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Evolutionary algorithms such as the basin-hopping (BH) algorithm have proven to be

useful for difficult non-linear optimization problems with multiple modalities and variables.

Applications of these algorithms range from characterization of molecular states in

statistical physics and molecular biology to geometric packing problems. A key feature

of BH is the fact that one can generate a coarse-grained mapping of a potential energy

surface (PES) in terms of local minima. These results can then be utilized to gain

insights into molecular dynamics and thermodynamic properties. Here we describe how

one can employ concepts from unsupervised machine learning to augment BH PES

searches to more efficiently identify local minima and the transition states connecting

them. Specifically, we introduce the concepts of similarity indices, hierarchical clustering,

and multidimensional scaling to the BH methodology. These same machine learning

techniques can be used as tools for interpreting and rationalizing experimental results

from spectroscopic and ion mobility investigations (e.g., spectral assignment, dynamic

collision cross sections). We exemplify this in two case studies: (1) assigning the infrared

multiple photon dissociation spectrum of the protonated serine dimer and (2) determining

the temperature-dependent collision cross-section of protonated alanine tripeptide.

Keywords: serine dimer, polyalanine, collision cross section, IRMPD, hierarchical clustering, potential energy

surface, global optimization, vibrational spectroscopy

INTRODUCTION

Molecular global optimization (GO) to identify the chemically-relevant species on hypergeometric
potential energy surfaces (PESs) provides both rationalizations and predictions of experimental
observations by relating thermodynamic and kinetic properties to the accessible local minima and
the transition states (TSs) that connect them (Scheraga, 1992; Piela et al., 1994; Wales and Doye,
1997; Wales and Scheraga, 1999). Basin-hopping (BH) is a technique for GO that is based on the
iterative approach of performing random perturbation of geometric coordinates, local optimization
of a model potential energy function, and accepting or rejecting the perturbed coordinates based on
the value of the minimized function (Wales and Doye, 1997;Wales et al., 1998;Wales and Scheraga,
1999; Lecours et al., 2014). Use of the BH algorithm for searching molecular PESs was outlined
by Wales and Doye in their 1997 article “Global Optimization by Basin-Hopping and the Lowest
Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms,” (Wales and Doye,
1997) which describes how the technique transforms the PES into a collection of interpenetrating
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staircases wherein each stair/plateau on the transformed surface
is associated with a stationary point (usually local minimum)
of the original potential energy landscape. Figure 1 shows a
flow diagram outlining the general procedure of the BH search
algorithm. The key feature of the BH algorithm is the inclusion
of assessment criteria for accepting or rejecting a newly distorted
input geometry. One of these criteria is the definite replacement
of the lowest energy structure identified by the BH routine with
the currently optimized structure if that structure has a lower
energy. A second key criterion is a conditional acceptance of
the distorted geometry by assessing the statistical accessibility of
the optimized structure based on a pre-defined energy window.
For example, one can define a Boltzmann distribution at a given
temperature with respect to the current lowest energy structure
and assess the probability of accessing the newly generated
stationary point. Thus, the BH algorithm has a bias toward low
energy structures and is a good option for identifying the global
minimum (GM) and local minima that may be present in an
ensemble under thermal equilibrium conditions.

To further improve the efficiency of a BH search, one can
include additional criteria for assessment of distorted molecular
geometries prior to optimization. For example, one might
choose to reject structures in which inter-atomic distances are
less than some pre-defined threshold, or one might choose
to define an interaction volume to prevent molecular/cluster
dissociation (Lecours et al., 2014). It is also common to select
specific degrees of freedom (DoFs) for random distortion while
freezing others; one might choose to search the conformational
space defined by molecular dihedral angles while leaving the
distances between chemically bonded atoms fixed (Hopkins
et al., 2013, 2015). There are several other works which employ
more dramatic changes to the underlying BH algorithm. For
example, Leary proposed a version in which only the replacement
criterion is employed in the evaluation (i.e., no statistically
accessible energy window is specified) (Leary, 2000). In other
works, Röder and Wales propose a mutational BH algorithm
to optimize biomolecules (Röder and Wales, 2018), and Kim
et al. combine BH with Coulomb matrix analysis to sample
reaction intermediates (Kim et al., 2014). While these variants
have all been successful in the task at hand, the fact that the basic
BH algorithm often requires tailoring highlights the inherent
drawbacks in the BH methodology.

One principal short-coming of the BH algorithm that
practitioners must be aware of is that the method is not
deterministic; i.e., identifying the GM via a finite, stochastic
search is not guaranteed. Confidence in BH search results come
from a satisfactory agreement with experimental observations
and/or the consistency of results from several parallel simulations
with different initial conditions. A second potential short-
coming is the fact that, due to performance considerations,
BH calculations are often conducted with relatively low-
level model chemistries (e.g., molecular mechanics), which
may not be accurate enough for certain molecular systems.
Finally, practitioners must be aware that a BH search may be
kinetically trapped in a local potential minimum if the thermal
energy (viz. temperature) of the simulation is set too low.
In fact, in some cases BH searches of PESs are non-ergodic

FIGURE 1 | The general procedure of the basin-hopping algorithm. Elow is the

energy of the lowest energy species identified to that point in the search (i.e.,

the current global minimum, GM).

regardless of simulation temperature. For example, consider
the case of protonated para-aminobenzoic acid, which can
exhibit protonation on either the carbonyl oxygen atom or
the amine nitrogen atom in the gas phase (Tian and Kass,
2009; Schmidt et al., 2011; Campbell et al., 2012, 2016).
If one were to assume that the protonation site of para-
aminobenzoic acid were the nitrogen center (as is the case in
protic solution) and model the system as a molecular cation
using a molecular mechanics force field, the O-protonated
isomer (which is the gas phase global minimum) would
not be identified without modifying the atomic connectivity
during the BH search (Tian and Kass, 2008; Campbell et al.,
2012, 2016). To overcome this systematic limitation, one
must treat the charge-carrying proton as a separate moiety
in the simulation and/or augment the BH framework with
the chemical intuition of the user (i.e., manually identify
both prototropic isomers and conduct BH searches for each
of them).
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Here, we describe how the basin-hopping algorithm can be
employed to reliably model gas phase cluster and molecular
systems for comparison with observations from spectroscopy
and ion mobility experiments. To model our experimental
observations, we require theoretical predictions from a collection
of local minima, which do not necessarily include the global
minimum, and an efficient method to find matches between
the predictions and the observations. In some cases, it is also
desirable to identify the TSs that connect minima to assess
thermodynamic accessibility of the various isomers / conformers.
These two requirements present two notable challenges for the
BH methodology. The first challenge, related to the principal
short-coming mentioned above, is the necessity to accurately
track the explored regions of the PES. In doing so, one not only
identifies a set of local minima, but also gains useful information
for directing the BH search toward regions of the PES that are
relatively unexplored. The second challenge is the accurate and
efficient identification of the TSs that connect local minima. To
overcome these challenges, we collect the nuclear configuration
data that is generated during the BH search and utilize this data as
described in Section Augmenting the BH Algorithm. Specifically,
in Section Assessing Geometric Similarity we describe how one
can utilize similarity functions and hierarchical clustering, which
are concepts generally associated with unsupervised machine
learning, to assess the uniqueness of the local minima and guide
PES searches. We then discuss the interpolation of geometries
to identify intermediate local minima and to create guess
geometries for TS searches in Section Interpolating Intermediate
Geometries. In Section Application of BH Search Results, we
outline our methods for employing our BH results to assign the
spectral carriers (Section Case Study 1: The IR Spectrum of the
Protonated Serine Dimer) and to model temperature-dependent
structures (Section Case Study 2: Dynamic Collision Cross
Section of Protonated Alanine Tripeptide) of geometrically-
fluxional species. Finally, we summarize our perspective and
highlight open questions in Section Conclusions.

AUGMENTING THE BH ALGORITHM

As mentioned in section Introduction, several variations to the
BH algorithm have been proposed to address specific challenges
in searching complex potential energy landscapes (Leary, 2000;
Kim et al., 2014; Röder and Wales, 2018). For our purposes,
where it is necessary to identify a collection of local minima
that are representative of the species present in experimental
ensembles, we require a faithful mapping of the molecular PES.
To improve the efficiency and PES coverage of the BH algorithm,
we introduce a method of comparing the geometries of local
minima. This comparison, which is derived from a similarity
function, provides a more rigorous identification of unique
isomeric species and insight into which regions of the PES may
require additional exploration.

In analogy to the spatial distance between two locations on
a map, a similarity function quantifies the similarity of two
conformations, A and B, in conformation space. The function,
usually denoted as d(A,B), is non-negative (d (A,B) ≥ 0),

symmetric (d (A,B) = d(B,A)) and has zero value only when
two identical elements are evaluated (d (A,A) = 0) (Locatelli
and Schoen, 2013). The similarity function can be used in one
of three ways: qualification, quantification, and interpolation.
Qualification usage implies that the function need only tell if
two input structures are identical. Quantification usage provides
a metric for howmuch difference is there between two structures;
for example, is structure A more similar to structure B than
to structure C? Interpolation usage means that, given two
structures, A and B, and an arbitrary interpolation factor, λ ∈
(0, 1), there exist one or more structures, C, satisfying:

d (A,B) =
1

λ
d (A,C) =

1

1− λ
d (B,C) (1)

If the function d satisfies triangular inequality d (A,B) +
d (B,C) ≥ d(A,C)), the structure C is unique, and d is a
metric of the conformation space (Choudhary, 2003). Note that
special treatment is required if A and B have different numbers
of atoms (i.e., if A and B are of different dimension); this
tends not to be the case in simulations of chemical systems.
The interpolation mechanism is of central importance not
only to a number of GO algorithms, such as particle swarm
optimization (Eberhart and Yuhui, 2001), differential evolution
(Storn and Price, 1997), and DIRECT (Jones et al., 1993), but
also to unsupervised machine learning techniques such as the
self-organizing map (Kohonen, 1990) and the growing neural
gas (Martinez and Schulten, 1991; Fritzke, 1994). In qualitative
comparisons, the similarity function need only account for the
translational, rotational, and permutational invariance under
a given molecular representation; structural equivalence only
occurs between species of identical composition. Such invariance
properties are either embedded in the mathematical definition
of the molecular representation or they are achieved via
manually aligning the two molecular systems prior to evaluating
their similarity. Examples of such representations include the
conventional skeletal chemical formula and the SMILEs code
used in compound database systems (Weininger, 1988; Rahman
et al., 2009; Heller et al., 2013). In quantitative comparisons, the
similarity of two structures is specified by a real number. These
similarity indices are useful in discriminating visited regions of
the PES (e.g., well-sampled vs. poorly-sampled regions), which
can be assessed using unsupervised machine learning analyses
like hierarchical clustering and multidimensional scaling (MDS)
(Wickelmaier, 2003; Borg and Groenen, 2005). Most similarity
functions used for quantitation purposes are defined by the
normal (e.g., the root-mean-square deviation of atomic positions,
RMSD) (Kabsch, 1976) or reciprocal (e.g., the Coulomb matrix)
(Montavon et al., 2012) interatomic distances, although electron
density-based similarity functions have found use in drug
discovery (Cereto, 2015; Kumar and Zhang, 2018). To implement
structural interpolation, the back conversion from desired
similarity constraints to a concrete structure is required. This
technique enables generation of intermediate geometries for TS
calculations (e.g., QST3) (Peng and Bernhard Schlegel, 1993;
Peng et al., 1996), and it can also be used to guide BH searches
of specified regions of the PES along isomerization pathways
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between two isomers. Furthermore, by implementing structural
interpolation, one creates the opportunity to incorporate other
GO techniques (e.g., particle swarm optimization) (Kennedy
and Eberhart, 1995; Call et al., 2007; Shi et al., 2019) and
machine learning techniques (e.g., growing neural gas) (Martinez
and Schulten, 1991; Fritzke, 1994) into the BH algorithm. In
practice, rather than an explicit analytical approach, structure
interpolation can be achieved implicitly via local optimizations
with a tolerable loss of accuracy. In our research, to efficiently
use the nuclear configuration information from the BH
simulation, we introduce both Euclidean distance matrix-based
and cosine distance-based similarity functions together with the
necessary techniques to accomplish structural interpolation. The
mathematical and implementation details are described below.

Assessing Geometric Similarity
To begin assessing the similarity between two molecular
geometries, one must first select an appropriate similarity
function. One option, the Euclidean distance matrix
representation (D) of a molecule, is simply the collection
of all interatomic distances as per (Gentle, 2007):

Dij = |⇀ri − ⇀rj| (2)

where ⇀ri and ⇀rj are the positional vectors (in Cartesian
coordinates) of atoms i and j. Within the distance matrix
representation, the similarity function is defined as the sum of
the absolute difference between each atom pair for structures A
and B:

d (DA,DB) =
∑

i, j > i|DA,ij −DB,ij| (3)

The distance matrix is a symmetric matrix with diagonal
elements of zero. This representation is translationally and
rotationally invariant, but not permutationally invariant (viz.
identical nuclei are not necessarily chemically equivalent). Thus,
in practice, the atom labeling should be adjusted such that the
similarity index (the value of the similarity function) of the
two input molecules is minimized. It should be noted that the
memory requirement of this representation scales quadratically
with the number of atoms. Consequently, the distance matrix
approach is not a good choice for dealing with very large systems.

A second option is to represent the molecular nuclear
configuration as a vector,

⇀
R (Fu and Hopkins, 2018), containing

the mass-weighted distance between each atom and the
molecular center-of-mass:

⇀
RCOM =

∑mi
i

⇀ri
∑

imi
(4)

⇀
Ri = mi|⇀ri −

⇀
RCOM| (5)

Where mi and
⇀r i are the mass and the distance to the center-

of-mass for the ith atom. Given that the mass-weighted distance
vector representation is in the center-of-mass frame, one can then
calculate the cosine distance between the vectors for isomers A
and B as per:

d(
⇀
RA,

⇀
RB) =

cos−1
(

s(
⇀
RA,

⇀
RB)

)

π
(6)

Where

s(
⇀
RA,

⇀
RB) =

⇀
RA ˙

⇀
RB

∣

∣

∣

⇀
RA

∣

∣

∣

∣

∣

∣

⇀
RB

∣

∣

∣

(7)

Again, this representation is translationally and rotationally
invariant. However, care should be taken to ensure that the
identity of the ith atom is retained throughout the BH search
so that one compares the same atoms in each unique geometric
structure. Alternatively, one might choose an operational
conventionwhereby the resulting vector is sorted (e.g., smallest to
largest values) prior to calculating cosine distance; this introduces
a permutational invariance to the treatment for low symmetry
systems. In contrast to the quadratic scaling of the distance
matrix, the mass-weighted distance vector scales linearly with
number of atoms. However, as a trade-off, the mass-weighted
distance vector representation is less effective than the distance
matrix approach in discriminating between conformers of highly
symmetric species. For example, the mass-weighted distance
vector representation is unable to distinguish square planar
and tetrahedral conformations of methane given identical C–
H bond length. Nevertheless, the uniqueness of the isomer-
vector correspondence is still largely guaranteed in most cases in
which only low symmetry structures are considered, particularly
when relative energies are also considered in distinguishing
isomeric/conformeric species.

The cosine similarity (Equation 7) ranges from −1 (meaning
exactly opposite) to +1 (meaning identical). However, in
practice, the cosine similarity for real molecular structures ranges
from 0 to 1 since the center-of-mass vector is constructed
from real space distances, which are always positive. Thus,
two identical structures exhibit mass-weighted distance vectors
with zero angular distance between them, and angular distances
between vectors increase as the differences between the
geometric structures of the associated isomers increase. For
example, consider the isomers cis-1,2-difluoroethene, trans-
1,2-difluoroethene, and 1,1-difluoroethene shown below in
Figure 2. By inspection, one can identify that the mass-weighted
distance vectors for the cis-1,2-difluoroethene and trans-1,2-
difluoroethene isomers (RA, RB) are more like one another than
they are to that of the 1,1-difluoroethene isomer (RC). This is
confirmed when calculating the cosine distances (see Table 1).

Calculating the distances between molecular structures
facilitates analysis through agglomerative hierarchical clustering
(Day and Edelsbrunner, 1984). This analysis provides a visual
representation of the similarity of geometric structures—via
production of a dendrogram plot—and therefore provides some
insight into which species occupy similar regions of the potential
energy landscape with respect to the mass-weighted nuclear
coordinates. There are several methods available for analysis via
agglomerative hierarchical clustering (Day and Edelsbrunner,
1984). One option for this analysis is the weighted pair group
method with arithmetic mean (WPGMA), developed by Sokal
and Michener (Michener and Sokal, 1957; Sokal and Michener,
1958). In each iteration of the WPGMA algorithm, the two
nearest species (P and Q) are combined into a higher-level group
P ∪ Q, thereby reducing the dimension of the m × m distance
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FIGURE 2 | The structures of (top) cis-1,2-difluoroethene, (middle)

trans-1,2-difluoroethene, and (bottom) 1,1-difluoroethene. (Inset Tables)

atomic coordinates and the mass-weighted distance vectors. Geometries

were optimized at the PM6 level of theory as implemented in Gaussian 16

(Frisch et al., 2016).

matrix (e.g., Table 1) by one row and one column. The distance
between group P∪Q and another group R is the arithmetic mean
of the distances between the members of P ∪ Q and R, i.e.,:

d(P∪Q),R =
dP,R + dQ,R

2
(8)

In the case of difluoroethene (Figure 2 and Table 1), the
smallest cosine distance of 0.042 between the cis- and trans-
1,2-difluoroethene isomers would lead to their clustering as P
∪ Q, and the distance between this higher-level group and the
1,1-difluoroethene isomer would be (0.09497 + 0.10219)/2 =
0.09858. A dendrogram showing the hierarchical clustering of the
isomers of difluoroethene is provided in Figure 3. By inspection
of the dendrogram one can immediately see that the cis- and
trans- isomers of 1,2-difluoroethene isomers are more closely
related geometrically than either of these isomers is related
to 1,1-difluoroethene.

Interpolating Intermediate Geometries
When searching complex PESs to find local minima or TSs, it is
sometimes useful to interpolate geometries that are intermediate
to two previously identified isomers. For example, consider the

TABLE 1 | The cosine distance matrix for cis-1,2-difluoroethene,

trans-1,2-difluoroethene, and 1,1-difluoroethene.

Distance cis-1,2-difluoro trans-1,2-difluoro 1,1-difluoro

cis-1,2-difluoro 0 0.04200 0.09497

trans-1,2-difluoro 0.04200 0 0.10219

1,1-difluoro 0.09497 0.10219 0

Geometries were optimized at the PM6 level of theory as implemented in Gaussian 16

(Frisch et al., 2016).

FIGURE 3 | The cosine distance dendrogram for difluoroethene. Molecular

geometries were optimized at the PM6 level of theory as implemented in

Gaussian 16 (Frisch et al., 2016).

case in which a set of isomeric species has been identified, but
one is very dissimilar from the others as determined by the
geometric analysis described above. This might indicate that the
BH search has become kinetically trapped and more attention
should be paid to the region of the PES associated with the
isolated structure. It is then useful to explore the PES between
the more extensively mapped region and the region associated
with the isolated structure to search for intermediates along
the isomerization pathway and/or identify barriers to isomer
interconversion. For the purpose of generating initial guess
structures for the BH algorithm or for QST3 TS calculations,
precise interpolation is not always necessary; (Peng and Bernhard
Schlegel, 1993; Peng et al., 1996) most of the time interpolation
can be accomplished implicitly, thereby improving the efficiency
of the PES mapping. Currently, we have implemented two classes
of implicit interpolation methods, one based on Monte Carlo
sampling and the other based onmolecular dynamics simulation.

Since the acceptance criteria are replaceable as a standard
module in the evaluation part of the BH framework, instead of
searching for low energy structures, one can choose to sample
structures between two givenminima on the PES within specified
similarity constrains. Thus, a Monte Carlo with minimization
approach can be established along a specified path/region of
the PES. By applying an upper threshold to the distance of
the sampled structure from the minima, one can constrain the
search to a hyperdimensional ellipsoidal space between the two
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minima of interest. Within the distance matrix representation,
the interpolation can also be accomplished with optimization
on an interpolated artificial force field. Similar to the idea of
the artificial force induced reaction (Maeda et al., 2014), the
interpolated structure is obtained by minimizing a molecular
mechanics-type force field, V :

V(DC) =
χ

rij

(

DC,ij − rij
)2

(9)

where χ is an arbitrary constant that facilitates optimization, and
DC,ij and rij, are the actual and expected interatomic distance
of the interpolated structure. rij is constructed from the two
minima, DA and DB and the interpolation factor, λ (0 ≤ λ ≤ 1)
as per:

rij = λDA,ij + (1− λ)DB,ij (10)

The force field is thus a collection of harmonic terms whose force
constant is inversely proportional to rij. Compared to the Monte
Carlo approach, using this force field approach in conjunction
with standard geometry optimization techniques is expected to
be more efficient at identifying intermediate structures owing to
the reduced and more pertinent search space.

APPLICATION OF BH SEARCH RESULTS

Experimental measurements are typically concerned with
probing ensembles, rather than single molecules. Consequently,
it is necessary to identify which structures are present in the
probed ensemble and the relative populations of those species.
This can be particularly challenging for chemical systems that
are kinetically trapped in a relatively high-energy region of the
PES and for systems that are fluxional (i.e., those that can easily
access multiple minima on the experimental time scale). To
demonstrate the potential of our augmentation to the original BH
method, we describe our efforts to model the infrared multiple
photon dissociation (IRMPD) spectrum of proton-bound serine
dimer and the temperature-depending collision cross section
(CCS) of protonated alanine tripeptide, [AAA+H]+.

Case Study 1: The IR Spectrum of the
Protonated Serine Dimer
IRMPD spectroscopy has become one of the most effective
techniques for determining the structure of molecular ions
(Jašíková and Roithová, 2018). Ion spectra are recorded
by isolating a specified m/z species in an ion trap and
monitoring the fragmentation efficiency of the molecular ion
as a function of the frequency of a probe laser, which
passes through the ion trap, intersecting with the ion cloud
(Lemaire et al., 2002; Oh et al., 2005; Polfer, 2011). Thus,
IRMPD spectroscopy is a type of action spectroscopy whereby
molecular fragmentation is interpreted as a signature of photon
absorption. A detailed description of the technique is available
in references (Aleese et al., 2006) and (Macaleese and Maître,
2007). By probing in the IR region, one obtains information
on the frequencies of fundamental vibrational transitions, which
may then be compared with the harmonic (and sometimes

anharmonically-corrected) vibrational frequency predictions
of electronic structure software packages. This, in turn,
facilitates structural assignment based on the similarity between
computed and measured spectra, and the identification of
distinguishing/diagnostic spectral features.

Spectroscopic investigation of amino acids and amino acid-
containing clusters continues to be an active field of research
owing to the biological relevance of these systems (Nanita and
Cooks, 2006; Mino et al., 2011; Stedwell et al., 2013; Sunahori
et al., 2013; Armentrout et al., 2014; Seo et al., 2017, 2018;
Heiles et al., 2018; Jašíková and Roithová, 2018; Ma et al.,
2018; Scutelnic et al., 2018). In particular, serine has received
a great deal of attention owing to the implication of the serine
octamer in homochiral genesis (i.e., the origin of L-amino acid
chiral preference in nature) (Counterman and Clemmer, 2001;
Sunahori et al., 2013; Seo et al., 2017; Scutelnic et al., 2018).
Indeed, the Bowers and von Helden groups recently published
a series of high-profile studies detailing the assignment of the IR
spectra for cryogenically-cooled protonated serine octamer, [Ser8
+ H]+, and protonated serine dimer, [Ser2 + H]+ (Seo et al.,
2017, 2018; Scutelnic et al., 2018). To demonstrate the utility of
our augmented BH approach for searching PESs and assigning
IR spectra, we employed our methodology to study [Ser2 +H]+.

To begin, preliminary B3LYP/6-311++G(d,p) optimizations
were conducted for neutral and protonated serine monomers
to obtain partial charges for utilization with the molecular
mechanics force field. For neutral monomers, both canonical
and zwitterionic initial guesses were employed, and only the
canonical structures were obtained. For the protonated isomers,
initial guesses protonated at the carbonyl group, the amine group,
and the side-chain hydroxyl group were optimized; all resulted
in an amine-protonated structure, in agreement with previously
published results (Noguera et al., 2001). After the optimizations,
the atomic partial charges were calculated using the CHelpG
partition scheme to reproduce the electrostatic potential at the
near exterior of the van der Waals radial surface (Breneman
and Wiberg, 1990). DFT optimizations were run in parallel,
threaded across 8 cores, and required approximately 1 hour
per calculation. Following pre-optimization and partial charge
calculations for the monomers, both moieties were combined to
produce the protonated dimer for treatment with the BH code.
To search the potential energy landscape, dihedral angles in both
moieties were given random rotations of−5◦ ≤ φ≤+5◦ on each
iteration of the BH algorithm. The neutral moiety was also given
random rotations of −5◦ ≤ θ ≤ +5◦ around its body-fixed x–,
y–, and z –axes, and random translation of −0.5 Å ≤ η ≤ +0.5
Å in each of the x–, y–, and z–directions. This ensures that the
relative orientations of the two moieties are also sampled. For
geometry optimization, the custom-written BH code interfaces
with the Gaussian software package where the AMBER force-field
is used as the model potential (Wang et al., 2006; Frisch et al.,
2009). Following an initial run of 1,000 steps at a thermal energy
of E ≈ 0.43 eV (T = 5,000K) to generate candidate structures,
several parallel BH runs of 10,000 steps were run at a thermal
energy of E ≈ 0.09 eV (T = 1,000K) to search the PES. In total,
more than 60,000 cluster geometries were sampled.

To benchmark the augmented BH algorithm, eight standard
BH simulations of 5,000 steps were conducted and structural
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TABLE 2 | The results of eight (BH + interpolation) simulations of [Ser2 + H]+.

Simulation # Isomers found Global minimum (Hartree)

BH + Interpolation BH Interpolation

1 70 16 −0.25984 −0.25940

2 74 19 −0.25984 −0.25593

3 60 8 −0.25984 −0.25572

4 67 22 −0.25969 −0.25984

5 62 32 −0.25969 −0.25984

6 76 17 −0.25984 −0.25967

7 67 6 −0.25984 −0.25515

8 51 28 −0.25969 −0.25809

Geometries were optimized at the PM7 level of theory (Frisch et al., 2016). Bold values

emphasize the lowest energy value among all the isomers obtained from the total of 8

searches.

interpolation was subsequently applied to the unique isomers
identified at the PM7 level of theory. Unique [Ser2 + H]+

isomers were identified based on energetic differences (1E ≥
10−5 Hartree) and by using a value of 50.0 Å as the similarity
threshold between isomer pairs within the Euclidean distance
matrix (vide supra). Isomer pairs with Euclidean distances of
more than 150.0 Å were candidates for structural interpolation.
Due to the large number of potential isomer pairs (∼6,000
for each BH simulation), we chose to randomly select only
300 pairs to test the interpolation methodology. For each pair,
the midpoint structure (λ = 0.5) was located as described
above and optimized at the PM7 level of theory. The optimized
geometry of the interpolated structure was then compared to
those in the original BH set using the same energy and Euclidean
distance thresholds as employed previously. The results of the
eight parallel (BH + interpolation) simulations are summarized
in Table 2.

There are two observations worth noting in Table 2. Firstly,
the isomer sets that were identified by the standard BH algorithm
are augmented considerably by post-simulation interpolation; on
average 19 new isomers were identified by interpolating between
the 300 randomly selected isomer pairs found by standard BH
simulations. Secondly, although the global minimum structure
was identified in only five of the eight standard BH simulations of
5,000 steps, introducing post-simulation interpolation improved
the rate of identifying the [Ser2 + H]+ global minimum to seven
out of eight simulations.

Following BH simulation, the 200 unique lowest energy
structures were carried forward to re-optimization at the
B3LYP/6-311++G(d,p) + GD3 level of theory (Becke, 1988,
1993; Grimme et al., 2010). This treatment reduced the total
number of unique isomers to 40. To ensure that these structures
were local minima on the PES (i.e., no negative eigenvalues
in the Hessian matrix, rather than TSs which have one
negative Hessian eigenvalue), harmonic frequency calculations
were undertaken. These calculations also served to predict the
vibrational (viz. IR) spectra of the isomers and to estimate
thermochemical corrections (see sections 1.1 and 1.2 of the
Supplementary Materials for details). Using the optimized
geometries from the density functional theory calculations, the
distance matrix (as described in Equations 2, 3) was constructed.

Linkages for hierarchical clustering were then determined using
Ward’s minimum variance method as implemented in the
Orange software package (https://orange.biolab.si/) (Demsar
et al., 2013), which at each step finds the pair of clusters that
leads to the minimum increase in total within-cluster variance
after merging (Ward, 1963). The resulting dendrogram, which
is plotted in Figure 4, clearly shows four distinct groups of
geometric structures; these groups are highlighted in blue, red,
green, and orange. To better visualize the data, we have also used
multi-dimensional scaling to create a 2D plot of the clustered
data (Wickelmaier, 2003; Borg and Groenen, 2005). Based on
this hierarchical clustering analysis, we clearly see that the BH
algorithm identified several local minima associated with four
distinct regions of the [Ser2 + H]+ PES. The lowest energy
isomer in each of these four regions (viz. isomers 1, 6, 14, and
22) are highlighted and labeled on the MDS plot. This type of
analysis provides insight with respect to how thoroughly a region
of the PES has been searched. For example, if only one or two
data points were identified in the blue region of the MDS plot,
one might decide to initialize an additional BH run starting
from one of the previously identified geometries. Moreover, this
analysis can help guide interpolation efforts to identify TSs or
geometries associated with stable intermediates between two
previously identified minima. For example, upon inspection of
the MDS plot shown in Figure 4, one can identify two outliers
associated with the red group (in the top left of the red section)
and one outlier associated with the green group (bottom left of
the green section). In principle, one might choose to explore
the region between these features and the more closely clustered
structures on the MDS plot via the methods described in section
Interpolating Intermediate Geometries. We choose not to do so
here, however, because these three structures are associated with
isomers 38, 39, and 40 (the highest energy species in our set).

Having identified four low energy geometric groupings
associated with the [Ser2 +H]+ PES, we can then visually inspect
the structures to rationalize their association via hierarchical
clustering. In doing so, we find that the clustered species are
associated with four distinct binding motifs, which we label
motifs 1 (orange), 2 (blue), 3 (green), and 4 (red). The 3D
structures and 2D chemical structures for the lowest energy
isomer in each group is provided in Figure 5. Motifs 1 and 3 are
associated with bidentate complexation between the ammonium
group of the protonated moiety and the neutral moiety. In the
case of motif 1, the ammonium group forms intermolecular
hydrogen bonds with the amino group and the hydroxyl group
of the neutral moiety. In contrast, motif 3 forms intermolecular
hydrogen bonds with the hydroxyl group and the carboxylic
acid group of the neutral moiety. Motifs 2 and 4 are associated
with monodentate complexation between the ammonium group
of the protonated moiety and the neutral moiety. These two
binding motifs differ in terms of the relative orientations of the
two serine moieties and with respect to the presence of a O–
H•••N intramolecular hydrogen bond (IMHB) in the neutral
moiety (motif 2) versus a O–H•••O IMHB in the neutral
moiety (motif 4).

To determine which (if any) of the computed [Ser2 +
H]+ isomers are observed experimentally, calculated harmonic
vibrational spectra were compared against the experimental
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FIGURE 4 | (Left) The distance dendrogram for the protonated serine dimer. Isomer numbers are indicated for each branch of the dendrogram. (Right) A

multi-dimensional scaling 2D projection of the hierarchical clustered data. Isomers are numbered in order of increasing energy above the global minimum (isomer 1).

Standard Gibbs energies (in parentheses) are reported in kJ mol−1. Calculations were conducted at the B3LYP/6-311++G(d,p) + GD3 level of theory as

implemented in Gaussian 09 (Frisch et al., 2009).

IRMPD spectrum using the methodology outlined by Fu and
Hopkins (2018) The experimental spectrum employed was a
concatenation of the spectra recorded by Seo et al. in the 1,000–
1,900 cm−1 region and by Sunahori et al. in the 3,200–3,800
cm−1 region (Sunahori et al., 2013; Seo et al., 2018). These
spectra were digitized using a custom-written python script from
figures in their respective publications, interpolated in 2 cm−1

intervals, then normalized such that the maximum intensity in
each region was set to 1. Calculated IR spectra were first scaled
using appropriate frequency scaling factors and broadened with
a Lorentzian line shape of 15 cm−1 FWHM (Andersson and
Uvdal, 2005; Fu and Hopkins, 2018), and then were similarly
interpolated and normalized. The intensity vectors (i.e., y-
values) of the computed spectra were then compared with the
experimental spectrum by taking the Euclidian distance (dEuc)
between the intensity vectors and assigning a scaled similarity
index as per:

Scaled Similarity = 1−
(

dEuc − dMin
Euc

)

(

dMax
Euc − dMin

Euc

) (11)

Where dMin
Euc is the minimum Euclidean distance amongst the

set of vectors and dMax
Euc is the maximum Euclidean distance

amongst the set of vectors following subtraction of the minimum

distance. This treatment generates a scaled similarity index
that ranges between 0 (worst match) and 1 (best match). The
scaled similarities for the computed [Ser2 + H]+ isomer spectra
are plotted in Figure 6. Inspection of Figure 6 indicates that
Isomer 6 yields a significantly better match to the experimental
spectrum than do other isomers. Moreover, we find that four
of the five best matches are provided by isomers associated
with binding motif 2. This suggests that, despite the fact that
motif 1 is associated with the lowest energy region of the [Ser2
+ H]+ PES at T = 298K and P = 1 atm, the region of the
PES associated with motif 2 is predominantly populated in ion
trap experiments.

Figure 7 plots the experimental IRMPD spectrum for [Ser2 +
H]+ and the computed spectra for isomers 1, 6 (best match), 14,
and 22—the lowest energy isomers associated with each of the
four binding motifs. The diagnostic peaks, which are highlighted
in blue in Figure 7, are associated with the HNH angle bending
motions (ca. 1,450 cm−1) and N–H bond stretching motions (ca.
3,250 cm−1) of the ammonium and amino groups. Although
isomer 1 is the global minimum structure based on standard
Gibbs energies, the spectrum of isomer 6 (+5.6 kJmol−1) is much
more representative of the experimental spectrum. This was also
noted by Sunahori et al., who identified isomer 6 in their study
(Sunahori et al., 2013). Kong et al. also identified isomer 6 in
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FIGURE 5 | The lowest energy isomers for each low energy binding motif of

the protonated serine dimer. Motifs 1 and 3 show bidentate coordination

between the two moieties, whereas motifs 2 and 4 exhibit monodentate

coordination between the two moieties.

their work, but apparently did not consider it in their spectral
assignment (Kong et al., 2006). Note that harmonic spectra were
scaled by 0.9679 in the 1,000–2,000 cm−1 region and 0.95 in the
3,000–4,000 cm−1 region, as recommended by NIST and based
on previous work for similar systems (Andersson and Uvdal,
2005; Fu and Hopkins, 2018).

It is necessary to highlight three caveats for the above example
of identifying the spectral carrier of [Ser2 + H]+. First, to create
the experimental spectrum that we used in our assignment,
we collated the results of two separate studies (Sunahori et al.,
2013; Seo et al., 2018). It is not necessarily true that the same
ensemble populations were produced under the experimental
conditions employed in both of these studies. However, given
that isomer 6 provides the best match to both regions of the
experimental spectrum, it seems to be that instrument conditions
were similar in these two cases. A second consideration is the fact
that peak intensities in IRMPD spectra are not necessarily well-
modeled by computed absorption spectra owing to the fact that
IRMPD intensities are dependent on absorption cross sections
and the coupling efficiency for accessing dissociative channels.
(Parneix et al., 2013) The methodology outline above assumes
that the computed linear absorption intensities are representative
of IRMPD intensities or, barring that, that the IRMPD intensities

FIGURE 6 | Scaled Euclidean similarities of computed harmonic vibrational

spectra to experimental IRMPD spectra for the protonated serine dimer.

Isomer 6 gives the best match and Isomer 38 gives the worst match amongst

the 40-isomer set. Isomers are ordered in increasing energy from left to right in

each motif.

FIGURE 7 | Experimental IRMPD spectra and computed harmonic vibrational

spectra for the protonated serine dimer. The experimental spectra were

adapted from Seo et al. (2018) and Sunahori et al. (2013). The computed IR

spectra are associated with the lowest energy isomer for each of the four

binding motifs. Scaling factors of 0.9679 and 0.95 were employed for the

1,000–1,900 cm−1 and 3,200–3,800 cm−1 regions, respectively (Andersson

and Uvdal, 2005; Fu and Hopkins, 2018).

for a given band vary similarly from the computed intensity for
all isomeric species. Finally, the above treatment also assumes
that the computed harmonic frequencies suitably model the
experimental spectrum. The validity of this assumption depends
on the accuracy of themodel chemistry and on the anharmonicity
of the system being studied. While the [Ser2 +H]+ is apparently
well-modeled by the B3LYP/6-311++G(d,p) + GD3 approach
employed here, one should in general be aware of the anharmonic
nature of hydrogen bonds and shared protons (Schofield et al.,
2005; Oomens et al., 2009; Steill et al., 2011; Ieritano et al., 2016).

Frontiers in Chemistry | www.frontiersin.org 9 August 2019 | Volume 7 | Article 519

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zhou et al. Augmenting Basin-Hopping With ML

Case Study 2: Dynamic Collision Cross
Section of Protonated Alanine Tripeptide
Ion mobility spectrometry (IMS) is widely employed in the
detection of illicit substances and for structural elucidation of
ions (Collins and Lee, 2002; Verkouteren and Staymates, 2011;
Lapthorn et al., 2013; Lanucara et al., 2014; Cumeras et al.,
2015; Cajka and Fiehn, 2016; Paglia and Astarita, 2017). The
success of IMS in determining analyte structure relies on accurate
modeling of ion structure and subsequent calculation of CCSs for
comparison with those determined experimentally. Experimental
CCSs are obtained by relating the ion mobility, K, to CCS via the
Mason-Schamp Equation (Mason and Mcdaniel, 1988; Ieritano
et al., 2019b):

K =
√
18π

16

√

1

mion
+

1

mgas

ze
√

kbT

1

�avg

1

N
(12)

Where mgas is the mass of the buffer gas, N is the number
density of the gas, mion is the mass of the ion, z is the ion
charge state, e is the elementary charge, kb is the Boltzmann
constant, T is the temperature, and �avg is the orientationally-
averaged CCS. Typically, ion structures are viewed as rigid
and ensembles are approximated as being composed of only
a single structure in cases where multiple distinct signals are
unresolved. This view is somewhat tenuous, particularly in the
differential mobility spectrometry (DMS) variant of IMS wherein
rapidly oscillating electric field conditions drive separations
based on mobility differences between the high- and low-field
portions of the applied waveform (Guevremont and Purves,
1999; Guevremont, 2004; Krylov et al., 2007, 2009; Krylov
and Nazarov, 2009; Hopkins, 2015, 2019). The phenomenon
of differential ion mobility is still not well-understood, and
there is as yet no first principles model (Guevremont and
Purves, 1999; Guevremont, 2004; Krylov et al., 2007, 2009;
Krylov and Nazarov, 2009; Hopkins, 2015, 2019). However,
one can view the effective temperature of an analyte ion in
terms of the changing field conditions; the ion is relatively
cold under low-field conditions and relatively hot under high-
field conditions (Viehland and Mason, 1995; Robinson et al.,
2008; Hopkins, 2019). By estimating ion temperatures with
two-temperature theory (Robinson et al., 2008; Siems et al.,
2016), we find that field-induced heating leads to effective ion
temperature variations in the range of 300–800K during one duty
cycle of the commonly applied maximum electric field in the
DMS cell (Hopkins, 2019). The variation in electric field, and
therefore effective ion temperature, affects the ion mobility in
two ways, the most obvious being the reduction of mobility with
increasing temperature as predicted by Equation (12). Somewhat
more subtle is the fact that �avg must also be temperature-
dependent since at elevated temperatures ions are able to access
a larger region of the associated PES (assuming equipartition
amongst the various DoFs of the molecule). Consequently,
to accurately model an ion’s �avg , one must identify which
geometric structures are accessible under the given experimental

conditions and estimate the contribution of that structure to the
time-averaged CCS of the ion.

If we consider the case of protonated alanine tripeptide,
[AAA + H]+, there are several internal DoFs associated with
dihedral angle rotations that can yield a variety of conformations.
Upon application of the BH algorithm to search the PES of
the [AAA + H]+ molecular ion, followed by re-optimization
of the candidate structures at the B3LYP/6-31++G(d,p) +
GD3 level of theory (Becke, 1988, 1993; Grimme et al., 2010),
fourteen low energy conformations were identified. These
structures are shown in Figure 8 along with their relative
standard Gibbs energies (in kJ mol−1) (see sections 2.1 and
2.2 of the Supplementary Materials for details). Calculating the
cosine distances between the various mass-weighted distance
vectors and subsequent application of WPGMA agglomerative
hierarchical clustering yields the dendrogram plot shown in
Figure 8. Five unique sets of conformers are highlighted in the
dendrogram. The set highlighted in yellow, of which the global
minimum conformer is a member, contains compact structures
that are stabilized by an IMHB between the protonated N-
terminus and the carbonyl oxygen atom of the C-terminus.
The set highlighted in green also contains relatively compact
structures, but hydrogen bonding instead occurs between the
protonated N-terminus and the hydroxyl group of the C-
terminus. The set highlighted in red, on the other hand,
contains elongated structures (i.e., the N- and C-termini do not
interact). Conformers 6 and 9 (blue and orange, respectively) are
intermediate species between the compact species (yellow and
green sets) and the elongated species (red set). In the case of
conformer 6, the N-terminus forms an IMHB with the nearest
amide carbonyl rather than with the C-terminus. In contrast, the
C-terminus of conformer 9 forms an IMHBwith the most distant
amino nitrogen instead of with the N-terminus.

If we calculate the relative Gibbs energies of the [AAA + H]+

conformers as a function of temperature, an interesting picture
emerges. Owing to differences in the entropic contributions
to the Gibbs energies, at low temperature the compact, H-
bonded conformers associated with the yellow group are the
dominant species in the ensemble, whereas at high temperature
the elongated, non-H-bonded species in the red group dominate.
One can estimate the relative populations of the various
conformers via (Oh and Zeng, 1999; Vehkamäki, 2006; Hopkins,
2019):

Ni = N0e
−1Grel

kBT (13)

Where N0 is the relative population of the lowest energy
cluster (usually set to 1), Ni is the relative population of the
ith cluster, 1Grel is the Gibbs energy of formation relative to
the lowest energy cluster, and kB is Boltzmann’s constant. By
calculating the relative populations of the clusters as a function
of temperature (at a constant pressure of P = 1 atm), one can
produce a temperature-dependent relative population plot as
shown in Figure 9.

Figure 9 shows that at ca. T= 420K [AAA+H]+ conformer
3 becomes the most populated species in the ensemble (i.e.,
the global minimum structure on the Gibbs energy surface). As
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FIGURE 8 | (Left) The cosine distance dendrogram for protonated alanine tripeptide, [AAA+H]+. (Right) Molecular geometries and relative standard Gibbs energies

(kJ mol−1; in parentheses). Calculations were conducted at the B3LYP/6-311++G(d,p) + GD3 level of theory as implemented in Gaussian 16 (Frisch et al., 2016).

Conformers are numbered in order of increasing energy relative to that of the global minimum (GM) structure.

the temperature increases further, conformer 3 is increasingly
stabilized with respect to conformers 1 (the low T global
minimum) and 2. At temperatures above 660K, conformers
1 and 2 become minor contributors to the overall ensemble
population in favor of conformers 3 and 8. This “tilting” of the
Gibbs energy landscape as a function of temperature essentially
decants the conformers associated with the yellow set into the
red set (see Figure 8) as field-induced ion temperature increases,
and back again as the temperature decreases during the low
field portion of the oscillating DMS waveform. This dynamic
process of peptide unfolding and re-folding yields a dynamic
temperature-dependent ion CCS that, along with the effect of
increased carrier gas viscosity at higher temperature (Mason
and Mcdaniel, 1988; Hopkins, 2019), gives rise to differential
mobility behavior. If one assumes that the ion quickly reaches
thermal equilibrium, which is likely given the conditions of
the DMS cell (1 atm of carrier gas), one can estimate the
temperature-dependent ion CCS as a sum of the Boltzmann-
weighted conformer CCSs (Ieritano et al., 2019a). This is
plotted for [AAA + H]+ in Figure 10. It is worth noting
that the experimentally-measured T ≈ 293K value of �ave(N2)
= 151 Å2 (Bush et al., 2012) is well-modeled by the T =
300K Boltzmann-weighted sum of the various isomer CCSs as
calculated using the MobCal-MPI code (https://uwaterloo.ca/
hopkins-lab/mobcal-mpi), �Boltzmann(N2) = 151.3 Å2 (Ieritano

et al., 2019b). In comparison, the calculated CCS for the static
global minimum structure is �Boltzmann(N2) = 148.7 Å2. This
demonstrates that even at a relatively low fixed temperature, there
is some benefit in considering the relative populations of the
conformeric species present in the experimental ensemble.

SUMMARY

Because the PESs of complex, fluxional molecular systems tend
to be characterized by multiple funnels (viz. collections of
closely related local minima), the BH framework has proven
to be an effective search and optimization strategy (Locatelli,
2005; Olson et al., 2012). However, owing to the stochasticity
of the algorithm, which is predominantly due to the random
perturbative component, it is sometimes useful to introduce
additional criteria which limit the regions of exploration on
the PES. This has been traditionally accomplished by exploring
specific degrees of freedom (e.g., dihedral rotations) on the
potential energy landscape and by introducing a thermal energy
distribution as a probabilistic means of accepting/rejecting
random geometric perturbations. We have also introduced
techniques from unsupervised machine learning, specifically
distance matrices and hierarchical clustering, to further augment
the BH algorithm. Although currently implemented as a separate
module, these machine learning augmentations will in the
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FIGURE 9 | The relative populations of the low energy conformers of

protonated alanine tripeptide, [AAA+H]+, as estimated via Gibbs energy

calculations over the temperature range T = 300–800K. Calculations were

conducted at the B3LYP/6-311++G(d,p) + GD3 level of theory as

implemented in Gaussian 16 (Frisch et al., 2016). Conformers are numbered in

order of increasing energy relative to that of the global minimum (GM; i.e.,

conformer 1) structure.

future be incorporated for on-the-fly geometric analyses, which
would ultimately provide additional control and efficiency during
execution of the search algorithm afforded by reducing the
search space to pertinent regions connecting known stationary
points. This is particularly useful in identifying intermediate
local minima and TSs between known isomers. Moreover,
utilizing these same methods post-BH provides deep insights
into the relation between stationary points and how these are
partitioned on the potential energy landscape. This can be
of great benefit in modeling experimental ensembles and in
rationalizing the observation of kinetically-trapped species and
dynamic molecular geometries.

In this manuscript we highlight the power of the BH
framework in two case studies: (1) assigning the spectral
carrier(s) of the IRMPD spectrum of [Ser2+H]+ and (2)
modeling the temperature-dependent collision cross sections of
[AAA+H]+. In case study 1, we show that a thorough mapping
of the potential energy landscape is warranted to identify the
species probed in gas phase ion spectroscopic studies of weakly-
bound clusters. In the case of the protonated serine dimer, rather
than observing the lowest energy isomer (as expected based on
standard Gibbs energies), Seo et al. and Sunahori et al. observed
a species that was associated with a relatively remote, higher
energy region of the cluster PES (Sunahori et al., 2013; Seo et al.,
2018). It is still an open question as to whether this was due to
kinetic trapping during production or formation of this species
in situ due to field-induced heating within the ion traps. In case
study 2, we show that mapping PESs to identify low energy
conformer geometries, which were subsequently refined at a
higher level of quantum chemical theory, provides insight into
how molecular geometry changes with increasing temperature.
For [AAA+H]+, increasing the temperature of the system results
in the dissociation of IMHBs and the formation of larger
elongated structures compared to the compact H-bonded species

FIGURE 10 | The Boltzmann-weighted CCS of [AAA + H]+ as a function of

temperature at P = 1 atm. The dashed blue line shows the

orientationally-averaged CCS, �ave, measured in N2 at room temperature

(T ≈ 293K) (Bush et al., 2012).

favored at low temperature. We also demonstrate that modeling
molecular collision cross sections as a Boltzmann-weighted sum
of the CCSs for accessible conformers provides an accurate
estimate of those measured experimentally (0.3 Å2 difference). It
should be noted that this treatment assumes that the accessible
conformers are readily interconvertible, and that thermal
equilibrium is quickly established. In principle, one could
also employ the interpolation techniques described in section
Interpolating Intermediate Geometries to calculate barriers to
interconversion and validate this assumption. However, the fact
that our calculations yield results that are in excellent agreement
with experimental measurements indicates that, in this case, the
assumption is valid.

Ultimately, the BH framework is a useful approach to
characterizing the structures and dynamics of chemical systems
which exhibit PESs of high dimensionality. Examples of such
systems range from weakly-bound nanoclusters to biological
macromolecules. We note that, despite the success of our current
implementation, the development of the BH framework by
ourselves and others is ongoing. We expect that further tuning
will improve general performance and, owing to the versatility of
the method, that BH performance for specific tasks will continue
to improve by tailoring key features of the algorithm.
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