHz,
DMSO-d6): δ = 28.8, 51.4, 118.7, 125.1, 127.5, 128.4, 128.8,
129.1, 131.4, 134.7, 146.0, 147.8, 153.0, 153.1, 167.4 ppm.
Mass: m/z 295 (M+) (calcd. for C17H17N3O2: 295.34). FT-IR
(KBr): νmax: 1658, 2904, 2966, 3422 cm−1. Anal. calcd. for
C17H17N3O2: C, 69.14; H, 5.80; N, 14.23%. Found: C, 69.20;
H, 5.87; N, 14.35%.

5-(2-Tosylquinolin-3-yl)oxazole (6a)
White powder, mp: 149–152◦C. 1H-NMR (400 MHz, DMSO-
d6): δ = 2.46 (s, 3H), 7.50 (d, J = 7.2Hz, 2H), 7.77–7.90
(m, 6H), 8.18 (d, J = 7.6Hz, 1H), 8.69 (s, 1H), 8.92 (s, 1H)
ppm. 13C-NMR (100 MHz, DMSO-d6): δ = 21.6, 118.2, 127.6,
128.2, 128.9, 129.5, 129.6, 130.1, 130.6, 132.9, 135.5, 141.1,
144.9, 145.3, 145.6, 153.4, 155.1 ppm. Mass: m/z 350 (M+)

TABLE 1 | Optimization of the reaction condition for the synthesis of

N-cyclohexyl-3-(oxazol-5-yl)quinoline-2-carboxamide 5a from 3a.

Entry Solvent Base Catalyst/Ligand Time(h) Yield 5aa (%)

1 Dioxane Cs2CO3 Pd(OAc)2/PPh3 8 86

2c CH3CN Cs2CO3 Pd(OAc)2/PPh3 8 21

3c EtOH Cs2CO3 Pd(OAc)2/PPh3 8 0

4 Toluene Cs2CO3 Pd(OAc)2/PPh3 8 5

5 DMF Cs2CO3 Pd(OAc)2/PPh3 8 82

6 DMSO Cs2CO3 Pd(OAc)2/PPh3 6 92

7 DMSO Cs2CO3 Pd(OAc)2/- 1.5 92

8 DMSO Cs2CO3 PdCl2 12 74

9 DMSO Cs2CO3 Pd(PPh3)3 12 61

10 DMSO Cs2CO3 − 12 0

11 DMSO K2CO3 Pd(OAc)2/− 12 90

12 DMSO NaOAc Pd(OAc)2/− 12 20

13 DMSO KOtBu Pd(OAc)2/− 12 48

14 DMSO DABCO Pd(OAc)2/− 12 5

15 DMSO Et3N Pd(OAc)2/− 12 0

a Isolated yields. bAll reactions were carried out using 3a (1 mmol), 4a (1.1 mmol),

catalyst (5mol %), base (1 mmol), and solvent (2.0mL) and 80◦C unless otherwise noted.
cAt reflux.

(calcd for C19H14N2O3S:350.39). FT-IR (KBr): νmax: 683, 1073,
1103, 2851, 2920 cm−1. Anal. calcd. for: C19H14N2O3S, C,
65.13; H, 4.03; N, 7.99; S, 9.15%. Found: C, 65.23; H, 4.14;
N, 8.06; S, 9.21%.

5-(8-Methyl-2-tosylquinolin-3-yl)oxazole (6b)
White powder, mp: 162–167◦C. 1H-NMR (400 MHz, DMSO-
d6): δ = 2.18 (s, 3H), 2.50 (s, 3H), 7.55 (d, J = 8.0Hz, 1H),
7.71 (d, J = 6.8Hz, 2H), 7.88 (s, 1H), 7.90 (d, J = 7.6Hz,
2H), 8.03 (dd, J = 6.8Hz, J = 2.8Hz, 1H), 8.73 (s, 1H),
8.95 (s, 1H) ppm. 13C-NMR (100 MHz, DMSO-d6): δ = 16.5,
21.7, 117.5, 126.6, 127.7, 128.3, 129.9, 130.1, 130.4, 132.5, 135.3,
137.4, 140.3, 143.5, 145.3, 145.5, 153.6, 153.8 ppm. Mass: m/z
364 (M+) (calcd for C20H16N2O3S:364.42). FT-IR (KBr): νmax:
1294, 1379, 2852, 2922 cm−1. Anal. calcd. for: C20H16N2O3S,
C, 65.92; H, 4.43; N, 7.69; S, 8.80%. Found: C, 66.03; H, 4.49;
N, 7.78; S, 8.93%.

5-(6-Methyl-2-tosylquinolin-3-yl)oxazole (6c)
White powder, mp: 124–127◦C. 1H-NMR (400 MHz, CDCl3):
δ = 2.51 (s, 3H), 2.59 (s, 3H), 7.30 (s, 1H), 7.38 (d, J =

6.4Hz, 2H), 7.62 (d, J = 8.4Hz, 1H), 7.68 (s, 1H), 7.84 (d,
J = 8.0Hz, 1H), 7.89 (d, J = 7.6Hz, 2H), 8.10 (s, 1H), 8.44
(s, 1H) ppm. 13C-NMR (100 MHz, DMSO-d6): δ = 21.6, 21.7,
118.3, 127.3, 127.5, 128.2, 129.2, 129.5, 130.0, 135.1, 135.7,
140.2, 140.8, 142.9, 143.6, 145.2, 145.7, 153.3 ppm. Mass: m/z
364 (M+) (calcd for C20H16N2O3S:364.42). FT-IR (KBr): νmax:
823, 1375, 2853, 2923 cm−1. Anal. calcd. for: C20H16N2O3S,
C, 65.92; H, 4.43; N, 7.69; S, 8.80%. Found: C, 65.98; H, 4.49;
N, 7.77; S, 8.86%.

5-(6-Methoxy-2-tosylquinolin-3-yl)oxazole (6d)
White powder, mp: 187–190◦C. 1H-NMR (400 MHz, CDCl3):
δ = 2.51 (s, 3H), 3.99 (s, 3H), 7.16 (d, J = 8.8Hz, 2H), 7.30

TABLE 2 | Synthesis of various derivatives of 5a-5ha.

aAll reactions were performed using 3 (1 mmol), 4 (1.1mmol), Pd(OAc)2 (5 mol%), Cs2CO3

(1 mmol), and 0.5mL of H2O in 4.5mL of DMSO and 80◦C.
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(s, 1H), 7.39 (s, 1H), 7.58 (d, J = 8.8Hz, 2H), 7.84 (d, J
= 9.2Hz, 2H), 7.90 (d, J = 8.4Hz, 1H), 8.10 (s, 1H), 8.42
(s, 1H) ppm. 13C-NMR (100 MHz, CDCl3): δ = 37.1, 55.8,
104.6, 119.1, 124.0, 124.4, 124.8, 129.2, 129.6, 131.6, 135.6, 137.5,
138.4, 138.5, 144.5, 147.1, 147.6, 147.7 ppm. Mass: m/z 380
(M+) (calcd for C20H16N2O4S: 380.42). FT-IR (KBr): νmax:
1037, 117, 2850, 2920 cm−1. Anal. calcd. for: C20H16N2O4S,
C, 63.14; H, 4.24; N, 7.36; S, 8.43%. Found: C, 63.21; H, 4.29;
N, 7.43; S, 8.55%.

5-(2-Tosylbenzo[h]quinolin-3-yl)oxazole (6e)
White powder, mp: 202–207◦C. 1H-NMR (400 MHz, CDCl3): δ
= 2.60 (s, 3H), 7.30 (s, 1H), 7.52 (d, J = 8.0Hz, 2H), 7.57 (t, J =
7.2Hz, 1H), 7.70 (t, J = 6.8Hz, 1H), 7.73 (d, J = 8.8Hz, 1H), 7.89
(d, J = 8.4Hz, 1H), 7.92 (d, J = 9.2Hz, 1H), 8.04 (d, J = 8.4Hz,
2H), 8.16 (d, J = 5.6Hz, 1H), 8.20 (d, J = 8.4Hz, 1H), 8.60 (s, 1H)
ppm. 13C-NMR (100 MHz, CDCl3): δ = 21.8, 119.0, 124.1, 124.4,
127.0, 127.8, 128.0, 128.7, 129.3, 129.3, 130.2, 130.5, 131.1, 134.0,
135.3, 137.5, 134.3, 144.8, 145.5, 151.6, 153.3 ppm. Mass: m/z
400 (M+) (calcd for C23H16N2O3S: 400.45). FT-IR (KBr): νmax:
1313, 1400, 2853, 2920 cm−1. Anal. calcd. for: C23H16N2O3S,
C, 68.98; H, 4.03; N, 7.00; S, 8.01%. Found: 69.06; H, 4.11;
N, 7.12; S, 8.14%.

RESULTS AND DISCUSSION

In continuation of our interest in quinoline chemistry (Shiri
et al., 2012, 2016a, 2017a) and isocyanide reactions (Shiri
et al., 2016b, 2017b; Salehi and Shiri, 2019), we began
our investigation with 2-chloroquinoline-3-carbaldehyde (1)
and its two step reaction with two different isocyanides.
In the presence of K2CO3, 2-chloroquinoline-3-carbaldehyde
(1) and 4-toluenesulfonylmethyl isocyanide (TosMIC) (2)
furnished 5-(2-chloroquinolin-3-yl)oxazole (3a). Several 5-(2-
chloroquinolin-3-yl)oxazoles (3) were prepared under the same
conditions. The reaction of quinoline 3a with cyclohexyl

isocyanide 4a was selected as a model reaction in the presence of
Pd(OAc)2, Ph3P, and Cs2CO3, in 1,4-dioxane with a few drops
of H2O as solvent at 80 ◦C. Desired product 5a was obtained
in 86% yield (Table 1). Solvent screening showed that DMSO
is the best solvent (Table 1, entry 6). Other Pd sources such
as Pd(PPh3)4 and PdCl2 did not improve the product yield,
however, the best yield was obtained with 5 mol% of Pd(OAc)2
even without PPh3 (Table 1, entries 7–9). Without palladium,
the reaction did not occur (Table 1, entry 10). Moreover, the
effect of base is crucial for reaction completion. Hence, different
bases were investigated, including K2CO3, NaOAc, (CH3)3OK,
DABCO, and Et3N (Table 1, entries 14–18). In this survey, it
was found that increasing the temperatures or the reaction time
decreased the product yield.

With the optimized reaction conditions in hand (Pd(OAc)2
(5 mol%), Cs2CO3 (1 equiv.), DMSO + H2O (9:1), 80◦C),
the generality of the reaction was explored (Table 2). A
range of quinolines 3 bearing electron-donating groups, such
as Me, and OMe and electron-withdrawing groups, such
as Cl and benzo, reacted with cyclohexyl isocyanide and
n-butylisocyanide to afford the corresponding 3-(oxazol-
5-yl)quinoline-2-carboxamides 5a-f in 70%-94% yields
(Table 2). Moreover, the bulky tert-butyl isocyanide smoothly
participated in this reaction to furnish 5g and 5h in 67 and 76%
yield, respectively. The yield with 1,1,3,3-tetramethylbutyl
isocyanide was too low to allow its isolation
and characterization.

The scope of the reaction was explored using tosylmethyl
isocyanide (TosMIC) 1 as another isocyanide source.
Surprisingly, the reaction of 3a with TosMIC under the
optimized conditions afforded 5-(2-tosylquinolin-3-yl)oxazole
(6a) (Scheme 1).

Although the reaction proceeded well without a palladium
source, the presence of base is crucial. Among the bases
Cs2CO3, K2CO3, NaOAc, t-BuOK, and DABCO, Cs2CO3 gave
the best results.

SCHEME 1 | The reaction of TosMIC with 3a.

SCHEME 2 | One-pot synthesis of 5-(6-methyl-2-tosylquinolin-3-yl)oxazole 6a.

Frontiers in Chemistry | www.frontiersin.org 5 June 2019 | Volume 7 | Article 433

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Yasaei et al. Isocyanide Reactions Toward Amidation and Sulfonylation

FIGURE 2 | 5-(2-Tosylquinolin-3-yl)oxazole 6.

Encouraged by the tosylation results with TosMIC,
we explored extending the reaction to tandem oxazole
formation as well as tosylation of 2-chloroquinoline-3-
carbaldehyde. Subjecting 2-chloroquinoline-3-carbaldehyde
and TosMIC to the standard reaction conditions yielded
5-(2-tosylquinolin-3-yl)oxazole (6a) in 83% yield after
8 h (Scheme 2). Notably, sulfones are present in different
bioactive compounds (Metzner and Thuillier, 1994; Fang
et al., 2016); however, well-known sulfonylating agents include
sulfonyl halides (Tocco et al., 2013; Zhang et al., 2015), sulfonyl
hydrazides (Yuan et al., 2018; Zhang et al., 2018), and sodium
sulfinate (Sun et al., 2017; Smith et al., 2018). A few studies used
TosMIC as a sulfonyl precursor (Liu et al., 2014; Phanindrudu
et al., 2016; Kadari et al., 2017). Furthermore, Bounar et al.
reacted tosylmethyl isocyanide (TosMIC) with propargylic
alcohols in the presence of silver acetate to efficiently yield
(E)-vinyl sulfones (Bounar et al., 2015); this is the only study
in which TosMIC plays a dual role as both an amide and a
sulfonyl source.

The above cascade oxazole formation and sulfonylation
strategy could be extended to other 2-chloroquinoline-
3-carbaldehyde derivatives (Figure 2). A methyl group
was tolerated on positions 6 and 8 of 2 to afford 6b

and 6c, respectively, in 82 and 62% yields. Furthermore,
quinoline 2d reacted with TosMIC, affording 6d

in good yield. Product 6e, existing an alternative
decoration of the quinoline ring, was obtained in
85% yield.

Our proposed mechanism for the tosylation of quinoline
involved in situ Ts− generation by decomposition of p-
toluenesulfonylmethyl-isocyanide 1 in the presence of
base with subsequent aromatic nucleophilic substitution
to form 2-sulfonyl quinoline 6. Although application
of TosMIC as a sulfonyl source was reported by

Liu et al. for synthesizing sulfonyl benzoheteroles, the
sulfonation mechanism involved aliphatic nucleophilic
substitution (Liu et al., 2014).

CONCLUSION

In summary, we have developed a synthesis of 5-(2-
chloroquinolin-3-yl)oxazole via a van Leusen procedure
from 2-chloroquinoline-3-carbaldehydes and TosMIC,
which were efficiently subjected to Pd-catalyzed amidation
with isocyanides to form 3-(oxazol-5-yl)quinoline-2-
carboxamides. The synthesis of 5-(2-tosylquinolin-3-yl)oxazole
via a Cs2CO3-mediated domino process starting from
2-chloroquinoline-3-carbaldehydes with TosMIC was
also demonstrated.
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