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Pillar[n]arenes are a new type of macrocyclic compounds, which were first reported

in 2008 by Ogoshi. They not only have cylindrical, symmetrical, and rigid structures,

but also have many advantages, including easy functionalization and rich host-guest

properties. On the other hand, mechanically interlocked molecules (MIMs) exist

extensively in nature which have been artificially synthesized and widely applied in

the fields of nanotechnology and biology. Although pillar[5]arene-based MIMs have

been investigated much over recent years, pillar[5]arene-based [1]rotaxanes are very

limited. In this report, we synthesized a series of amide-linked pillar[5]arene-based

[1]rotaxanes with ferrocene unit as the stopper. Under the catalysis of HOBT/EDCL,

the mono-amido-functionalized pillar[5]arenes were amidated with ferrocene carboxylic

acid to constructed ferrocene-based [1]rotaxanes, respectively. The structure of

the [1]rotaxanes were characterized by 1H NMR, 13C NMR, 2D NMR, mass

spectroscopy, and single-crystal X-ray structural determination. In the experiment, the

monofunctionalized pillar[5]arene was synthesized with a self-inclusion property, which

allows for forming a pseudo-rotaxane. The key role is the length of the imine chain in

this process. The formation of a rotaxane was realized through amidation of ferrocene

dicarboxylic acid, which acted as a plug. In addition, due to the ferrocene units, the

pillar[5]arene-based [1]rotaxanes perform electrochemically reversible property. Based

on this nature, we hope these pillar[5]arene-based [1]rotaxanes can be applied in battery

devices in the future.

Keywords: pillar[n]arenes, rotaxanes, electrochemically reversible, single-crystal X-ray, ferrocene

INTRODUCTION

Mechanically interlocked molecules (MIMs) are a type of “star” molecule due to their beautiful
and interesting architectures and wide applications in the area of biology and nanoscience (Bissell
et al., 1994; Brouwer et al., 2001; Zhu and Chen, 2005; Crowley et al., 2009; Yonath, 2010; Zhang
et al., 2011; Li et al., 2014; Wang et al., 2015, 2018). Among various MIMs, rotaxanes, which have
dumbbell-like structures with a wheel sliding along an axle, have attracted great interest due to their
wide application in preparation of artificial molecular machines (Green et al., 2007; Lewandowski
et al., 2013; Zhang et al., 2013). [1]rotaxanes, whose wheels and axles are connected in one molecule
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by covalent bonds, have a stable threaded form in both solution
and solid state (Hiratani et al., 2004; Franchi et al., 2008; Li
et al., 2012). However, the efficient synthesis of [1]rotaxanes is
very difficult due to their subtle structure. To the best of our
knowledge, there are very limited studies about the synthesis and
properties of macrocycle based [1]rotaxanes. For example, Prof.
Yang et al. prepared a functionalized [1]rotaxane and applied it to
catalysis Knoevenagel reaction in CHCl3 (Du et al., 2017). Prof.
Qu et al. fabricated a novel [1]rotaxane-based molecular motion
modified with ferrocene groups (Li et al., 2012).

Pillar[n]arenes (Ogoshi et al., 2008; Cragg and Sharma, 2012;
Xue et al., 2012; Si et al., 2015; Wang et al., 2015, 2016; Sun et al.,
2018; Xiao and Wang, 2018; Xiao et al., 2019a,b), which are the
newest host compounds in supramolecular chemistry after crown
ethers (Liu et al., 2017; Yoo et al., 2019), cyclodextrins (Fu et al.,
2019), calix[n]arenes (Dalgarno et al., 2007), and cucurbiturils
(Murray et al., 2017), have attracted extensive investigations
due to their pillar-like topology, rigid structures, electron-rich
cavities, and rich host-guest properties (Song and Yang, 2015;
Li et al., 2019; Wang et al., 2019). Up to now, pillar[n]arene-
based pseudo[1]rotaxanes with ammonium units, urea groups,
pyridinium salt or biotin units as the axles have been investigated
a lot (Strutt et al., 2012; Ni et al., 2014; Wu et al., 2015), but the
further formation of [1]rotaxanes is difficult due to the lack of
reactivity with stoppers. With the constant efforts by scientists,
several examples of pillar[n]arene-based [1]rotaxanes have been
fabricated successfully. For example, Prof. Xue et al. combined
C-H·π and ion-pair interactions to construct a pillar[5]arene-
based [1]rotaxane in a yield of 73% (Xia and Xue, 2014). Prof. Yan
et al. prepared a series of pillar[5]arene-based [1]rotaxanes from
mono-amide-modified pillar[5]arenes with different lengths of
the axles (Han et al., 2016).

Herein, we designed and synthesized a series of pillar[5]arene-
based [1]rotaxanes with N-aminoalkyl amides as the axles and
ferrocenecarboxylic acid as the stoppers through a method called
“threading-followed-by-stoppering” (Cao et al., 2000). Self-
included pillar[5]arene-based pseudo[1]-rotaxanes P[5]nPRs

were prepared from monoester modified copillar[5]arene
according previous research. Then pillar[5]arene based
[1]rotaxanes P[5]nRs were directly obtained by P[5]nPRs

reacted with ferrocenecarboxylic acid as the stopper under
the catalysis of HOBT/EDCL. Importantly, we found that
the length of N-aminoalkyl chains play a key role in the
formation of [1]rotaxanes—only when the number of
carbon on the N-aminoalkyl chains larger than three can
it form [1]rotaxanes. Moreover, these [1]rotaxanes showed
electrochemically reversible properties due to the ferrocene unit
on them.

MATERIALS AND METHODS

Synthesis of Pillar[5]arenes-Based
[1]rotaxanes and Mono-ferrocene Modified
Pillar[5]arene
Based on previous work (Han et al., 2016), P[5]nPRs were
obtained directly from mono-ester modified pillar[5]arene

SCHEME 1 | Synthetic route to a series of pillar[5]arene based [1]rotaxanes.

(Scheme 1). Then, P[5]nRs and mono-ferrocene modified
pillar[5]arene were successfully synthesized by P[5]nPRs reacted
with ferrocene-carboxylic acid as the stopper under the
catalysis of HOBT/EDCL. We take when n = 4 as a model
reaction, P[5]4PR (0.203 g, 0.2 mmol), ferrocenecarboxylic
acid (0.052 g, 0.2 mmol), HOBT(0.038 g, 0.25 mmol), and
EDCL (0.055 g,0.25 mmol) were stirred in 10mL dry CHCl3
over night at room temperature. The reaction solvent was
evaporated and the residue was purified by flash column
chromatography on silica gel (CH2Cl2/CH3OH, v/v 15:1) to give
P[5]4R as a yellow solid (0.195 g). Other P[5]nPRs and mono-
ferrocene modified pillar[5]arene were prepared with the similar
method (Scheme 1).

P[5]2R

Yellow solid, 78.6%, m.p. 106.9-108.5◦C; 1H NMR (400 MHz,
CDCl3) δ: 7.05–6.89 (m, 7H, ArH), 6.84 (d, J= 2.5Hz, 1H, ArH),
6.80 (s, 1H, ArH), 6.60 (s, 1H, ArH), 5.04–4.81 (m, 4H, CH2),
4.50 (s, 2H, ArH), 4.39 (s, 2H, ArH), 4.24 (d, J = 2.5Hz, 5H,
ArH), 4.05–3.95 (m, 2H, CH2), 3.95–3.60 (m, 32H, 24 CH3, 8
CH2), 3.54 (s, 4H, CH2), 1.80 (d, J = 8.1Hz, 2H, CH2), 1.55 (d, J
= 7.6Hz, 2H, CH2), 1.02 (d, J = 7.5Hz, 3H, CH2),−1.90 (d, J =
50.7Hz, 2H, CH2), −2.19 (d, J = 42.0Hz, 2H, CH2);

13C NMR
(101 MHz, CDCl3) (Figure S9) δ = 169.0, 168.9, 168.9, 166.7,
151.4, 150.6, 150.6, 150.5, 150.3, 150.3, 150.2, 150.2, 150.2, 150.1,
150.1, 149.7, 148.9, 129.8, 128.8, 128.8, 128.5, 128.4, 128.0, 127.7,
126.6, 126.4, 119.0, 115.5, 113.8, 113.7, 113.5, 113.4, 113.0, 112.9,
112.5, 112.5, 112.4, 112.4, 77.3, 71.8, 71.8, 69.9, 69.9, 69.9, 69.6,
68.5, 67.8, 66.0, 57.0, 56.4, 56.0, 55.8, 55.6, 55.5, 55.3, 55.2, 39.5,
37.5, 31.9, 31.7, 29.8, 29.7, 28.6, 28.5, 27.2, 23.2, 22.3, 22.3, 19.5,
14.1; MS (m/z): HRMS (ESI) Calcd. for C64H75FeN2O

+

12 ([M +

H]+): 1119.4671, found: 1119.4669 (Figure S10).

P[5]4R

Yellow solid, 42.9%, m.p. 107.4-109.2◦C; 1H NMR (400 MHz,
CDCl3) δ 7.02–6.76 (m, 10H, ArH), 5.67 (s, 1H, NH), 5.26
(s, 1H, NH), 4.75 (s, 2H, CH2), 4.59 (s, 2H, ArH), 4.40 (s,
2H, ArH), 4.24 (d, J = 2.4Hz, 5H, ArH), 4.05–3.54 (m, 36H,
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24 OCH3, 12 CH2), 2.72–2.47 (m, 4H, CH2), 1.76 (dd, J
= 15.2, 8.0Hz, 2H, CH2), 1.52 (q, J = 7.6Hz, 2H, CH2),
0.96 (t, J = 7.6Hz, 3H, CH3), −0.18 (s, 2H, CH2), −0.90
(s, 1H, CH2), −1.09 (s, 1H, CH2), −1.61 (d, J = 23.6Hz,
2H, CH2), −2.21 (s, 2H, CH2);

13C NMR (101 MHz, CDCl3)
(Figure S13) δ = 169.25, 167.51, 150.91, 150.73, 150.56, 150.45,
150.40, 150.36, 150.32, 150.21, 150.12, 147.21, 129.75, 129.29,
128.75, 128.48, 128.45,128.19, 127.87, 127.82, 127.05, 115.82,
115.08, 114.71, 114.43, 114.00, 112.80, 112.78, 112.73, 112.23,
70.21, 68.88, 68.09, 67.81, 65.85, 56.83, 56.44, 56.29, 56.26, 56.08,
55.48, 55.43, 55.31, 55.10, 39.73, 37.87, 31.95, 30.15, 29.36, 28.89,
28.60, 28.44, 26.37, 24.41, 23.25, 19.57, 14.06; HRMS (ESI) Calcd.
for C66H79FeN2O

+

12 ([M + H]+): 1147.4981, found: 1147.4982
(Figure S14).

P[5]6R

Yellow solid, 38.9%, m.p. 109.9-112.1◦C; 1H NMR (400 MHz,
CDCl3) δ: 6.98–6.70 (m, 10H, ArH), 5.85 (s, 1H, NH), 5.18 (s,
1H, NH), 4.72 (s, 2H, CH2), 4.58 (s, 2H, ArH), 4.39 (s, 2H,
ArH), 4.24 (s, 5H, ArH), 4.00–3.59 (m, 36H, 24 OCH3, 12 CH2),
3.42 (s, 2H, CH2), 3.29 (s, 2H, CH2), 1.86–1.79 (m, 2H, CH2),
1.60 (q, J = 7.6Hz, 2H, CH2), 1.35 (s, 2H, CH2), 1.03 (t, J
= 6.3Hz, 3H, CH3), 0.72 (s, 2H, CH2), −0.17 (s, 2H, CH2),
−1.11 (s, 1H, CH2), −1.25 (s, 1H, CH2), −1.50 (s, 2H, CH2),
−2.32 (s, 2H, CH2);

13C NMR (101 MHz, CDCl3) (Figure S17)
δ= 169.86, 150.81, 150.52, 150.48, 150.30, 150.20, 149.99, 129.41,
129.05, 128.35, 128.24, 128.09, 127.85, 127.34, 115.04, 114.18,
114.13, 113.70, 112.76, 112.33, 77.34, 70.43, 69.72, 68.19, 68.11,
55.99, 55.69, 55.46, 55.39, 55.29, 55.12, 40.01, 37.99, 32.02, 30.71,
30.11, 29.27, 29.01, 28.89, 28.62, 28.41, 28.27, 27.72, 19.65, 14.14;
MS (m/z): HRMS (ESI) Calcd. for C68H83FeN2O

+

12 ([M + H]+):
1175.5294, found: 1175.5295 (Figure S18).

P[5]8R

Yellow solid, 25.9%, m.p. 114.6-116.8◦C; 1H NMR (400 MHz,
CDCl3) δ 6.95–6.80 (m, 9H, ArH), 6.71 (s, 1H, ArH), 5.23 (s, 1H,
NH), 5.02 (s, 1H, NH), 4.68 (t, J = 1.9Hz, 2H, CH2), 4.56 (s, 2H,
ArH), 4.37 (t, J = 2.0Hz, 2H, ArH), 4.22 (s, 5H, ArH), 3.92–3.63
(m, 36H, 24OCH3, 12CH2), 3.42 (q, J = 7.0Hz, 2H, CH2), 2.41 (s,
2H, CH2), 1.88–1.79 (m, 2H, CH2), 1.62 (td, J = 7.4, 2.6Hz, 4H,
CH2), 1.37 (p, J = 7.7Hz, 2H, CH2), 1.20 (t, J = 7.9Hz, 2H, CH2),
1.04 (t, J = 7.4Hz, 3H, CH3), 0.80 (s, 2H, CH2),−0.05 (s, 2H,
CH2), −1.34 (s, 4H, CH2), −2.38 (s, 2H, CH2);

13C NMR (101
MHz, CDCl3) (Figure S21) δ = 170.09, 167.19, 150.80, 150.37,
150.24, 150.12, 150.06, 149.95, 146.97, 129.40, 129.01, 128.32,
128.20, 128.11, 127.94, 127.84, 127.83, 127.08, 114.73, 113.92,
113.58, 113.25, 112.73, 112.42, 76.31, 70.43, 69.72, 68.00, 67.82,
55.48, 55.45, 55.36, 55.32, 55.13, 39.72, 38.02, 32.05, 30.96, 30.66,
30.60, 30.21, 29.64, 29.26, 28.83, 28.76, 28.64, 28.22, 27.94, 19.65,
14.17; IR (KBr) υ: 3410, 2932, 2854, 1681, 1499, 1465, 1399, 1295,
1213, 1104, 1047, 929, 879, 855, 774, 704, 647cm−1; MS (m/z):
HRMS (ESI) Calcd. for C70H87FeN2O

+

12 ([M+H]+): 1203.5602,
found: 1203.5508 (Figure S22).

Mono-ferrocene Modified Pillar[5]arene P[5]0R

Yellow solid, 78.6%, m.p. 104.4–106.2◦C; 1H NMR (400 MHz,
CDCl3) (Figure S1) δ: 6.78–6.82 (m, 4H, ArH), 6.76 (d, J =

SCHEME 2 | Synthetic route to monomer M3.

2.7Hz, 2H, ArH), 6.70 (s, 1H, ArH), 6.65 (s, 1H, ArH), 4.68
(t, J = 1.9Hz, 2H, ArH), 4.37 (s, 2H, CH2), 4.32 (t, J =

1.9Hz, 2H, ArH), 4.19 (s, 5H, ArH), 3.88 (t, J = 6.4Hz,
2H, CH2), 3.85–3.62 (m, 28H, 24 OCH3, 4 CH2), 3.60 (s,
3H, CH2), 3.56 (s, 3H, CH2), 3.24 (s, 2H, CH2), 3.11 (s,
2H, CH2), 1.72–1.82 (m, 2H, CH2), 1.53 (h, J = 7.4Hz, 2H,
CH2), 0.97 (t, J = 7.4Hz, 3H, CH3);

13C NMR (101 MHz,
CDCl3) (Figure S2) δ = 170.70, 151.19, 150.87, 150.82, 150.77,
150.76, 150.69, 150.66, 148.15, 129.28,129.23, 128.62, 128.46,
128.36, 128.08, 127.84, 127.72, 115.41, 115.34, 114.37, 114.31,
114.06, 114.03, 113.97, 113.90, 113.79, 76.13, 70.33, 69.70, 68.37,
68.24, 67.67, 56.68, 56.17, 56.06, 55.91, 55.87, 55.80, 55.77, 41.21,
38.87, 31.80, 30.21, 29.70, 29.64, 28.76, 19.50, 13.96; MS (m/z):
HRMS (ESI) Calcd. for C62H71FeN2O

+

12 ([M+H]+): 1091.4357,
found: 1091.4356 (Figure S3).

P[5]1R

Yellow solid, 71.9 %, m.p. 105.6-107.3◦C;1H NMR (400 MHz,
CDCl3) (Figure S5) δ: 6.75–6.98 (m, 10H, ArH), 6.60 (s, 2H,
NH), 4.77 (t, J = 2.0Hz, 2H, ArH), 4.39 (s, 2H, CH2), 4.34
(t, J = 1.9Hz, 2H, ArH), 4.20 (s, 5H, ArH), 3.46–3.97 (m,
36H, 24 OCH3, 12 CH2), 1.81 (p, J = 6.9Hz, 2H, CH2),
1.68 (s, 2H, CH2), 1.56 (q, J = 7.5Hz, CH2), 1.01 (t, J =

7.4Hz, 3H, CH3);
13C NMR (101 MHz,CDCl3) (Figure S6) δ

= 150.7, 150.6, 150.4, 148.6, 128.8, 128.3, 128.1, 128.1, 114.6,
114.6, 114.5, 114.4, 113.7, 113.4, 113.3, 113.2, 70.0, 70.0, 69.6,
68.2, 66.9, 56.2, 56.2, 56.2, 56.2, 55.9, 55.9, 55.7, 55.5, 39.4, 35.7,
34.8, 31.9, 29.7, 29.4, 19.5, 14.1; MS (m/z): HRMS (ESI) Calcd.
for C63H73FeN2O

+

12 ([M + H]+): 1105.4512, found: 1105.4513
(Figure S7).

Synthesis of Monomer M3

AM3 was obtained from a previous report. Then the monomer
M3 was synthesized from AM3 (Figure S23) and ferrocene-
carboxylic acid with BOBT and EDCL as the catalyst (Scheme 2).
AM3 (0.08g, 0.25 mmol), ferrocenecarboxylic acid (0.057 g,
0.25 mmol), HOBT (0.054 g, 0.40 mmol), and EDCL (0.076,
0.40 mmol) were stirred in 15mL dry CHCl3 over night at
room temperature. The reaction solvent was evaporated and
the residue was purified by flash column chromatography on
silica gel (CH2Cl2/CH3OH, v/v 25:1) to give M3 as a yellow
solid (0.031 g). 1H NMR (400 MHz, CDCl3) (Figure S24)
δ 6.84 (s, 4H, ArH), 6.65 (s, 1H, NH), 5.87 (s, 1H,
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FIGURE 1 | 1H NMR spectra (400 MHz, 298K) of: (A) AM3 in CDCl3; (B) P[5]
4PR in CDCl3; (C) P[5]

4R in CDCl3; (D) P[5]
4R in DMSO-d6; (E) M

3 in CDCl3.

FIGURE 2 | Partial 2D NOESY spectrum of a choroform-d solution of P[5]4R at 298K.

NH), 4.68 (s, 2H, CH2), 4.44 (s, 2H, ArH), 4.33 (s,
2H, ArH), 4.19 (s, 5H, ArH), 3.91 (t, J = 5.8Hz, 2H,
CH2), 3.36 (d, J = 6.2Hz, 4H, CH2), 1.80–1.68 (m, 4H,
CH2), 1.58 (d, J = 5.9Hz, 4H, CH2), 1.48 (dd, J = 14.6,
7.1Hz, 2H, CH2), 1.39 (s, 2H, CH2), 0.97 (t, J = 6.9Hz,
3H, CH3).

MATERIALS

All reactions were performed in atmosphere unless noted. All
reagents were commercially available and used as supplied
without further purification. NMR spectra were collected on
either a Bruker AVIII-400MHz spectrometer or a Bruker AV-600

Frontiers in Chemistry | www.frontiersin.org 4 July 2019 | Volume 7 | Article 508

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zhang et al. Pillar[5]arene Based [1]rotaxane Systems

MHz spectrometer with internal standard tetramethylsilane
(TMS) and signals as internal references, and the chemical
shifts (δ) were expressed in ppm. High-resolution Mass (ESI)
spectra were obtained with a Bruker Micro-TOF spectrometer.
X-ray data were collected on a Bruker Smart APEX-2
CCD diffractometer.

RESULTS AND DISSCUSSION
1H NMR Investigation
The 1H NMR spectra of AM3 and P[5]4PR were taken into
consideration first. As shown in Figure 1B, the chemical shift
of four groups of peaks shift below 0 ppm field, indicating that
the alkyl chain penetrated into the cavity of pillar[5]arene to
form either pseudo[1] rotaxane or [c2]daisy chain (Du et al.,
2017). Then P[5]4R was prepared from P[5]4PR reacted with
ferrocenecarboxylic acid as the stopper. 1H NMR spectra of
monomer M3 and [1] rotaxane P[5]4R in CDCl3 at 293K are
shown in Figure 1 (spectra c and e). Compared with M3, we
found that the signals of protons on the alkyl chain attaching
onto the pillar[5]arene platform shifted upfield obviously due to
the shielding effect (Figure 1C). Then we used a polar solvent,
DMSO-d6, for

1H NMR investigations to confirm the formation
of [1] rotaxane. In DMSO-d6, we also found that the signals of
protons on the alkyl chains upfield were below 0 ppm due to
the shielding effect (Figure 1D), which indicated the formation
of a mechanically interlocked structure (Dong et al., 2014).
The 1H NMR of P[5]2R, P[5]4R, P[5]6R, P[5]8R all showed
several groups of protons on the alkyl chains upfield obviously
(Figures S8, S12, S16, S20), and the formation of [1] rotaxanes
was also confirmed. However, the 1H NMR of P[5]0R and
P[5]1R showed no signal below 0 ppm, indicating the side-
chain stayed outside of the cavity of the pillar[5]arene platform
(Figures S1, S5). The reason for this phenomenon is due to the
relatively short length of the axle (only two or three CH2 groups)
of P[5]0R, and P[5]1R, which was not able to allow the large
ferrocene group to connect it from the cavity. Thus, the amino-
group of the side-chain of P[5]0PR (or P[5]1PR) stayed outside
of the cavity and was then reacted with ferrocene-carboxylic
acid to obtain free form P[5]0R (or P[5]1R). Furthermore, the
temperature-dependent 1H NMR of P[5]4R showed that the
peaks became broad as the temperature increased, indicating the
chain in the cavity (Figures S15, S19, S26).

2D NOESY Studies
The formation of [1]rotaxane was then confirmed by 2D Nuclear
Overhauser Effect Spectroscopy (NOESY). Here we also take
P[5]4R as the model compound. As shown in Figure 2, the
hydrogens of the alkyl chain on P[5]4R were close to the
pillar[5]arene platform because H1−4 showed strong correlation
with Ha and Hb, indicating that the alkyl chain was in close
proximity to the cavity. The -NH- groupHc is close to H1−2 while
Hd is close to H3−4. Furthermore, ArH-3 from the ferrocene
group showed space correction to the hydrogen–OCH3 and
-OCH2- on the pillar[5]arene platform (Data Sheets 1–4).

FIGURE 3 | X-ray single-crystal structure of: (A) P[5]0R; (B) P[5]2R. Color

code: C, blue; O, green; Fe, red; N, purple.

FIGURE 4 | Cyclic voltammogram (scan rate = 100mV s−1) of the P[5]4R

(5.00 × 10−4 M) in CH2Cl2.

Single Crystal Structures
The direct evidence for the formation of [1] rotaxanes only when
the length of axle longer than three CH2 groups is from single
crystal investigation. As shown in Figure 3A and Figure S4,
the whole side chain of P[5]0R stayed outside of the cavity of
pillar[5]arene. It should be pointed that we observed hydrogen
bonding between the hydrogen atom of the amine group and
the oxygen atom of carbonyl group (Figure 3A, pink dash line).
However, for P[5]2R, we can clearly see that the alkyl chain
penetrated into the cavity of pillar[5]arene to form a [1] rotaxane
(Figure 3B and Figure S11). The C-H···π interactions and C-
H···O interactions were the driving forces for the formation of
[1] rotaxane.

Cyclic Voltammetry Investigation
With the [1]rotaxanes in hand, we then investigated their
reversible redox property by electrochemistry methods. Take
P[5]4R as an example, in cyclic voltammetry (CV) experiment
(Figure 4), the cyclic voltammogram was quasi-reversible with
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nearly equal ipa and ipc, in which the potential difference
1Ep was around 0.090V. Compared with ferrocene, P[5]4R
has a larger half wave potential (E1/2 = 612mV). Further
study showed that the free state P[5]0R has the similar
redox property with P[5]4R due to the same ferrocene
unit (Figure S25).

CONCLUSIONS

In this paper, we synthesized a series of amide-linked
pillar[5]arene-based [1]rotaxanes with ferrocene unit as the
stopper. Under the catalysis of HOBT/EDCL, the mono-
amido-functionalized pillar[5]arenes were amidated with
ferrocene carboxylic acid, to constructed ferrocene-based
[1]rotaxanes, respectively. The structure of the [1]rotaxanes
were characterized by 1H NMR, 13C NMR, 2D NMR,
mass spectroscopy and single-crystal X-ray structural
determination. In the formation of [1]rotaxane, the key
role is the length of the alkyl chain in this process, and
only when the number of C on the alkyl chain is larger
than three can the formation of [1]rotaxane occur. In
addition, due to the ferrocene units, the pillar[5]arene-
based [1]rotaxanes display electrochemically reversible
properties. Based on this nature, we hope these pillar[5]arene-
based [1]rotaxanes can be applied in battery devices
in future.
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