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Although LiNi0.8Co0.1Mn0.1O2 is attracting increasing attention on account of its

high specific capacity, the moderate cycle lifetime still hinders its large-scale

commercialization applications. Herein, the Ti-doped LiNi0.8Co0.1Mn0.1O2 compounds

are successfully synthesized. The Li(Ni0.8Co0.1Mn0.1)0.99Ti0.01O2 sample exhibits the

best electrochemical performance. Under the voltage range of 2.7–4.3 V, it maintains

a reversible capacity of 151.01 mAh·g−1 with the capacity retention of 83.98% after 200

cycles at 1C. Electrochemical impedance spectroscopy (EIS) and differential capacity

profiles during prolonged cycling demonstrate that the Ti doping could enhance both

the abilities of electronic transition and Li ion diffusion. More importantly, Ti doping can

also improve the reversibility of the H2-H3 phase transitions during charge-discharge

cycles, thus improving the electrochemical performance of Ni-rich cathodes.

Keywords: lithium ion batteries, cathode materials, LiNi0.8Co0.1Mn0.1O2, Ti-doped, phase transitions

INTRODUCTION

With the rapid development of renewable energy of wind and solar power, the large-scale energy
storage system has become more and more important (Manthiram et al., 2016; Chen et al., 2018;
Wu et al., 2018; Wu C. et al., 2019; Xia et al., 2019). Among them, lithium ion batteries have been
powering our daily life from mobile phones to electric vehicles (EVs), due to their high energy
density, long cycle life and environmental friendly (Chen et al., 2014; Li et al., 2018; Wu L. et al.,
2019; Ye et al., 2019). With the rapid development of high-performance silicon-carbon composite
anodes (Su et al., 2018; Xiao et al., 2018), cathode materials become the technological bottleneck
for obtaining high performance lithium-ion batteries (Myung et al., 2016; Chen Z. et al., 2017; Xu
et al., 2017; Zheng et al., 2019). Among the various types of layered cathodes, LiNi0.8Co0.1Mn0.1O2

(NCM) is attracting an increasing amount of attention on account of its high specific capacity and
low cost, compared to traditional LiCoO2 material (Zhang et al., 2012; Li et al., 2016a; Chen M.
et al., 2017; Yang et al., 2019).
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However, the long-term capacity retention of NCM is not
satisfactory for large-scale application, which can be ascribed
to the undesired side reactions between the highly reactive
species Ni4+ and liquid electrolyte at the interface of the
cathodes, triggering the irreversible phase transition from initial
layered R-3m phase to spinel Fd-3m phase and further to the
rock-salt phase (Nam et al., 2013; Lin et al., 2014a,b). Worse
yet, the NiO passivation layer will increase the impedance,
hindering the electrochemical kinetics, and resulting in the
deterioration of electrochemical performance (Meng et al., 2017;
Ryu et al., 2018a).

During the extraction of Lithium-ion, Ni-rich materials
undergoes a series of phase transitions: The original layered
structure (H1) transforms to the monoclinic phase (M), the
second hexagonal phase (H2), and the third hexagonal phase
(H3) (He et al., 2018; Gao et al., 2019; Wu et al., 2019a). It has
been reported that the H2-H3 transition will cause detrimental
lattice shrinkage along the c-direction, resulting in the volume
change and the local stress accumulation, and further leading
to the microcracks generation and propagation in secondary
particles (Lee et al., 2014; Sun and Manthiram, 2017; Yoon
et al., 2018). Ryu et al. (2018b) reported the cross-sectional
SEM images of the charged LiNi0.90Co0.05Mn0.05O2 particles,
numerous cracks emanating from the particle core and some
cracks traverse across the entire particle and nearly fracture the
secondary particle. The produced cracks create fresh surface
where phase transitions and corrosion as well as side reactions
occur, thereby further accelerating the structural degradation of
the cathodes.

Such severe structural collapse affected by mechanical strain
associated with the poor irreversibility of the H2-H3 phase
transition during cycling. Cations substitutions have been
regarded as promising way to overcome these challenges and
enhance the structural stability of Ni-rich materials (Xia et al.,
2018; Li et al., 2019; Susai et al., 2019; Weigel et al., 2019).
Wu et al. (2019b) demonstrated that by doping Ti4+ in
LiNi0.9Co0.1O2 materials, the improved reversibility of the H2-
H3 phase transitions and the lossless H3 phase suppress the
generation of microcracks and structural degradations. It is also
reported that, by doping with boron, the LiNi0.9Co0.05Mn0.05O2

shows no visible cracks, which is consistent with its good
reversibility of H2-H3, attesting to the beneficial effect of boron
doping and enables deflection of the internal strain posed by the
phase transition (Park et al., 2018).

In this work, the structural and electrochemical performances
of Ti-doped LiNi0.8Co0.1Mn0.1O2 (0, 0.5, 1, 2%) have been
systematically studied. The Ti doping can keep the layered
structure materials with one phase. Among them, the
Li(Ni0.8Co0.1Mn0.1)0.99Ti0.01O2 sample exhibits the best
electrochemical performance. Within a voltage window of
2.7–4.3V, the Li(Ni0.8Co0.1Mn0.1)0.99Ti0.01O2 sample maintains
a reversible capacity of 151.01 mAh·g−1 with 83.98% capacity
retention after 200 cycles, corresponding 0.08% decay per
cycle. The improved electrochemical performance can be
ascribed to the enhanced abilities of electronic transition and
Li ion diffusion. More importantly, the reversibility of H2-H3
phase transitions and the lossless H3 phase during prolonged

cycling can also improve the electrochemical performance of
Ni-rich cathodes.

EXPERIMENTAL SECTION

Materials Synthesis
The pristine LiNi0.8Co0.1Mn0.1O2 (denoted as NCM) spherical
material was synthesized by solid-state method. Stoichiometric
ratio of LiOH·H2O and Ni0.8Co0.1Mn0.1(OH)2 precursor were
mixed and ground in an agate mortar. Then, under oxygen
atmosphere, the mixtures were precalcined at 480◦C for 5 h and
calcined at 830◦C for 12 h with a heating rate of 5◦C·min−1.
Next, the sample was cooled to room temperature naturally in
a tube furnace.

The 0.5, 1, 2 mol% Ti-doped NCM (denoted as Ti-0.5, Ti-1,
Ti-2) samples were prepared by the following steps. Firstly, the
stoichiometric amount of C16H36O4Ti was dissolved into 60mL
absolute ethanol, then stirring continuously in water bath at the
temperature of 60◦C. Secondly, the LiOH·H2O were added to
the solution and kept stirring for about 30min, subsequently
the Ni0.8Co0.1Mn0.1(OH)2 precursor was added. Afterward, the
mixed solution was dried overnight at 120◦C. Finally, the Ti-
doped samples were obtained by calcining under the same
condition as NCM.

Materials Characterization
The crystalline structures of all the samples were determined
by X-ray diffraction (XRD, Bruker D8 advance) using Cu Kα

radiation in the 2θ range of 10–90◦ with a scan rate of 5◦·min−1

and operated at 40 kV and 40mA. Scanning electron microscopy
(SEM, Nova NanoSEM-230) was performed to observe the
particle morphologies of samples. The microstructures of the
NCM and Ti-1 samples were examined by high-resolution
transmission electron microscopy (HRTEM, FEI Talso 200s).

Electrochemical Measurements
The electrochemical properties were measured using a
CR2025 coin-type half cell. The working electrodes were
prepared by mixing the active materials, acetylene black, and
polyvinylidenedifluoride (PVDF) with a weight ratio of 8:1:1
in N-methyl-2-pyrrolidone (NMP). The resulting slurry was
cast uniformly onto aluminum foil, followed by drying at
120◦C in a vacuum oven for 4 h and pouched. The typical
mass loading of positive electrode was about 2.3 mg·cm−2

with an electrode diameter of 12mm. 1M LiPF6 dissolved in
a solution of dimethyl carbonate (DMC), ethylene carbonate
(EC), and ethyl methyl carbonate (EMC) (volume ratio = 1:1:1)
was used as the electrolyte. All the cells were assembled in an
Ar-filled glovebox where the moisture and oxygen content is
under 0.1 ppm by using a lithium metal anode and separator
(Celgard 2500 polyethylene). Then, the cells were silenced before
electrochemically tests. Electrochemical tests were performed on
NEWARE BTS7.6 battery test system between 2.7 and 4.3V vs.
Li/Li+ at room temperature (25◦C). The cycling performance
was initially charged and discharged at 0.1 C (18 mA·g−1) with
2 cycles, then charged and discharged at 1 C in the subsequent
cycles. The cyclic voltammetry (CV) was measured at a scan
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FIGURE 1 | (A) XRD patterns of NCM, Ti-0.5, Ti-1, and Ti-2; (B) Corresponding enlarged patterns of (003) peak between 18 and 19◦.

TABLE 1 | Lattice parameters of all samples obtained by XRD analysis.

Samples a (Å) c (Å) V (Å3)

NCM 2.86390 14.16697 100.63

Ti-0.5 2.86714 14.16738 100.78

Ti-1 2.86805 14.16898 100.87

Ti-2 2.86914 14.17678 100.89

rate of 0.1 mV·s−1 within 2.7–4.5V through an electrochemical
workstation (Solartron 1470E). Electrochemical impedance
spectroscopy (EIS) tests were conducted in the frequency range
of 10−3-105 Hz.

RESULTS AND DISCUSSION

The structure characteristics of the NCM and Ti-doped NCM
samples are analyzed by XRD measurements as shown in
Figure 1A. All the diffraction peaks of all samples can be well
indexed to the hexagonal α-NaFeO2 layered structure (PDF#70-
4314) with R-3m space group, and no secondary phase is
observed, indicating that Ti4+ is successfully incorporated into
the bulk structure. Furthermore, the clear splitting of (006)/(102)
and (108)/(110) couples for all samples manifest a well-developed
layered structure. The partial magnified patterns in Figure 1B

displays that the (003) diffraction peaks shift to a lower angle with
increasing Ti-doped content, demonstrating lattice expansion
caused by the successfully dopant of Ti4+. The result can also be
proved by the increase of lattice parameter c and the cell volume
as shown in Table 1.

The morphologies of the pristine NCM and Ti-1 samples are
shown in Figures 2a,d. The pristine andmodified samples images
exhibit very similar morphology. It is found that the secondary
particles are spherical with the size is∼12µm in diameter, which
are composed of densely packed primary particles. Apparently,
the result indicates that Ti doping cannot change the particle
morphology and particle size. To further investigate the effect
of Ti doping on the microstructure of NCM sample, the
HRTEM images of NCM (Figures 2b,c) and Ti-1 (Figures 2e,f)
are performed. As shown, the rectangle region is selected as
representative to observe the atomic-scale crystal structure, and
the fast fourier transform (FFT) of the selected region are shown
on the right. The FFT image of the NCM demonstrates that
layered phase (space group R-3m) is successfully formed. For
the Ti-1 sample, the diffraction spots of the corresponding FFT
can be assigned to the (104) lattice plane, indicating that the
microstructure cannot be changed by 1% Ti doping.

Electrochemical properties of the pristine and Ti-doped NCM
samples are tested in lithium-ion half-cells at room temperature.
Figure 3A shows the initial charge/discharge profiles of all
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FIGURE 2 | SEM images of the pristine NCM (a), Ti-1 (d); HRTEM images and Corresponding FFT images of the pristine NCM (b,c) and Ti-1 (e,f).

FIGURE 3 | Electrochemical performance of all electrodes in the voltage range of 2.7–4.3 V at room temperature: (A) Initial charge-discharge profiles at 0.1C. (B)
Rate capabilities at various current densities. (C) Cycling performance at a current rate of 1C.
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FIGURE 4 | Charge-discharge curves of NCM (A), Ti-0.5 (B), Ti-1 (C), and Ti-2 (D) at different cycle number (insets are the midpoint voltage vs. cycle numbers).

electrodes between 2.7 and 4.3V at the rate of 0.1 C. It
can be observed that all the discharge profiles are similar to
each other. The initial discharge specific capacity is decreased
slightly from 202.24 to 180.95 mAh·g−1 with the increasing
of Ti amounts. However, the Ti-1 electrode shows the higher
Coulombic efficiency of 83.20% than NCM electrode showing
Coulombic efficiency of 80.82%, most probably owing to that
suitable Ti doping can reduce the irreversible capacity.

The rate performances of the pristine and Ti-doped NCM
electrodes at the current density ranging from 0.1 to 10C
are presented in Figure 3B. Comparing to the NCM electrode,
the Ti-0.5 and Ti-1 electrodes show improved rate capability.
Particularly, the Ti-1 electrode maintains a reversible capacity of
145.71 mAh·g−1 at high current rates of 10C, while the NCM
cathodes only deliver a specific capacity of 105.52 mAh·g−1.
The remarkable rate property is mainly related to the slight
enlargement along c axis by Ti doping, which benefits the fast
Li ion diffusion. In addition, the cycling performances of all
electrodes are compared at 1 C rate in the range of 2.7–4.3V. As
can be seen in Figure 3C, the NCM electrode shows fast capacity
degradation from 179.03 to 136.88 mAh·g−1 after 200 cycles,

corresponding to 76.45% capacity retention with 0.118% decay
per cycle. In comparison, the Ti-doped electrodes possess the
higher capacity retention than pristine electrode, specifically, the
Ti-1 electrode maintains 151.01 mAh·g−1 with 83.98% capacity
retention after 200 cycles, corresponding 0.08% decay per cycle.

Figure 4 shows the charge-discharge curves of NCM, Ti-0.5,
Ti-1, Ti-2 electrodes at different cycle number, respectively. It
is distinctly observed that the reversible capacity and discharge
voltage plateau of the NCM electrode declined rapidly with
increasing cycle, while the Ti-1 electrode shows stable charge-
discharge curves and discharge capacity, indicating that suitable
Ti doping can effectively improve the cycle stability of NCM and
alleviate the voltage reduction during cycling.

To further understand the different charge-discharge behavior
of the NCM and Ti-doped electrodes, the differential capacity
(dQ/dV) curves are shown in Figure 5. All curves display
three couples of redox peaks, which are ascribed to the phase
transition of hexagonal (H1) to monoclinic (M), monoclinic (M)
to hexagonal (H2), and hexagonal (H2) to hexagonal (H3) during
the delithiation/lithiation processes. As shown in Figure 5A, the
oxidation peaks for the pristine NCM shift to high potential
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FIGURE 5 | Differential capacity vs. cell potential curves of different numbers for the NCM (A), Ti-0.5 (B), Ti-1 (C), and Ti-2 (D) electrodes.

significantly, while the reduction peaks shift to low potential
during cycling, and the corresponding peaks areas are greatly
decreased. As shows, the poor reversibility of H2-H3 phase
transition and gradually loss of H3 phase associated with poor
structural stability of NCM, should take responsibility for the
faster capacity drop of the NCM sample. In contrast, the voltage
hysteresis for the Ti-doped electrodes is substantially suppressed.
For Ti-1, the negligible change of overlap of dQ/dV curves within
200 cycles suggests the lower polarization and better H2-H3
reversibility of the modified electrodes. In conclusion, the Ti-
doped electrodes exhibit improved electrochemical properties,
which can be attributed to the better structural stability due to
the enhanced reversibility of H2-H3 phase transition.

To understand the relationship between electrochemical
degradation and resistance parameters, EIS measurements are
conducted for all samples in a charged state of 4.3 V after
different cycle numbers. Figures 6A–C show the Nyquist plots of
the electrodes and corresponding equivalent circuit at the fresh
cells, after 5 and 200 cycles, respectively. The curves consist of
a semicircle and a sloped line in Figure 6A. The semicircle is

regarded as the charge transfer resistance (Rct) and the followed
sloped line relates to theWarburg impedance (Zw). Moreover, the
intercept with real axis (Z′) is assigned to the solution resistance
(Rs). Differently, Figures 6B,C display an increased semicircle
in the high-frequency region, which can be ascribed to the
film resistance (Rf) due to the solid electrolyte interface (SEI)
film formed on the electrode during high-voltage cycling. The
fitting results of the electrodes based on the equivalent circuit
are summarized in Table 2. The Rct of the NCM electrode in
the fresh cell is 96.5�, and the resistance increases dramatically
after 200 cycles (1372�). In comparison, the Ti-doped electrodes
exhibit more stable values of Rct during cycling, implying better
structural stability. According to the relationships between Z′

re

and ω−1/2 in the low-frequency region (Figure 6D), the lithium
ion diffusion coefficient (DLi+) is calculated and the results
are listed in Table 2 (Li et al., 2015, 2016b; Liu et al., 2019;
Zhu et al., 2019). Notably, the Ti-1 electrode shows highest
DLi+ values than that of the NCM electrode after 200 cycles,
contributing to the best rate property among all electrodes. The
EIS results demonstrate that the Ti-doped samples exhibit better
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FIGURE 6 | Nyquist plots of (A) as-prepared electrodes before cycling, (B) all electrodes at the charge state of 4.3V after 5th, (C) all electrodes at the charge state of

4.3V after 200th (insets are the equivalent circuit models), (D) the relationships between Z′re and ω−1/2 based on the 200th cycles.

TABLE 2 | The values of Rf, Rct, and D+

Li for as-prepared electrodes and cycled

electrode.

Samples As-prepared 5th 200th

Rct (�) Rf (�) Rct (�) Rf (�) Rct (�) D+

Li (cm
2 s−1)

NCM 96.5 71.24 121.7 85 1372 7.13 × 10−13

Ti-0.5 39.3 31.3 102.1 87 351 7.79 × 10−13

Ti-1 37.2 32.4 103.2 155 263 2.01 × 10−12

Ti-2 35.3 31.7 163.2 124 445 7.19 × 10−13

kinetic behavior than those of the NCM, which can be related
to the outstanding structural stability by the modification of
Ti doping.

To study the redox behavior associated with phase transition
during battery operation, Cyclic voltammetry (CV) is employed
at a scan rate of 0.1 mV·s−1 between 2.7 and 4.5V. Figures 7A–D
illustrate the first three CV curves of all samples, respectively.
For these CV curves, three pairs of oxidation/reduction peaks
are observed, which can be assigned to the phase transitions

from H1 to M, H2 and H3. It is worth noting that the H2-H3
phase transition can induce sharp lattice contraction along c axis,
result in the anisotropic changes of cell volume (Yang and Xia,
2016; Xu et al., 2019). Apparently, the peak intensity of the phase
transition of H2-H3 gradually become weaker with increasing Ti
concentration, implying that the Ti doping could suppress the
detrimental phase transition during charging/discharging cycles.
In other words, the structural stability of the NCM is improved
by Ti doping.

CONCLUSION

To address the problem related to the structural degradations
of NCM, Ti is intentionally introduced to enhance the
structural stability and electrochemical performance of
LiNi0.8Co0.1Mn0.1O2. The Ti-doped LiNi0.8Co0.1Mn0.1O2

(0, 0.5, 1, 2%) composites are successfully synthesized
via one-step calcination method. Among them, the
Li(Ni0.8Co0.1Mn0.1)0.99Ti0.01O2 sample exhibits the best
electrochemical performance, it maintains a reversible
capacity of 151.01 mAh·g−1 after 200 cycles at 1 C with
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FIGURE 7 | CV curves of NCM (A), Ti-0.5 (B), Ti-1 (C), and Ti-2 (D) for first three cycles in the voltage range of 2.7–4.5 V.

83.98% capacity retention. The superior electrochemical
performance can be ascribed to two aspects: (1) the
enhanced reversibility of H2-H3 phase transitions and
the lossless H3 phase during prolonged cycling; (2) the
lower electrochemical impedance and the improved Li-ion
diffusion ability.
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