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Theoretical modeling of surface-enhanced Raman scattering (SERS) is of central

importance for unraveling the interplay of underlying processes and a predictive design

of SERS substrates. In this work we model the plasmonic enhancement mechanism of

SERS with perturbation theory. We consider the excitation of plasmonic modes as an

integral part of the Raman process and model SERS as higher-order Raman scattering.

Additional resonances appear in the Raman cross section which correspond to the

excitation of plasmons at the wavelengths of the incident and the Raman-scattered

light. The analytic expression for the Raman cross section can be used to explain the

outcome of resonance Raman measurements on SERS analytes as we demonstrate

by comparison to experimental data. We also implement the theory to calculate the

optical absorption cross section of plasmonic nanoparticles. From a comparison to

experimental cross sections, we show that the coupling matrix elements need to be

renormalized by a factor that accounts for the depolarization by the bound electrons and

interband transitions in order to obtain the correct magnitude. With model calculations

we demonstrate that interference of different scattering channels is key to understand

the excitation energy dependence of the SERS enhancement for enhancement factors

below 103.

Keywords: surface-enhanced Raman spectroscopy (SERS), plasmonics, perturbation theory, second quantization

formalism, optical interference

1. INTRODUCTION

Surface-enhanced Raman scattering (SERS) is the giant increase in the Raman cross section of
a molecule close to a metallic nanostructure (Fleischmann et al., 1974). The local enhancement
can exceed ten orders of magnitude making SERS an ideal tool for analytical chemistry that
can be even applied for single-molecule detection (Kneipp et al., 1997; Nie and Emory, 1997;
Sharma et al., 2012; Wang et al., 2013). The enhancement arises from an interplay of several
mechanisms that act simultaneously. There is a general agreement that the strongest enhancement
mechanism is the excitation of localized surface plasmon resonances in noble metal nanostructures
(Ru and Etchegoin, 2009; Ding et al., 2017). The collective oscillation of conduction electrons
leads to intense electromagnetic near fields close to the metal surface that drive the Raman
process. The largest enhancement arises from so-called electromagnetic hot spots that occur in
the nanometer gaps between plasmonic nanoparticles with a local field intensity that can be five
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orders of magnitude larger than that of the incident light.
Besides plasmonic enhancement, the SERS intensity is affected
by chemical enhancement which encompasses a number of
effects that concern the chemical interaction of the molecule
with the metal surface (Jensen et al., 2008). The metal-molecule
interaction can lead to hybridized or charge transfer states that
introduce new resonances in the SERS cross section or the
molecular resonances can be shifted which may lead to an
increase or decrease of the SERS intensity (Osawa et al., 1994;
Morton and Jensen, 2009; Darby et al., 2015; Hu et al., 2015;
Sevinc et al., 2016). A successful design of SERS substrates
depends critically on our understanding of the underlying
enhancement mechanisms and a predictive theoretical modeling.

Even though the phenomenon of SERS was discovered more
than 40 years ago there are many aspects that remain not fully
understood (Moskovits, 2013). Due to the multitude of involved
processes it is a challenge to predict the outcome of a SERS
experiment, such as the magnitude of the enhancement and
its excitation energy dependence. For many years the focus
has been on developing microscopic theories for the chemical
enhancement mechanism which give insight into the interaction
of a molecule with a metal surface and its effect on the Raman
spectrum (Jensen et al., 2008; Lombardi and Birke, 2008; Galperin
et al., 2009; Hu et al., 2015). The plasmonic enhancement
mechanism, on the other hand, is usually modeled with a purely
electromagnetic enhancement factor, which is known as the
theory of electromagnetic enhancement (Ru and Etchegoin, 2009;
Ding et al., 2017). This macroscopic approach is a powerful tool
for designing SERS substrates with large enhancement factors but
lacks microscopic insight into the different scattering processes
underlying SERS. Recently, there has been renewed interest in
plasmonic enhancement and in developing microscopic theories
that complement the EM enhancement model and expand
it to include quantum mechanical effects, such as electron
tunneling, optomechanical backaction and non locality (Pustovit
and Shahbazyan, 2006; Davis et al., 2010; Roelli et al., 2016;
Schmidt et al., 2016; Kamandar Dezfouli and Hughes, 2017;
Neuman et al., 2018).

Based on the microscopic theory of Raman scattering we
suggested to describe SERS as higher-order Raman (HORa)
scattering and developed a theory that treats the plasmonic
excitation as a part of the Raman process (Mueller et al., 2016).
The localized surface plasmon resonances were included in
the Raman cross section in the same way as the molecular
resonances. Considering the excitations of the plasmon and of the
molecular transitions as subsequent steps of the Raman process
allowed us to derive selection rules for SERS with group theory
(Jorio et al., 2017). On the experimental side, we designed SERS
substrates that allowed to measure exclusively the plasmonic
enhancement of the Raman cross section (Heeg et al., 2013, 2014;
Mueller et al., 2017b; Wasserroth et al., 2018). The approach
of describing SERS as higher-order Raman scattering gives an
intuitive picture of what happens in the various steps of the
Raman transition (absorption of light by plasmon, electronic
excitation by the plasmonic near field, vibronic coupling and so
forth). We therefore argued that it should be an excellent tool to
fit experimental data and extract information like the strength of

light-matter coupling and the energy of the plasmonic resonance,
but have not performed such an analysis.

Here we revisit the theory of SERS as higher-order Raman
scattering and draw the comparison to experiments. We discuss
how the analytic expression for the SERS cross section is
used to interpret the excitation energy dependence of the
enhancement in experiments. By treating the localized surface
plasmon as a quasi-particle we derive analytic expressions for
the coupling matrix elements. We account for the depolarization
by bound electrons and interband transitions in the interaction
Hamiltonians. These contributions were omitted in our previous
work that, therefore, overestimated SERS enhancement factors.
We calculate the optical absorption cross section of gold
and silver nanoparticles as intermediate steps in the Raman
process. The excellent agreement with experiments supports
the quantitative predictions of our theory. Based on model
calculations for a molecule close to a silver nanoparticle
we demonstrate that interference between different scattering
processes can strongly affect the excitation energy dependence of
the SERS enhancement. Our theory leads to the same expression
for the plasmonic enhancement in SERS as the commonly
used electromagnetic enhancement. In addition, it is used to
extract experimental data on the plasmonic system from Raman
spectroscopy without requiring a detailed knowledge of the
geometry of the plasmonic nanostructure as an input parameter.

2. SERS AS HIGHER-ORDER RAMAN
SCATTERING

The theory of surface-enhanced Raman scattering as a higher-
order Raman process was introduced in Mueller et al. (2016) and
will be reviewed in this section in order to set a theoretical basis
for the rest of this paper. The implementation is based on the
microscopic theory of Raman scattering which uses perturbation
theory to calculate the Raman scattering cross section (Long,
2002; Yu and Cardona, 2010). The main idea is to consider the
plasmonic excitation, similar to the molecular excitation, as a
step in the Raman scattering process. SERS is therefore described
as a higher-order Raman process and the plasmonic resonances
appear in the Raman cross section.

We consider a plasmon-enhanced Raman process as
illustrated in Figure 1A that consists of the following steps: (1)
The incoming laser light ωL excites a localized surface plasmon
ωpl. (2) The plasmonic nanostructure couples via its optical
near field to a nearby molecule and induces a transition from
the vibronic ground state g to an intermediate state i. The
intermediate state can be also a virtual state. (3) The molecule
relaxes to a final vibronic state f and excites again the localized
surface plasmon. (4) Finally, the Raman-scattered light ωS is
emitted by the plasmonic nanostructure (Mack et al., 2017; Raab
et al., 2017). The plasmon-enhanced Raman process can be also
illustrated by the Feynman diagram in Figure 1B. Each vertex of
the diagram corresponds to one of the four steps of the Raman
process. Additionally, there are three other relevant scattering
processes that take place simultaneously; see Figure 1C: The
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processes where only the incoming light (i) or only the Raman-
scattered light (ii) couples to the localized surface plasmon and
the Raman process without plasmonic enhancement (iii).

Following Martin and Falicov (1975) and Yu and Cardona
(2010) the Feynman diagrams can be translated into Raman
scattering amplitudes with perturbation theory.

Kw,w′ ,i
pl−pl

(ωL) (1)

=
M

w′
pt−pl

M
w′ ,i
pl−vib

M
w,i
vib−pl

M
w
pl−pt

~3(ωL − ωvib
f

− ωw′ − iγw′ )(ωL − ωvib
i − iγ vib

i )(ωL − ωw − iγw)

corresponds to the Feynman diagram in Figure 1B,

Kw,i
pl−pt

(ωL) =
Mi

pt−vib
M

w,i
vib−pl

Mw
pl−pt
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to Figure 1C (i),
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pt−pl
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~2(ωL − ωvib
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(3)
to Figure 1C (ii) and

Ki
pt−pt(ωL) =

Mi
pt−vib

Mi
vib−pt

~(ωL − ωvib
i − iγ vib

i )
(4)

to Figure 1C (iii). ~ωvib
i and ~ωvib

f
are the energies of the

vibronic molecular states and ~ωw and ~ωw′ are the energies
of two plasmon modes w and w′. The energy of the molecular
ground state ~ωvib

g was referenced to zero. γ vib
i = ~/τ vibi ,

γw = ~/τw and γw′ = ~/τw′ are the respective inverse life times
τ vibi , τw and τw′ of the excitations. The matrix elements Mi−j

correspond to the vertices of the Feynman diagrams and describe
the coupling strength of the photon-plasmon (pt-pl), plasmon-
molecule (pl-vib) and photon-molecule (pt-vib) interactions. We
will derive explicit expressions below.

The energy terms in the denominators correspond to
plasmonic and molecular resonances and generate the excitation
energy dependence of the Raman cross section. When the
incoming light matches the energy ~ωw of a plasmon mode,
the real part of the corresponding energy term vanishes which
leads to a resonance of the Raman cross section with spectral
width 2γw. In the following we will term this “incoming
plasmonic Raman resonance” because the incoming light
matches a plasmon mode. Similarly an outgoing plasmonic
Raman resonance occurs for ωL − ωvib

f
= ωw′ , i.e., when the

energy of the Raman-scattered light matches that of the plasmon
mode. Furthermore, a molecular Raman resonance occurs when
the incoming light matches a vibronic state i. The excitation
of a virtual state is described by the off-resonant excitation of
the vibronic state i. The resonances will have Lorentzian line
shape. We will discuss the applicability of this approximation for
plasmonic excitations below.

The Raman scattering rate that is relevant
for the intensity that arrives at the detector
can be calculated with the Fermi Golden
Rule as

Ŵ(ωL) =
∑

f

∣
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where Kw,w′ ,i
SERS = Kw,w′ ,i

pl−pl
+ Kw,i

pl−pt
+ Kw,i

pt−pl
+ Ki

pt−pt.

γ vib
f

is the inverse lifetime of the final vibronic state and

corresponds to the spectral width 2γ vib
f

of the vibrational

mode in the Raman spectrum. All Raman amplitudes that
lead to the same final state f are summed before calculating
the absolute square; i.e., summation over w, w′ and i in
Equation (5). The different scattering channels might interfere
constructively or destructively which will be discussed below.
In a SERS experiment one typically divides the measured
intensity of a Raman mode by a reference to calculate an
enhancement factor

EF(ωL) =

∣

∣

∣

∑

w,w′ ,i K
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SERS (ωL)

∣

∣

∣

2

∣

∣

∑

i K
i
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(ωL)

∣

∣

2
, (6)

where Ki
ref
(ωL) is given by an expression similar to Equation (4).

The enhancement factor can be only written in this way
when referencing to the intensity of the same Raman
mode. In experiments the measured Raman intensity of
the SERS analyte is typically divided by the intensity of the
same analyte in solution (Le Ru and Etchegoin, 2013). The
different dielectric environment might shift the molecular
resonance of the SERS analyte with respect to that of the
reference. In this case the energies of the intermediate
molecular states ~ωvib

i that appear in KSERS and Kref are
different. On the other hand, if the molecular states of
the SERS analyte and the reference are identical all terms
related to the molecular resonance cancel and Equation (6)
simplifies to

EF(ωL) =
∣

∣

∣

∣

∣

M̃1M̃2

~2(ωL − ωvib − ωpl − iγpl)(ωL − ωpl − iγpl)
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+ 1

∣

∣

∣

∣

∣

2

,

where M̃1 and M̃2 are coupling factors that describe the strength
of the incoming and the outgoing plasmonic Raman resonances
(Mueller et al., 2016). Additionally we have assumed that only
one plasmon mode ωpl is excited and set ωvib ≡ ωvib

f
. Equation

(7) is a purely plasmonic enhancement factor of the SERS cross
section. The enhancement at the incoming plasmonic Raman
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FIGURE 1 | SERS as higher-order Raman scattering. (A) Sketch of a plasmon-enhanced Raman process relevant for SERS. The steps are: (1) excitation of a plasmon

by the incoming light ωL; (2) molecular transition from ground state g to intermediate state i by coupling to the plasmonic near field; (3) molecular relaxation to final

state f and excitation of the plasmon; (4) emission of Raman-scattered light ωS by the plasmon. (B) Plasmon-enhanced Raman process in (A) illustrated as a

Feynman diagram which corresponds to fourth-order perturbation theory. (C) Feynman diagrams of three other scattering processes that are relevant for SERS, i.e., (i)

only the incoming light or (ii) only the Raman-scattered light couples to the plasmon and (iii) the Raman process without plasmonic enhancement.

resonance is

EF(ωpl) =
(M̃2

1 + ~
2γ 2

pl
)
[

M̃2
2 − 2 ~ ωvibM̃2 + ~

2(ω2
vib

+ γ 2
pl
)
]

~4γ 2
pl
(ω2

vib
+ γ 2

pl
)

(8)
and the enhancement at the outgoing plasmonic
Raman resonance is

EF(ωpl+ωvib) =
(M̃2

2 + ~
2γ 2

pl
)
[

M̃2
1 + 2 ~ ωvibM̃1 + ~

2(ω2
vib

+ γ 2
pl
)
]

~4γ 2
pl
(ω2

vib
+ γ 2

pl
)

.

(9)

We will demonstrate below that the enhancement at the
incoming- and outgoing plasmonic Raman resonances can
differ significantly because of inteference between different
scattering channels.

In previous works we have designed SERS experiments
which allow to extract the plasmonic enhancement of the SERS

cross section (Heeg et al., 2013, 2014; Mueller et al., 2017b;
Wasserroth et al., 2018). For this we used carbon nanostructures
as SERS analytes, i.e., graphene, carbon nanotubes and carbon
nanotubes filled with molecules. These structures have a Raman
response that is strong enough to be detected in the absence
of plasmonic enhancement. The experiments were designed in
such a way that the Raman intensities with and without the
plasmonic nanostructure could be compared directly. In Figure 2
we show the excitation-energy dependent SERS enhancement for
graphene deposited on top of a gold nanodimer (Wasserroth
et al., 2018). The enhancement was measured for the two
prominent Raman modes of graphene, the carbon-carbon
stretching G mode (~ωG = 0.19 eV) and the overtone of the
ring-breathing mode 2D (~ω2D ≈ 0.3 eV). An exemplary SERS
spectrum (red) and a reference spectrum recorded away from
the plasmonic nanodimer (black) are shown in Figure 2A. The
enhanced Raman modes are shifted with respect to the reference
because of strain that is induced in the graphene lattice by
the nanodimer (Mueller et al., 2017a). By using tunable laser
excitation we measured the excitation energy dependence of the
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FIGURE 2 | (A) SERS spectrum of graphene deposited on top of a gold

nanodimer (red) and reference spectrum without the gold nanodimer (black) for

~ωL = 1.94 eV. (B,C) Excitation energy dependence of the SERS

enhancement measured for (B) the Raman G mode and (C) the 2D mode

(data from Wasserroth et al., 2018). Solid lines are a fit to the experimental

data with Equation (7) using ~ωpl = 2.03 eV, ~γpl = 140 meV and

M̃1 = M̃2 = −1.5 eV for the G mode and M̃1 = M̃2 = −1.52 eV for the

2D mode. The Raman shifts ~ωG = 0.19 eV and ~ω2D ≈ 0.3 eV were

obtained from the experimental spectra. The incoming (ωL = ωpl) and

outgoing (ωL = ωpl + ωvib
f

) plasmonic Raman resonances are indicated as

dashed lines. The enhancement factor in Equation (7) was divided by a factor

of 230 as it gives a local enhancement while the experimental data are a global

enhancement (see Wasserroth et al., 2018 for details). (D) Normalized

incoming (blue) and outgoing plasmonic Raman resonances (red for G mode

and orange for 2D mode) which constitute the resonance profiles in (B,C).

plasmonic enhancement which is plotted for the G mode in
Figure 2B and for the 2D mode in Figure 2C.

The excitation energy dependence of the SERS enhancement
can be interpreted with Equation (7) using M̃1, M̃2, ωpl and
γpl as fitting parameters. The fits are illustrated as solid lines

in Figures 2B,C and match excellently the experimental data.
The corresponding incoming and outgoing plasmonic Raman
resonances are illustrated in Figure 2D. The excitation energy
dependence of the SERS enhancement is narrower than the sum
of the two resonances as it mainly arises from their product.
An asymmetry appears because of interference between different
scattering channels, which will be discussed in detail below.
Generally we observed that the outgoing Raman resonance is
weaker than the incoming Raman resonance.

3. INTERACTION HAMILTONIANS

The description of surface-enhanced Raman scattering as higher-
order Raman scattering considers the excitation of the localized
surface plasmon by the incoming light and the coupling of the
plasmon to the molecule as two subsequent steps of the Raman
process. This requires to treat the localized surface plasmon as
a quasiparticle. In the following we derive analytic expressions
for the coupling matrix elements based on a quantization of
the localized surface plasmon. We use the same interaction
Hamiltonians to describe the incoming scattering pathway
(absorption of light by plasmon, excitation of vibronic transition
in molecule by plasmonic near field) and the outgoing scattering
pathway (excitation of plasmon by molecule, emission of Raman
scattered light by plasmonic nanostructure). We demonstrated
in Mueller et al. (2016) that this is a good approximation in the
backscattering geometry; see also Ausman and Schatz (2009) and
Ausman and Schatz (2012).

3.1. Quantization of the Localized Surface
Plasmon
To quantize the localized surface plasmon resonances of a
metallic nanoparticle, we use a jellium model which assumes a
densityN of free electrons thatmove in the presence of a uniform
positively charged background (Gerchikov et al., 2002; Weick
et al., 2005; Finazzi and Ciccacci, 2012). The center-of-mass
Hamiltonian describing the collective motion of the electrons is
given by

Ĥpl =
NVp

2

∑

w

(

1

m
5̂2

w +mω2
w9̂2

w

)

, (10)

where Vp is the volume of the metallic nanoparticle. 9̂w and

5̂w are canonical position and momentum coordinates that are

written in terms of creation and annihilation operators b̂†
w and b̂w

of a plasmon mode w as

9̂w =
√

~

2mNVpωw
(b̂†

w + b̂w) (11)

and

5̂w = i

√

m ~ ωw

2NVp
(b̂†

w − b̂w). (12)

Using the bosonic commutation relations

[b̂w, b̂
†
w′ ] = δw,w′ (13)
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the Hamiltonian in Equation (10) can be rewritten as

Ĥpl =
∑

w

~ωwb̂
†
wb̂w + 1

2
. (14)

The plasmonic Hamiltonian may be written in this way when
initially ignoring losses; otherwise the plasmonic modes are
ill-defined (Waks and Sridharan, 2010; Finazzi and Ciccacci,
2012). We account for the decay by using complex energies
ωw + iγw in the energy denominators of Equations (1–3) as
is common practice within the microscopic theory of Raman
scattering (Long, 2002; Yu and Cardona, 2010). The Hamiltonian
in Equation (14) can also be applied for oligomers or arrays of
plasmonic nanoparticles (Brandstetter-Kunc et al., 2015, 2016;

Lamowski et al., 2018). In this case b̂w corresponds to the
operator of the hybridized plasmon modes w of the coupled
nanoparticles and is given by a Bogoliubov transformation of the
single nanoparticle operators.

3.2. Plasmon-Photon Interaction
In the presence of an external light field, the plasmonic
Hamiltonian in Equation (10) has to be modified by the Peierl’s
substitution 5̂w → 5̂w + eÂw which leads to the minimal
coupling Hamiltonian

Ĥpl−pt =
eNVp

m

∑

w

5̂wÂw. (15)

Âw is a projection of the vector potential Âpt of the external light
field onto a plasmonic modew. It can be calculated with a volume
integral approach as Finazzi and Ciccacci (2012)

Âw = CLF

∫

Vp

dr′ Âpt(r
′,ωw) · qw(r′), (16)

where qw(r) is the eigenvector of a plasmon mode w which has to
fulfill the normalization condition (Yu et al., 2017)

∫

Vp

dr

∫

Vp

dr′qw(r) · qw′ (r′) = δw,w′ . (17)

CLF is a local field correction factor which accounts for the
difference between the microscopic light field that couples to the
plasmonic mode qw(r) and the incident macroscopic light field
Âpt (Onsager, 1936; de Vries and Lagendijk, 1998; Dolgaleva and
Boyd, 2012). For a single nanoparticle it is given by

CLF = ǫmω2
w

Lω2
p

, (18)

where L is a depolarization factor that accounts for the shape of
the nanoparticle, ωp =

√

N e2/ǫ0m is the plasma frequency of
the metal and ǫm is the dielectric constant of the surrounding
medium; see Appendix for details. We note that this correction
factor was not included in Mueller et al. (2016) which lead to
an overestimation of the SERS enhancement calculated from the
coupling matrix elements.

To derive an explicit expression for the photon-plasmon
interaction Hamiltonian, we express the vector potential of the
light field with second quantization as Ho and Kumar (1993);
Loudon (2000)

Âpt(r,ωpt) = Ãptεpt

(

âpte
ikpt·r + â†

pte
−ikpt·r

)

, (19)

where we considered for simplicity only one wavevector kpt

and polarization εpt. The amplitude of the light field is Ãpt =
√

~/2ωptVRǫ0ǫm with a normalization volume VR and the
frequency of the light field ωpt. By using Equations (15), (12),
(16), and (19) and dropping the counter-rotating terms the
interaction Hamiltonian is given by

Ĥpl−pt = ie~

√

NVp

4mVRǫ0ǫm

∑

w

(

ε
pt
w âptb̂

†
w − (ε

pt
w )

∗â†
ptb̂w

)

, (20)

where

ε
pt
w = CLF

∫

Vp

dr′εpt · qw(r′)eikpt·r
′

(21)

is a factor that gives the selection rules for the interaction of light
with plasmonic modes w.

To discuss the applicability of the interaction Hamiltonian in
Equation (20) we will first calculate the optical absorption cross
section of plasmonic nanoparticles and draw a comparison to
experimental data.

The absorption of a plasmon mode with frequency ωpl and
spectral width 2γpl is given by the cross section

σabs(ωL) =
2VR

√
ǫm

cnpt~2
|Mpl−pt|2

γpl

(ωL − ωpl)2 + γ 2
pl

, (22)

with the coupling matrix element

Mpl−pt = 〈1pl, npt − 1|Hpl−pt|0pl, npt〉. (23)

The absorption cross section is obtained by dividing the plasmon
excitation rate (Fermi Golden Rule)

Ŵpl =
2

~2
|Mpl−pt|2

γpl

(ωL − ωpl)2 + γ 2
pl

(24)

by the photon flux of the incident light field |〈npt|Ŝ|npt〉| =
nptc/VR

√
ǫm, where Ŝ is the Poynting vector. We assumed a

Lorentzian line shape of the plasmon resonance as in the SERS
scattering amplitudes in Equations (1)–(3).

The plasmonic properties of small nanoparticles are well
described by the point dipole approximation and the plasmon
eigenvector of a dipole mode is given by

qpl(r) = εplδ(r− rpl), (25)

where εpl is the polarization and rpl is the position of the
particle center. For larger nanoparticles the eigenvectors may be
calculated with Mie theory as we demonstrated in Mueller et al.
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(2016). Using Equations (18) and (20)–(25) the absorption cross
section of a plasmonic nanoparticle can be expressed as

σabs(ωL) =
ǫ
3/2
m Vpω

4
pl

2cL2ω2
p

γpl

(ωL − ωpl)2 + γ 2
pl

. (26)

The absorption cross section as a function of energy can be
measured with optical modulation spectroscopy (Crut et al.,
2014). In Figure 3 we compare the absorption cross section from
Equation (26) with experimental data for spherical silver and gold
nanoparticles and a gold nanorod from Lombardi et al. (2012),
Billaud et al. (2007), and Muskens et al. (2006). By using ωpl and
γpl as fitting parameters and the particle volume Vp measured
in experiments we obtain perfect agreement with the magnitude
and energy dependence of the experimental cross sections. In
the case of the gold nanosphere the theory underestimates the
cross section for energies larger than 2.5 eV. The asymmetry in
the excitation energy dependence appears because of interband
transitions which is not captured by the Lorentzian line profile
in Equation (26). On the other hand, the excellent agreement
of the magnitudes shows that the local field correction factor in
Equation (18) correctly accounts for the optical properties of gold
and silver at the energies ~ωpl of the localized surface plasmon
resonances. The plasmon-photon interaction Hamiltonian in
Equation (20) therefore gives the correct oscillator strength and
will be used below to calculate the SERS enhancement for a
molecule close to a plasmonic nanoparticle.

3.3. Plasmon-Molecule Interaction
We consider the coupling of the plasmonic nanostructure to a
molecule with vibronic states as illustrated in Figure 1A. We
assume that the interaction is of dipolar nature and use the
interaction Hamiltonian (Waks and Sridharan, 2010)

Ĥpl−vib = −µ̂ · ÊLSP(r), (27)

where ÊLSP(r) is the electric field generated by the plasmonic
nanostructure and

µ̂ =
∑

m,n

µmn|n〉〈m| (28)

is a generic transition operator for the dipole transitions of
the molecule. The matrix element µmn gives the transition
probability from a vibronic state |m〉 to a state |n〉. The point
dipole approximation for the molecule is justified as long as the
plasmonic near field ÊLSP(r) is approximately constant over the
size of the molecule, which is a good approximation for metal-
molecule distances much larger than the size of the molecule. For
smaller distances, surface roughness and atomic scale protrusions
of the metallic nanostructure become important which can be
modeled by including field-dependent terms to the permanent
molecular dipole in Equation (28) or by a quantum-mechanical
modeling of the molecular states (Ayars et al., 2000; Jensen et al.,
2008; Neuman et al., 2018).

FIGURE 3 | Experimental and calculated (Equation 26) optical absorption

cross sections for a gold nanorod (green, Lombardi et al., 2012), a gold

nanosphere (orange, Billaud et al., 2007) and a silver nanosphere (blue,

Muskens et al., 2006). The nanoparticle volume Vp was taken from the

experimental works. The following parameters were used to reproduce the

experimental spectra: ~ωpl = 1.71 eV, ~γpl = 60 meV, ǫm = 2.02 and

L = 0.12 for the Au nanorod; ~ωpl = 2.32 eV, ~γpl = 175 meV, ǫm = 1.96 and

L = 1/3 for the Au nanosphere; ~ωpl = 2.87 eV, ~γpl = 108 meV, ǫm = 2.31

and L = 1/3 for the Ag nanosphere.

We calculate the electric near field ELSP(r) = −∇rφpl(r) of the
plasmonic nanostructure within the electrostatic approximation
as the gradient of the scalar potential

φpl(r) = − 1

ǫ0ǫm

∫

Vp

dr′ρ(r′)G0(r, r
′). (29)

G0(r, r
′) is a Green function that gives the field distribution

outside the plasmonic nanoparticle and ρ(r) is the electric
charge density (Novotny and Hecht, 2012). In order to obtain a
quantized expression for the plasmonic near field we express the
charge density ρ(r) = −N eCLF∇r · s(r) in terms of a microscopic
displacement s(r) of the charges inside the nanoparticle. It was
shown in Finazzi and Ciccacci (2012) that a projection of the
charge displacement onto the plasmonic eigenvectors can be
substituted by the generalized position operator as

∫

Vp

dr′ s(r′) · qw(r′) → 9̂w. (30)

By using the normalization condition for the plasmonic
eigenvectors in Equation (17), the plasmonic near field can be
written as

Êw(r) = −
N eVp

ǫ0ǫm
9̂wGw(r), (31)

with

Gw(r) = CLF∇r

∫

Vp

dr′qw(r
′) · ∇r′G0(r, r

′). (32)

The position dependence and polarization of the plasmonic near
field is entirely contained in Gw(r) and 9̂w contains plasmonic
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creation and annihilation operators; see Equation (11). Based on
Equations (27) and (31) we obtain

Hpl−vib =
∑

w

e

ǫ0ǫm

√

~NVp

2mωw
(b̂†

w + b̂w)µ̂ · Gw(r) (33)

for the plasmon-molecule interaction Hamiltonian.
Finally we also consider the direct coupling of the incident

light to the molecular transition dipole, which is described by
the interaction Hamiltonian Ĥpt−vib = −µ̂ · Êpt(r). From
Equation (19) and Êpt(r) = −∂Âpt(r)/∂t we obtain the
explicit expression

Ĥpt−vib = −i

√

~ωpt

2VRǫ0ǫm
µ̂ · εpt

(

âpte
ikpt·r − â†

pte
−ikpt·r

)

. (34)

4. SERS ENHANCEMENT BY A SILVER
NANOSPHERE

In order to discuss the magnitude and excitation energy
dependence of the plasmonic enhancement we calculate the
enhancement of the SERS cross section for a molecule next
to a silver nanoparticle. We consider a SERS experiment in
which the same molecule is used as SERS analyte and reference
and the molecular resonance is not perturbed by the metal
surface; see e.g., Mueller et al. (2017b). In this case the
SERS enhancement is given by the plasmonic enhancement
factor in Equation (7). From the analytic expressions for
the interaction Hamiltonians above we calculate the coupling
factors as.

M̃1 = M̃2 = −
~ω2

pVp

2ǫmωpl
ε
pt
pl

emol · Gpl(r)

emol · εpt
, (35)

where “pl” refers to the dipolar plasmon resonance of the silver
nanoparticle. emol is a unit vector along the transition dipole of
the molecule. The coupling factors M̃1 and M̃2 are only equal
for a Raman process where µgi ‖ µif . For the more general case
of a Raman tensor with off-diagonal elements emol may differ in
M̃1 and M̃2.

In the following, we consider the spherical silver
nanoparticle for which we calculated the absorption cross
section in Figure 3 with radius rNP = 15.5 nm. As this
nanoparticle is small compared to the wavelength of the
incident light (350–500 nm), we calculate the plasmonic
eigenvector of the dipole mode with the point dipole
approximation; see Equation (25). That way we obtain

ε
pt
pl
= CLF and

Gpl(r) =
CLF

4π |r|3
(

3
(εpt · r)r

|r|2 − εpt

)

. (36)

The coupling factors M̃1 and M̃2 are, within the approximations
made here, real valued quantities and take negative
values for the places of strongest field enhancement.

This nicely agrees with the assumptions that were made
to explain the experimental SERS resonance profiles
in Figure 2.

In Figure 4 we calculate the plasmonic SERS enhancement
for a molecule close to the silver nanoparticle. We assume
a molecular transition dipole parallel to the polarization of
the incident light field and to the plasmonic near field.
This configuration leads to the largest enhancement. The
excitation energy dependence of the SERS enhancement is
plotted in Figure 4 for different distances of the molecule
to the silver nanoparticle. We consider a Raman shift of
~ωvib = 0.3 eV which is larger than the spectral width
2γpl ≈ 0.2 eV of the plasmon resonance. In this case
the incoming and outgoing Raman resonances are visible as
distinct and overlapping peaks in the SERS enhancement.
When the molecular dipole is placed on the surface of the
silver nanoparticle the Raman cross section is enhanced by
a factor of 2 × 104 (Figure 4A, d = 0, solid line). The
incoming and outgoing plasmonic Raman resonances provide
almost the same enhancement with a slight dominance of
the incoming Raman resonance. The resonance profile looks
strikingly different when the molecule is moved away from
the metal surface. When the metal-molecule distance equals
the nanoparticle radius (d = rNP) the enhancement occurs
only at the incoming plasmonic Raman resonance with a
factor of ∼20 while the outgoing plasmonic Raman resonance
is entirely missing. For an even larger distance of d =
2rNP the incoming and outgoing resonances obtain a Fano-
like profile and only the incoming resonance provides a
modest enhancement of 2.8. In the following we refer to these
three cases as the regimes of strong, intermediate and weak
plasmonic enhancement.

The difference in enhancement at the incoming and outgoing
plasmonic Raman resonances occurs because of interference
between the scattering channels that are illustrated as Feynman
diagrams in Figures 1B,C (i)–(iii). These scattering processes
have the same final state, i.e., a molecular vibration ωvib

f

is excited and the Raman-scattered light ωL − ωvib
f

is

emitted. The corresponding Raman amplitudes are therefore
summed in Equation (6) before calculating the absolute
square and the different terms can add constructively or
destructively. When only considering the process in Figure 1B,
where the incoming- and the Raman-scattered light couple
to the plasmon, both Raman resonances provide the same
enhancement (dashed lines in Figure 4A). This process is the
dominant contribution in the regime of strong plasmonic
enhancement, i.e., for d ≈ rNP. In the intermediate
enhancement regime the scattering processes in Figure 1C

(i) and (ii), where the plasmon resonance enhances either
the incoming or the Raman-scattered light, have to be taken
into account to explain the SERS resonance profile. The
Raman amplitudes of the different scattering processes add
constructively at the incoming plasmonic Raman resonance
and cancel each other at the outgoing plasmonic Raman
resonance. In the weak enhancement regime the Raman
process without plasmonic enhancement (Figure 1C (iii)]
becomes important as the enhancement is close to one.

Frontiers in Chemistry | www.frontiersin.org 8 July 2019 | Volume 7 | Article 470

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Mueller and Reich Modeling SERS With Perturbation Theory

FIGURE 4 | Plasmonic enhancement of the Raman cross section for a molecule close to a silver nanoparticle with properties similar to those in Figure 3, i.e., an Ag

nanosphere with radius rNP = 15.5 nm, ~ωpl = 2.87 eV, ~γpl = 108 meV and ǫm = 2.31. We place the Ag nanosphere center at the origin, consider εpl,emol ‖ x and
move the molecule along the x axis. (A) Excitation energy dependence of the enhancement for three distances d of the molecule to the metal surface.

(B) Enhancement at ωpl (incoming plasmonic Raman resonance, green) and ωpl + ωvib (outgoing plasmonic Raman resonance, orange) as a function of

metal-molecule distance. Dashed lines show the enhancement when only Kpl−pl is used to calculate the enhancement factor.

The contribution from the process in Figure 1B is negligible
in this case.

In Figure 4B we plot the enhancement at the energies of

the incoming and Raman-scattered light as a function of metal-

molecule distance. The enhancement from the scattering process

in Figure 1B is plotted as a dashed line for comparison. A

constructive interference at the incoming plasmonic Raman
resonance and destructive interference at the outgoing plasmonic

Raman resonance occurs for all metal-molecule distances. The

difference in enhancement is largest around d = 2rNP. More
generally the effect of interference between different scattering

channels is most pronounced when M̃1 = M̃2 = − ~ ωvib,

which corresponds to the intermediate enhancement regime with

enhancement factors of 101 − 102. The effect is clearly irrelevant

for single-molecule SERS which requires enhancement factors on
the order of 107 − 109 (Ru and Etchegoin, 2009). On the other

hand, the intermediate enhancement regime becomes important

when a spatially extended film of molecules or a two-dimensional
material is coupled to a plasmonic nanostructure (McFarland
et al., 2005; Heeg et al., 2013). Furthermore, the enhancement
factors in tip-enhanced Raman scattering (TERS) are typically in
the intermediate enhancement regime (Beams et al., 2014; Wang
et al., 2017). The constructive interference between different
scattering pathways can strongly increase the enhancement
at a specific excitation energy making TERS sensitive to
near-field coupling.

5. COMPARISON TO THEORY OF
ELECTROMAGNETIC ENHANCEMENT

The plasmonic enhancement in SERS is commonly estimated
by a theory that treats that plasmonic nanostructure as a
nanoscale antenna which increases the local light intensity (Ru
and Etchegoin, 2009; Ding et al., 2017). The enhancement of the
Raman intensity for a molecule at position r is given by

EFEM(r,ω) = |Eloc(r,ω)|2
|E0(r,ω)|2

|Eloc(r,ω − ωvib)|2
|E0(r,ω − ωvib)|2

, (37)

where Eloc is the local electric field amplitude and E0 the
amplitude of the incoming light field without enhancement.
This theory of electromagnetic (EM) enhancement is a powerful
tool for the design of plasmonic nanostructures with strong
SERS enhancement (Ding et al., 2017). The local electric field
enhancement can be calculated for complicated nanostructure
geometries with numerical techniques (Solís et al., 2014). On the
other hand, a precise knowledge of the nanostructure geometry
is required to interpret the outcome of a SERS experiment
and molecular resonances are not included in the enhancement
factor. Our approach benefits from microscopic insight into
the scattering processes underlying SERS and can be used to
extract the spectral properties of the plasmonic and molecular
resonances from SERS profiles. In the following we will show that
both theories predict the same plasmonic enhancement and the
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FIGURE 5 | Comparison of enhancement factors from higher-order Raman approach (HORa, solid lines) and electromagnetic enhancement theory (EM, dashed

lines). The parameters are the same as in Figure 4. (A) Enhancement at the incoming- and outgoing plasmonic Raman resonance as a function of metal-molecule

distance. (B) Excitation energy dependence of the enhancement for three metal-molecule distances. (C) Enhancement for d = 0 when only considering the scattering

process where the incoming- and Raman-scattered light couples to the plasmon. (D) Enhancement provided by the incoming plasmonic Raman resonance for a

Lorentzian line profile as in the HORa approach (blue solid line), for the EM enhancement theory (red dashed line) and for the resonance of a driven harmonic oscillator

(gray solid line). (E) Enhancement profiles for different Raman shifts given in the insets.

enhancement factor in Equation (37) can be rewritten into an
expression that is formally equivalent to Equation (7).

An important aspect that is disregarded when writing the
electromagnetic enhancement factor as in Equation (37) is that
only the electric field component along the molecular transition
dipole contributes to the enhancement. We therefore project the
local electric field vectors onto the transition dipoles µgi and
µif that are relevant for the Raman process (see Figure 1A). By
expressing the local electric field Eloc as the sum of the plasmonic
near field Epl and the incident light field E0 we obtain

EFEM(r,ω) = |1+ fin(r,ω)|2|1+ fout(r,ω)|2, (38)

with

fin(r,ω) =
µgi · Epl(r,ω)
µgi · E0(r,ω)

(39)

and

fout(r,ω) =
µif · Epl(r,ω − ωvib)

µif · E0(r,ω − ωvib)
. (40)

This enhancement factor can be rewritten as

EFEM(r,ω) = |fin(r,ω)fout(r,ω)+fin(r,ω)+fout(r,ω)+1|2, (41)

which is formally equivalent with the plasmonic enhancement
factor from our microscopic approach in Equation (7). The
four terms can be identified with the scattering processes in
Figures 1B,C (i)–(iii).

In order to compare the enhancement predicted by the two
theories we repeat the model calculations in Figure 4 based on

the enhancement factor in Equation (41). Within the quasi-
static approximation the plasmonic near field of the silver
nanoparticle is

Epl(r,ω) =
1

4πǫ0|r|3
(

3
(ppl(r,ω) · r)r

|r|2 − ppl(r,ω)

)

, (42)

with the plasmonic dipole moment

ppl(r,ω) = α(ω)E0εptδ(r), (43)

and the polarizability of the nanosphere

α(ω) = 4πǫ0ǫmr
3
NP

ǫAg(ω)− ǫm

ǫAg(ω)+ 2ǫm
. (44)

We use a Drude model for the dielectric function of silver ǫAg(ω)
from Yang et al. (2015) and include a phenomenological surface
broadening term to reproduce the experimentally determined
spectral width of the plasmon resonance (see Muskens et al.,
2006). In Figure 5A we compare the enhancement factors at
the incoming and outgoing plasmonic Raman resonances as a
function of metal-molecule distance. There is good agreement
of the enhancement predicted by our microscopic approach
(HORa, solid lines) and the electromagnetic enhancement model
(EM, dashed lines). The weaker enhancement at the outgoing
resonance is also predicted by the electromagnetic enhancement
factor. When calculating the resonance profiles for different
metal-molecule distances we obtain overall good agreement
between both theories for all enhancement regimes (Figure 5B).

Upon a closer look it appears that the difference in
enhancement at the incoming and outgoing plasmonic Raman
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resonances is even more pronounced for the EM enhancement
model. To explain this small discrepancy we calculate the
enhancement profiles for the case when only the scattering
process in Figure 1B is considered; see Figure 5C. While the
HORa theory predicts in this case two overlapping Raman
resonances of equal intensity, the enhancement profile from the
EM enhancement theory remains asymmetric. This asymmetry
cannot be explained by interference between different scattering
channels but is attributed to an intrinsic asymmetry of the
plasmon resonance; see Figure 5D. It is only visible on a
logarithmic scale and negligible in the absorption spectra in
Figure 3. However, when multiplying two resonances that are
spectrally displaced by the Raman shift, as is the case in
Figure 5C, the asymmetry becomes important.

As our microscopic model is based on higher-order
perturbation theory the plasmonic and molecular resonances
have a symmetric Lorentzian line profile (blue line in Figure 5D).
The asymmetry of the plasmonic resonance from the EM model
arises for two reasons. First, when considering the localized
surface plasmon as a driven and damped harmonic oscillator
the Lorentzian energy denominators in Equation (7) have to be
replaced by Zuloaga and Nordlander (2011)

1

ω − ωpl + iγpl
→

2ωpl

ω2 − ω2
pl
+ 2iγplω

, (45)

which leads to a slight asymmetry of the plasmon resonance
(gray line in Figure 5D). Second, the depolarization by the
bound electrons which we modeled with a local field correction
factor CLF is wavelength dependent and increases toward shorter
wavelength. In this work we derived an analytic expression
that is strictly only valid at the plasmon resonance [Equation
(18)]. How to incorporate the wavelength dependent damping
and depolarization when quantizing a localized surface plasmon
oscillation is a matter of ongoing research and will be key to fully
capture the energy dependence of the SERS enhancement. On
the other hand, the differences in the enhancement profiles from
EM and HORa only occur when the Raman shift is larger than
the spectral width of the plasmon. For smaller Raman shifts the
incoming and outgoing plasmonic Raman resonances cannot be
spectrally resolved and there is excellent agreement between the
enhancement profiles from both theories (Figure 5E).

6. CONCLUSIONS

In conclusion we presented a microscopic model of the
plasmonic enhancement mechanism in SERS which is based
on perturbation theory. The main idea of our approach is
to treat the plasmonic excitation as an integral part of the
Raman scattering process. This leads to a description of SERS as

higher-order Raman scattering. We derived analytic expressions
for the Raman scattering amplitudes that can be used to
study the interplay of plasmonic and molecular resonances or
the interference between different scattering channels. As the
properties of the plasmonic and molecular resonances, such
as frequency, spectral width and oscillator strength, appear as
explicit parameters in the theoretical framework, it can be used
for the interpretation of experimental data.

Based on a quantization of the localized surface plasmon we
derived analytic expressions for all coupling matrix elements
that describe the oscillator strength of the material excitations
and lead to selection rules for SERS. We demonstrated that a
local field correction factor must be included in the quantization
model of the plasmon in order to reproduce the experimental
absorption cross sections of plasmonic nanoparticles. This was
not considered in our previous work (Mueller et al., 2016) and
lead to an overestimation of the SERS enhancement factor. With
model calculations for amolecule close to a silver nanoparticle we
showed that interference between different scattering channels
can strongly affect the excitation energy dependence of the SERS
enhancement. This effect is most relevant in the intermediate
enhancement regime with enhancement factors of 10−103 and is
therefore particularly important when plasmonic nanostructures
are coupled to spatially extended materials. We showed that
the plasmonic enhancement obtained from our microscopic
approach is overall in good agreement with that predicted by
the commonly used theory of EM enhancement. While the
EM enhancement theory is a powerful tool to design SERS
substrates with strong plasmonic enhancement our approach
gives microscopic insight, serves well in fitting experimental data,
and can be used to study the interplay of different scattering
channels underlying SERS.
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APPENDIX

Local Field Correction Factor
As demonstrated above, a local field correction factor CLF

must be included in our microscopic theory to reproduce
the experimental absorption cross sections of plasmonic
nanoparticles (see Figure 3). In this appendix we will derive the
general expression for CLF in Equation (18).

Due to the normalization of the plasmon eigenvectors
(Equation 17) all prefactors that accounted for the coupling
to an external light field are not included. The plasmon
eigenvector qw describes the microscopic oscillation of free
charges inside the nanoparticle. The incident light field is
described by a macroscopic amplitude Âpt(r) which differs from
the microscopic amplitude inside the nanoparticle because of a
depolarization of the incident light field by the bound electrons
of the metal. This can be modeled by considering a plasmonic
point dipole inside a spherical nanoparticle with a dielectric
function ǫb that accounts for the effect of the bound charges
and interband transitions (Lamowski et al., 2018). The amplitude
of the light field inside the nanoparticle is given within the
quasi-static approximation by Bohren and Huffman (1998)

Aint
pt = 3ǫm

ǫb + 2ǫm
Apt. (A1)

The factor 3ǫm/(ǫb + 2ǫm) is known as a local field correction
factor and might take different forms depending on the
considered geometry (Onsager, 1936; de Vries and Lagendijk,
1998; Dolgaleva and Boyd, 2012). It must be also included

in Ĥpl−vib when calculating the quantized electric field of the
plasmon in Equations (31) and (32).

To obtain a more general expression we consider a
nanoparticle with an ellipsoidal shape. Using a Drude model for
the electromagnetic response of the metal, the dipolar plasmon
resonance occurs at Bohren and Huffman (1998) and Ru and
Etchegoin (2009)

ωpl =
ωp

√

ǫb + ǫm(1/L− 1)
, (A2)

where L is a shape-dependend depolarization factor which
is 1/3 for a nanosphere (for explicit expressions see
Bohren and Huffman, 1998; Ru and Etchegoin, 2009). The
amplitude of the incident light field inside the nanoparticle is
given by

Aint
pt = ǫm

Lǫb + ǫm(1− L)
Apt. (A3)

Using Equation (A2) we obtain the local field correction factor

CLF =
ǫmω2

pl

Lω2
p

. (A4)

As this factor only contains the bulk plasma frequency
of the metal ωp, the dielectric constant of the
environment ǫm and the plasmon frequency ωpl it
can be used for any dipolar plasmon mode of a
single nanoparticle.
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