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Identification of protein covalent modifications (adducts) is a challenging task mainly due

to the lack of data processing approaches for adductomics studies. Despite the huge

technological advances in mass spectrometry (MS) instrumentation and bioinformatics

tools for proteomics studies, these methodologies have very limited success on the

identification of low abundant protein adducts. Herein we report a novel strategy inspired

on the metabolomics workflows for the identification of covalently-modified peptides that

consists on LC-MS data preprocessing followed by statistical analysis. The usefulness

of this strategy was evaluated using experimental LC-MS data of histones isolated from

HepG2 and THLE2 cells exposed to the chemical carcinogen glycidamide. LC-MS data

was preprocessed using the open-source software MZmine and potential adducts were

selected based on the m/z increments corresponding to glycidamide incorporation.

Then, statistical analysis was applied to reveal the potential adducts as those ions

are differently present in cells exposed and not exposed to glycidamide. The results

were compared with the ones obtained upon the standard proteomics methodology,

which relies on producing comprehensive MS/MS data by data dependent acquisition

and analysis with proteomics data search engines. Our novel strategy was able to

differentiate HepG2 and THLE2 and to identify adducts that were not detected by

the standard methodology of adductomics. Thus, this metabolomics driven approach

in adductomics will not only open new opportunities for the identification of protein

epigenetic modifications, but also adducts formed by endogenous and exogenous

exposure to chemical agents.

Keywords: adductomics, metabolomics, mass spectrometry, chemometrics, toxicology, acrylamide, glycidamide,

histones

INTRODUCTION

Protein covalent adducts, which can either result from exposure to endogenous or exogenous
chemical electrophiles (i.e., non-enzymatic) or be enzymatically driven (i.e., post translational
modifications- PTMs), have a key role at the onset of multiple health issues, including cancer and
immune effects (Nunes et al., 2016; Gonzalez-Morena et al., 2017). Therefore, adductomics studies
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focused on the identification of key adducted proteins, on the
nature and the extent of the covalent modification, along with
the identification of the sites of adduction within the protein,
represent a huge opportunity for a better understanding of events
underlying diseases and chemically-induced adverse reactions.

As part of our research program on understanding the role
of histones covalently modified by chemical carcinogens in
the onset of chemically-induced cancer, we were challenged to
overcome the major analytical limitation of adductomics studies:
the fraction of adducted proteins is very lowwhen compared with
non-adducted proteins in vivo. Namely, human serum albumin
(HSA) adducts occur at 0.1 mol% levels, or less, in vivo (reviewed
by Sabbioni and Turesky, 2017). A frequent strategy to overcome
this issue is to monitor the formation of covalent adducts in
targeted (hot-spots) residues of proteins, using multiple reaction
monitoring (MRM) acquisition to target specific parent and
fragments ions (reviewed by Nunes et al., 2019). Despite the
indisputable role of such approaches for the identification of
biomarkers of exposure (reviewed by Carlsson et al., 2019),
they are ineffective in providing information on the underlying
mechanisms of the chemically-induced adverse reactions. These
specific studies demand not only the identification of adducted
proteins that have toxicological roles but also which residues on
the protein weremodified. Themajor trend in such investigations
is to adopt the MS-based shotgun proteomics workflows that
traditionally rely on the chromatographic separation of digested
peptides followed by a data dependent analysis (DDA), where
MS and MS/MS data of selected precursors are afforded in a
single run, thereby allowing subsequent adduct identification
using database search engines that compare experimental and
theoretical MS/MS spectra (reviewed by Gan et al., 2016; Tailor
et al., 2016; Sabbioni and Turesky, 2017). Despite this workflow
has been successfully applied to adductomics studies for the
identification of high-abundant covalent adducts (reviewed by
Nunes et al., 2019), it is easy to understand the failure of
this strategy in the identification of low-abundant adducted
peptides in vivo and ex vivo. In fact, by DDA methods only
10% of detectable peptides are identified and these methods are
linked with low reproducibility across runs (Michalski et al.,
2011). Basically, by this methodology we must be extremely
fortunate for the parent ion of a covalently-modified peptide to
be picked for MS/MS analysis, in at least one sample, enabling
its subsequent identification by proteomics search engines. Data
Independent Analysis (DIA) strategies (reviewed by Law and
Lim, 2013) emerged to overcome DDA reproducibility and
sensitivity drawbacks by fragmenting all peptides in a given
m/z window. However, while this approach presents major
advantages for proteomics studies (reviewed by Vidova and
Spacil, 2017), its applicability to adductomics studies is still
limited and focused mostly in targeted-peptide site-specific
modifications (Bruderer et al., 2015; Porter and Bereman, 2015;
Carlsson et al., 2017).

The failure of suchMS-based strategies on the identification of
toxicologically relevant low abundant adducted protein residues
is not a result of instrumental limitations but rather of the lack
of adequate analytical workflows for these specific adductomics
studies. Actually, while dealing with proteins, the goals of

adductomics are completely distinct from the ones of proteomics
studies. Adductomics, is not aimed at observing alterations on
the protein profiles. Instead, it is focused on identifying adducted
peptides (which can be considered small molecules) that are
present (or are more abundant) in a given population of samples
but absent (or less abundant) in control samples. This is much
closer to the metabolomics goals than to the proteomics ones.
Therefore, this led us to propose a novel approach inspired by
the workflow commonly used in metabolomics studies consisting
on LC-MS data preprocessing followed by statistical analysis
(reviewed by Katajamaa and Oresic, 2007; Dunn et al., 2011).

To test the applicability of this strategy, two distinct types of
hepatic cell lines, the tumorigenic HepG2 (ATCC R© HB-8065TM)
and the non-tumorigenic THLE-2 (ATCC R© CRL2706TM), were
exposed to distinct doses of glycidamide. This epoxide is the
reactive metabolite responsible for the carinogenic effects of
the environmental and food pollutant acrylamide (Beland et al.,
2015) and is known to react with proteins and DNA yielding
covalent adducts that are stable under enzymatic, chemical and
thermal digestion/detachment pre-analysis conditions (Wilson
et al., 2009; Von Tungeln et al., 2012; Beland et al., 2015)
(Figure 1), thereby enabling their subsequent identification by
MS-based methodologies. Histones isolated from these cell lines
were digested to peptides and analyzed by LC-MS in DDAmode,
which produced both MS and MS/MS data. The open source
software MZmine (Katajamaa et al., 2006; Pluskal et al., 2010)
was used for LC-MS data preprocessing and only those ions with
m/z increments corresponding to glycidamide incorporation
were selected for statistical analysis. Multivariate analysis was
then performed to select those ions differently present in cells
exposed and not exposed to glycidamide. The results of our
method were compared with the ones obtained upon analysis of
MS/MS data obtained from DDA with the proteomic data search
engines Mascot, Global Proteome Machine interface (GPM
Fury) (Beavis, 2006) that uses X!Tandem (Craig and Beavis,
2004), MaxQuant (Craig and Beavis, 2004), and MSFragger
(Kong et al., 2017).

MATERIALS AND METHODS

Cell Cultures
Two liver cell lines were used in this study: the non-
tumorigenic cell line THLE-2 (ATCC R© CRL2706TM) and the
hepatocellular carcinoma cell line HepG2 (ATCC R© HB-8065TM).
Both cell lines were obtained from the American Type Culture
Collection (ATCC).

Cells were maintained at 37◦C in a humidified 5% CO2

atmosphere. THLE2 cells were cultured in BEGM (CC-
3170; LonzaTM) plus the provided supplements and following
the indications by ATCC, and supplemented, in addition,
with 10 % FBS (S 0615; InvitrogenTM, Life Technologies)
and 1% antibiotic-antimycotic (15240062; InvitrogenTM, Life
Technologies). HepG2 cells were cultured in DMEM 1X (41965-
039; InvitrogenTM, Life Technologies) supplemented with 10%
FBS and 1% antibiotic-antimycotic. Prior to any experiment,
cells were synchronized under starvation (FBS free culture
medium) overnight.
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FIGURE 1 | Acrylamide bioactivation to glycidamide and formation of stable

covalent adducts with bionucleophiles. Glycidamide stems from cytochrome

P450 isoform 2E1 (CYP 2E1)-catalyzed oxidation of acrylamide, and

bionucleophiles (DNA bases and amino acid residues bearing a nucleophilic

side chain) can promote the ring-opening reaction of this reactive metabolite

yielding stable covalent adducts.

Glycidamide Exposure and Sampling
Glycidamide (Sigma-Aldrich) was prepared at 1M in DMSO.
Cells were incubated with glycidamide at 0.1, 1, and 5mM for
16 h. For each experiment, two control conditions were applied:
control medium or DMSO 0.1% (v/v). For both cell lines, 2× 106

cells cultured in a 125 cm2 T-flask were used in each replicate of
all culture conditions. The number of replicates for each cell line
and condition was between 3 and 6.

Histone Isolation and Digestion
Nuclear histones were isolated by an adaptation of the
methodology described by Lin and Garcia (2012). Specifically,
cells were first resuspended in nuclei isolation buffer (15mM
Tris–HCl pH 7.5, 60mM KCl, 15mMNaCl, 5mMMgCl2, 1mM
CaCl2, 250mM sucrose, and 0.2% NP-40) supplemented with
the following inhibitors: 1mM DTT, 0.5mM AEBSF, and 10mM
sodium butyrate. The suspension was subsequently centrifuged
(1,000 × g for 5min at 4◦C) and supernatants were discarded.
The nuclear fraction was washed with nuclei isolation buffer
(without NP-40) and centrifuged (1,000 × g for 5min at 4◦C).
Pellets were subsequently homogenized in 0.4N H2SO4 and
incubated at 4◦C with shaking for 2 h. The nuclei were pelleted
at 3,400 × g for 5min, and proteins were precipitated from the
supernatant with 25% TCA (w/v) for 1 h at 4◦C. The pellet was
then washed with pure acetone to remove residual TCA. Protein
concentrations were assessed by the Bradford assay.

Histones were digested with trypsin in a 50mM ammonium
bicarbonate buffer for 2 h (with a 1:10 w/w trypsin/histone ratio)
(Nunes et al., 2016). The digestions were quenched by addition of
formic acid.

Liquid Chromatography-High Resolution
Mass Spectrometry (LC-HRMS)
Following histones digestion, the peptides were analyzed by
liquid chromatography (Ultimate 3000 RSLCnano system,
Thermo Scientific, Bremen, Germany) interfaced with a Bruker
Impact II quadrupole time-of-flight mass spectrometer equipped
with a CaptiveSpray (nanospray) source (Bruker Daltoniks,
Bremen, Germany). Chromatographic separation was performed
on an Acclaim PepMap C18 column (75µm × 150mm, 3µm
particle size; Thermo Scientific). The mobile phase consisted of
water containing 0.1% formic acid (A) and acetonitrile:water
(80:20) containing 0.1% formic acid (B). The elution conditions
were as follows: 2% B for 5min, 2–50% B over 45min, 50–
60% B over 10min, 60–65% B over 5min, 95–2% B over 3min,
and 2% B for 27min. The injection volume was 1 µL, the
flow rate was 300 nL/min, and the column was maintained at
40◦C. Quality control samples (a tryptic peptide digest of bovine
serum albumin) were analyzed along with the analytical runs
(after every 10 samples) in order to check the consistency of
analysis regarding signal intensity and retention time deviations.
A Lock Mass (HP-121 Calibration Standard, m/z 1221.9906;
Agilent Technologies, Santa Clara, CA, U.S.A.) was used during
the analysis for spectrum calibration. Data were acquired in
positive mode from m/z 100 to 2200 at an acquisition rate
of 5 spectra/sec, using a data-dependent auto-MS/MS method
to select the 10 most abundant precursor ions per cycle for
fragmentation. The MS source parameters were set as follows:
dry gas heater temperature, 150◦C; dry gas flow, 3 L/min; and
capillary voltage, 1600 V.

LC-MS Data Preprocessing Followed by
Statistical Analysis
LC-MS Data Preprocessing
The acquired LC-MS data files were converted to ∗.mzXML
files using the ProteWizard MSconvert tool (Chambers et al.,
2012). LC-MS data was then preprocessed with the open-source
software MZmine (Katajamaa et al., 2006; Pluskal et al., 2010)
and consisted of peak detection, removal of isotopes, correction
of retention time, peak matching and peak filling.

Peak detection was performed in three steps: (i) mass
detection with noise value = 20,000 and retention time
range = 17–48min; (ii) chromatogram builder with minimum
time span = 0.2min, minimum height = 20,000 and m/z
tolerance = 0.005 Da or 15 ppm; (iii) deconvolution with peak
width = 0.2–1.5min, noise = 20,000. Isotopes were removed
using the isotopic peak grouper with m/z tolerance = 0.005 Da
or 10 ppm, retention time tolerance = 3.5min and minimum
standard intensity = 20,000. Then, a filter was applied to
keep only those ions with at least 2 peaks in their isotope
pattern. Retention time was corrected with m/z tolerance =

0.005 Da or 10 ppm, retention time tolerance = 3.5min and
minimum standard intensity = 20,000. Peak matching among
samples was performed using the RANSAC aligner with m/z
tolerance = 0.005 Da or 10 ppm, retention time tolerance before
and after correction = 3.5 and 2min respectively, RANSAC
iterations = 0, minimum number of points = 40%, threshold
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value = 3.5 and required same charge state. Gap filling was
applied using the method peak finder with retention time
correction with intensity tolerance = 40%, m/z tolerance =

0.005 Da or 10 ppm, retention time tolerance= 1 min.
Taking into consideration that under ESI ionization

multicharged ions are obtained for peptides, only ions with
charge larger or equal to +2 were kept. The resulting list was
split by ion charge (+2, +3, and +4). Potential adducts were
searched for each ion charge list using the adduct search tool of
MZmine. Knowing the mass increment of 87.0320 between the
non-modified peptide and the glycidamide-modified peptide,
adduct search was performed for increments in m/z of 43.516,
29.011 and 21.758 for ions with charge +2, +3 +4, respectively
(m/z tolerance = 0.005 Da or 10 ppm, maximum relative adduct
peak height = 70%). A final filter was applied to keep only those
potential adducts identified in at least half of the samples exposed
to the highest dose of glycidamide in each cell line.

Statistical Analysis
Data was centered and unit variance scaled before statistical
analysis. Multivariate analysis was performed using Principal
Component Analysis (PCA) and Partial Least Square (PLS)
Analysis with SIMCA software package version 14.1 (MKS
Umetrics, Umeå, Sweden).

MS/MS Data Processing by Proteomics
Search Engines
The acquired MS data files of the samples exposed to the
highest dose of glycidamide were converted to ∗.mgf format
using the Compass DataAnalysis software (Bruker Daltonics).
Four distinct search engines were used for peptide identification:
Mascot (v2.6, Matrix Science Ltd., London, UK) (Perkins et al.,
1999), the Global Proteome Machine interface (GPM Fury)
(Beavis, 2006) that uses X!tandem (Craig and Beavis, 2004),
MaxQuant (Cox and Mann, 2008) and MSFragger (Kong et al.,
2017). Search parameters were the same for all four methods and
included precursor ion mass tolerance = 15 ppm, fragment ion
mass tolerance = 30–40 ppm, number of missed-cleavages ≤3
and variable amino acidmodifications= oxidation ofmethionine
and glycidamide incorporation (mass increment of 87.0320 Da)
at the most nucleophilic amino acids, namely lysines, cysteines,
serines, histidines, and arginines. The acquired MS/MS spectra
was searched against an in-house compiled human histones
database. All human histones sequences were obtained from
Uniprot (UniProt Consortium, 2007). Lastly, only in the case
of MSFragger, the generated pepXML files were processed by
Peptide Prophet (Keller et al., 2002) via the Trans-Proteomic
Pipeline (v5.1.0) (Deutsch et al., 2010) with the following settings:
use accurate mass binding using PPM, use a non-parametric
model and report decoy hits.

Several filters were applied to each search engine. For Mascot
and X!Tandem, the significance threshold was set to p < 0.05.
Additionally, in Mascot, only peptides identified withMascot Ion
Score > 13 were considered. For MaxQuant, the minimum score
for modified peptides was set to 40. For MSFragger, the list of
peptides obtained after running the Peptide Prophet, was filtered
with a peptide probability> 0.9. Nonetheless, only those peptides

containing glycidamide in at least half of the samples exposed to
the highest dose of glycidamide in each cell line were considered.
All spectra corresponding to glycidamide-modified peptides were
manually checked.

Stoichiometric Ratios
After adducts identification, stoichiometric ratios between the
peak area of each adduct and corresponding non-modified
peptide were calculated using MZmine. Targeted peak detection
was performed with the list of the adducted and non-
modified peptides containing their m/z and retention times
and the following parameters: shape tolerance = 10%, noise
level = 1000, m/z tolerance = 0.005 or 15 ppm, retention
time tolerance = 3.5min. Peak matching among samples was
performed using the RANSAC aligner withm/z tolerance= 0.005
Da or 10 ppm, retention time tolerance before and after
correction= 3.5 and 2min, respectively, RANSAC iterations= 0,
minimum number of points = 10%, threshold value = 3.5.
Gap filling was applied using the method peak finder with
retention time correction with intensity tolerance = 10%,
m/z tolerance = 0.005 Da or 10 ppm, retention time
tolerance= 1 min.

RESULTS AND DISCUSSION

Metabolomics-Inspired Approach: LC-MS
Data Preprocessing Followed by Statistical
Analysis
LC-MS data was preprocessed in five steps: peak detection,
removal of isotopes, correction of retention time, peak matching
and peak filling. This initial processing step generated a list
of 20,250 ions, with their corresponding m/z, ion charge,
retention time and peak area for each sample. Potential adducts
were subsequently extracted by the adduct search tool of
MZmine, using the mass increment of 87.0320 corresponding
to glycidamide incorporation. This procedure led to a list of
718 ions corresponding to potential adducts. Modified-peptides
resulting from glycidamide incorporation are expected to be
observed in at least half of the samples exposed to the highest
dose of glycidamide in each cell line. This enabled to reduce the
number of ions corresponding to potential glycidamide-modified
peptides to a final list of 57 ions.

After data preprocessing, multivariate analysis was performed
with the 47 samples and 57 potential adducts. Principal
Component Analysis (PCA) was used to identify the principal
sources of the variance of the data. Cell type had a clear
influence in the data, while glycidamide exposure seemed to have
little influence (Figure 2A). Then, PCA models were built for
each cell line. Samples exposed to the highest concentration of
glycidamide were clustered apart from the rest of the samples in
both HepG2 and THLE-2 cell lines (Figures 2B,C). Additionally,
THLE-2 cells exposed to 1mM appeared also separated from
controls and cells exposed to 0.1mM of glycidamide (Figure 2C).

In view of these results, partial least square (PLS) analysis
was conducted for each cell line with glycidamide concentration
as the dependent variable. The PLS model for HepG2 cells
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FIGURE 2 | Score plots of PCA. (A) PCA with all samples (n = 47). First two

components covered 22 and 19% of the variance of the data, respectively. (B)

PCA with HepG2 cells (n = 26). First two components covered 31 and 14% of

the variance of the data, respectively. (C) PCA with THLE2 cells (n = 21). First

two components covered 21 and 16% of the variance of the data,

respectively. Samples were colored according to glycidamide concentration

and labeled according to the cell line.

had 2 components that explained 45% of the X variation
and 93% of the Y variation (Supplementary Figure 1A).
The PLS model for THLE-2 cells had 1 component that
explained 21% of the X variation and 93% of the Y variation
(Supplementary Figure 1B). Both models were statistically
significant (p < 0.001). In order to identify the peptides affected
by glycidamide concentrations (glycidamide adducts), variable
importance on the projection (VIP) values were obtained for each

ion. Those ions with a VIP value> 1.5 (value chosen empirically)
were selected as potential glycidamide adducts: n = 9 for HepG2
cells and 10 for THLE-2 cells. Extracted ion chromatograms
were obtained for each potential adduct and its corresponding
non-modified peptide to check their chromatographic shape
and isotopic distribution in controls and cells exposed to the
highest concentration of glycidamide. Five ions from the lists of
each cell line were discarded due to noise like chromatogram,
identification of the ion in control samples or non-correct ion
charge assignment. The final list of ions was manually checked
to confirm their absence from control samples, consisting of
the same cell lines only exposed to cell medium or to cell
medium and DMSO (the solvent used to dilute glycidamide),
thereby supporting the fact that these ions corresponded to
glycidamide-adducted peptides. The final list of glycidamide
adducts contained 4 common ions for both HepG2 cells and
THLE-2 with m/z 565.7740, 580.3200, 627.6670, and 754.0300
and 1 unique ion for THLE-2 cells withm/z 467.0030 (Table 1).

Comparison Between Our Novel
Metabolomics-Inspired and the Standard
Adductomics Approaches
MS/MS data obtained from DDA of samples exposed to the
highest dose of glycidamide were analyzed by four distinct
database-dependent methods (Mascot, GPM Fury, MaxQuant
and MSFragger) for the identification of glycidamide-modified
peptides. The proteomics data search engines GPM Fury and
MaxQuant enabled the identification of three glycidamide-
modified peptides in at least half of the samples exposed to
the highest dose of glycidamide in each cell line. Mascot only
identified two glycidamide-modified peptides in HepG2 cells
and the same three modified peptides identified in THLE2 cells
by GMP Fury and MaxQuant. Whereas MSFragger was the
fastest method, only one glycidamide-modified peptide inHepG2
cells and two in THLE2 cells were identified by this search
engine (Table 1).

The position of glycidamide incorporation in each
peptide was confirmed upon the MS/MS spectra of each
ion (Figure 3, Supplementary Figure 2). Namely, in the
MS/MS spectrum (Figure 3) of the tetra charged ion
corresponding to the glycidamide-modified (m/z 471.0020)
peptide 110HAVSEGTKAVTKYTSSK126 of Histone H2B, the
87.0320 Da mass increment, characteristic of glycidamide
incorporation, is observed in the b2+ ion (m/z 296.1374).
Taking into consideration that A is not a nucleophilic residue,
the identification of this fragment ion confirmed H110 as the
glycidamide binding site.

All glycidamide-modified peptides identified by the
standard proteomics search engines were also identified by the
metabolomics-inspired approach. Additionally, the tetra charged
ion at m/z 580.3200, corresponding to the glycidamide-modified
peptide 74IAGEASRLAHYNKRSTITSR93, was only identified by
the metabolomics-inspired approach in THLE-2 cells (Table 1).
The limited number of b and y ions present in the MS/MS
spectrum of this glycidamide-modified peptide precluded the
assignment of the exact residue of adduction. However, the

Frontiers in Chemistry | www.frontiersin.org 5 July 2019 | Volume 7 | Article 532

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Nunes et al. Metabolomics-Inspired Workflow for Adductomics

TABLE 1 | Comparison of results obtained by our novel metabolomics-inspired and the standard Adductomics strategies.

Cell

Line

Glycidamide-modified peptide Mass

(daltons)

m/z ± error (ppm)

(charge)

Protein Novel

approach

GPM

Fury

MaxQuant MASCOT MSFragger

HepG2 110HAVSEGTKAVTKYTSSK126 1879.9639 627.6670 ± 8.12 (+3) Histone H2B ——

74 IAGEASRLAHYNKRSTITSR93 2317.2251 580.3200 ± 11.03 (+4) Histone H2B

2TKIKADPDGPEAQAEACSGER22 2259.0437 754.0300 ± 10.74 (+3)

565.7740 ± 10.25 (+4)

H/ACA

ribonucleoprotein

complex subunit 2

THLE-2 110HAVSEGTKAVTKYTSSK126 1879.9639 627.6670 ± 8.12 (+3) Histone H2B

110HAVSEGTKAVTKYTSAK126 1863.9690 467.0030 ± 7.49 (+4) Histone H2B

74 IAGEASRLAHYNKRSTITSR93 2317.2251 580.3200 ± 11.03 (+4) Histone H2B

2TKIKADPDGPEAQAEACSGER22 2259.0437 754.0300 ± 10.74 (+3)

565.7740 ± 10.25 (+4)

H/ACA

ribonucleoprotein

complex subunit 2

Cell

Line

Glycidamide-modified peptide Mass

(daltons)

m/z ± error (ppm)

(charge)

Protein Novel

approach

GPM

Fury

MaxQuant MASCOT MSFragger

HepG2 110HAVSEGTKAVTKYTSSK126 1879.9639 627.6670 ± 8.12 (+3) Histone H2B ——

74 IAGEASRLAHYNKRSTITSR93 2317.2251 580.3200 ± 11.03 (+4) Histone H2B

2TKIKADPDGPEAQAEACSGER22 2259.0437 754.0300 ± 10.74 (+3)

565.7740 ± 10.25 (+4)

H/ACA

ribonucleoprotein

complex subunit 2

THLE-2 110HAVSEGTKAVTKYTSSK126 1879.9639 627.6670 ± 8.12 (+3) Histone H2B

110HAVSEGTKAVTKYTSAK126 1863.9690 467.0030 ± 7.49 (+4) Histone H2B

74 IAGEASRLAHYNKRSTITSR93 2317.2251 580.3200 ± 11.03 (+4) Histone H2B

2TKIKADPDGPEAQAEACSGER22 2259.0437 754.0300 ± 10.74 (+3)

565.7740 ± 10.25 (+4)

H/ACA

ribonucleoprotein

complex subunit 2

Modified peptides identified by each methodology in at least half the samples exposed to the highest dose of glycidamide are highlighted in green. Cells marked in red represent peptides

that were not identified, in at least half the samples exposed to the highest dose of glycidamide, by each methodology. Bold and underline aminoacids represent the glycidamide

binding site.

Uniprot access numbers of each histone variant corresponding to the identified peptides are given in Supplementary Table 1.

FIGURE 3 | Representative MS/MS spectrum of a glycidamide-modified histone. MS/MS spectrum of the tetra charged ion at m/z 467.0030, corresponding to the
110H(glycidamide)AVSEGTKAVTKYTSAK126 peptide of Histone H2B. The 87.0320 Da mass increment, characteristic of glycidamide incorporation, could be

observed in the b+2 ion (m/z 296.1391) of the glycidamide-modified peptide, which confirmed H110 as the glycidamide binding site.

identification of this peptide solely by our novel approach attests
the advantage of the use of the metabolomics-inspired workflow
over the standard proteomics approach.

Stoichiometric ratios were calculated for each
peptide (Figure 4). With the exception of the peptide
2TKIKADPDGPEAQAEACSGER22 that presented a ratio
of 15:10, all other modified-peptides presented ratios up to
10:1,000 at the maximum glyciamide dose. Importantly, there
was a linear relationship between the stoichiometric ratio and
the glycidamide concentration with R2 > 0.9 for all peptides
except for the 74IAGEASRLAHYNKRSTITSR93 in HepG2 cells.

These analyses confirmed the results obtained in the previous
PLS models (Supplementary Figure 1) and proved the potential
usefulness of the identified adducts as biomarkers of exposure to
acrylamide if occurring in vivo.

There are multiple computational methods to identify adducts
from MS/MS experiments (reviewed by Na and Paek, 2015).
Conventional methods use database search engines in which
experimental and theoretical MS/MS spectra are aligned after the
introduction of a list with the known mass increments of the
modifications (Mascot, X!Tandem) (Perkins et al., 1999; Craig
and Beavis, 2004). Other advanced database-dependent strategies
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FIGURE 4 | Scatter plots showing the relationship between glycidamide concentration and the stoichiometric ratios for each identified adduct in HepG2 (red) and

THLE2 cells (black). (A) Stoichiometric ratios for HAVSEGTKAVTKYTSSK = ratio (triple charged m/z 627.667 + tetra charged m/z 417.002)/(triple charged m/z

598.6566 + tetra charged m/z 449.2441). (B) Stoichiometric ratios for IAGEASRLAHYNKRSTITSR = ratio m/z 580.3200/m/z 558.5612. (C) Stoichiometric ratios for

TKIKADPDGPEAQAEACSGER = ratio (triple charged m/z 754.0300 + tetra charged m/z 565.7740)/(tetra charged m/z 725.0163 + triple charged m/z 544.015). (D)

Stoichiometric ratios for HAVSEGTKAVTKYTSAK = ratio m/z 467.0030 / m/z 445.2466.

that are not restrictive to a predefined list of mass increments
have been developed and include tolerant database search (e.g.,
MS Alignment, MSFragger) (Tsur et al., 2005; Kong et al., 2017),
the use of de novo sequences (SIPDER, OpenSea) (Han et al.,
2005; Searle et al., 2005) and the use of tag sequences (MODa
MODi) (Kim et al., 2006; Na and Paek, 2015). However, as
database-dependent methods, all those approaches rely on the
availability and quality of MS/MS spectra and on the sequence
databases. Moreover, database-dependent methods tend to be
time-consuming and report a high rate of false positives. Too
much time is put into the identification of adducted and non-
adducted peptides with no prior knowledge of their statistical or
biological relevance.

Our approach can be classified as a database-independent
method since individual spectra are not assigned to peptide
sequences. As in other spectral-pair approaches methods (e.g.,
ModifiComb, DeltAMT, Peptoscope, P-Mod) (Hansen et al.,
2005; Savitski et al., 2006; Potthast et al., 2007; Fu et al., 2011) we

started by assuming that the modified and unmodified versions
of a peptide are present simultaneously in the sample and use
the mass increment to find the modified ion. However, with
few exceptions (e.g., DeltAMT), most of spectral-pair approaches
work with MS/MS data, meaning that only those ions that
undergo MS/MS will be considered for the analysis.

One of the advantages of our approach is the identification
of potential covalent adduct ions strictly working with full scan
MS data using MZmine, which is a user-friendly open-source
software for mass-spectrometry data processing. We should,
however, state that by using the adduct search tool ofMZmine, we
are only going to be able to identify the adducted peptides whose
unmodified peptide is also present in the ion list afforded upon
MS analysis. This means that if a missed-cleavage occurs due to
the presence of the modification, most probably this modified
peptide is not going to be identified by themethodology followed.
However, taking into consideration that a list of m/z values of
tryptic peptides with two or more miss-cleavages is something
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FIGURE 5 | Workflow of our metabolomics-based approach to identify protein covalent modifications. After protein digestion, we propose a workflow of three steps:

(1) sample acquisition in full scan mode (MS1 level); (2) LC-MS data preprocessing (to yield a matrix with all detected ions with their corresponding m/z, retention time

and peak area) followed by statistical analysis; (3) targeted MS/MS analysis of those statistically selected ions.

very easy to obtain, the calculation of them/z values expected for
the corresponding adducted peptides can be easily obtained and
used to match with the list of experimentally obtainedm/z values.
Actually, the combined use of the approach herein presented
with theoretical calculations, can result in an increased number
of potentially modified peptides.

Regarding the future application of our workflow for the
identification of covalent adducts formed in humans, the
statistical analysis is expected to be more challenging since
exposure is not controlled and the presence of confounding
factors (e.g., age, gender, metabolizing enzymes polymorphisms)
is anticipated. Nonetheless, a good study design can overcome
these difficulties. In contrast, the low levels of covalent
adducts in vivo is per se the major difficulty in adductomics
studies, which cannot be solved by the current database-
dependent methods. Therefore, our approach can constitute a
prospective solution for the identification of covalent adducts
in humans.

Taken together these results, our metabolomics-inspired
workflow has several advantages when compared with database-
dependent and -independent methods reported to date: (1)
works with full scan MS data and not MS/MS data, so
it is more inclusive because it does not depend on the
availability or quality of MS/MS data; (2) the identification
of potential adducted peptides is performed with MZmine
that is a user-friendly open-source software; and (3) statistical
analysis is used to select the potential adducts of interest for
adductomics studies, which can increase the accuracy of the
findings and thus reduce the false discovery rate. Actually,
the most distinctive feature of our methodology over the
methods previously developed for covalent adducts identification
is the use of statistics prior to adducts identification. While
database-dependent or independent methods are focused on
improving peptide identifications without considering their
statistical or biological relevance, our method firstly selects the
potential adducts that are relevant for the study endpoints

applying statistics and only after that goes for the identification
of those adducts. An additional and imperative advantage of the
statistical analysis is that it can identify all potential factors (e.g.,
cell lines, doses) that are influencing the adducted peptides. This
is crucial in any adductomics study.

CONCLUSION

We present a new metabolomics-inspired data processing
approach for the identification of covalently-modified peptides
that is fast, sensitive and allows to perform any statistical analysis.
Thus, this method enables the identification of low abundant
adducted peptides and all factors influencing the formation and
levels of covalent adducts. We herein propose a new adductomics
workflow consisting on 3 steps (Figure 5): (1) data acquisition
in full scan mode to maximize the sensitivity; (2) LC-MS data
preprocessing followed by statistical analysis to reveal those
ions (adducts) that differentiate negative samples from positive
samples (non-exposed vs. exposed or healthy vs. disease); (3)
targeted MS/MS acquisition of the statistically significant ions
for adduct identification. This approach is expected to result in
higher quality MS/MS spectra of low level adducted-peptides,
when compared with DDA and DIA approaches, thereby
enhancing the chances of identifying low abundant adducted
peptides in biological samples. This will exponentially increase
the number and accuracy of findings for all fields of adductomics
application, encompassing epigenetic and toxicological studies.

DATA AVAILABILITY

The mass spectrometry dataset analyzed for this study can be
found in the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD013683 and
10.6019/PXD013683.

Frontiers in Chemistry | www.frontiersin.org 8 July 2019 | Volume 7 | Article 532

https://doi.org/10.6019/PXD013683
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Nunes et al. Metabolomics-Inspired Workflow for Adductomics

AUTHOR CONTRIBUTIONS

AA planned the work. JS and JM supervised the
cell assays and data processing, respectively. JN,
CC, CN, and SG-F performed the experiments. JN
and JM processed the raw data. JN, JM, and AA
wrote the article. JM and AA critically revised the
manuscript. All authors approved the final version of
the manuscript.

FUNDING

This work was supported by Fundação para a Ciência e
a Tecnologia (FCT), Portugal, through projects UID/QUI/
00100/2019, IF/01091/2013/CP1163/CT0001 and PTDC/QUI-
QAN/32242/2017 as well as doctoral fellowships SFRH/BD/

102846/2014 (to CC) and SFRH/BD/140157/2018 (to JN);
joint funding from FCT and the COMPETE Program is also
acknowledge through RNEM-LISBOA-01-0145-FEDER-022125-
funded postdoctoral fellowship (to JM).

ACKNOWLEDGMENTS

The authors would like to thank the Portuguese MS network for
providing access to the LC-MS facilities.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2019.00532/full#supplementary-material

REFERENCES

Beavis, R. C. (2006). “Using the global proteome machine for protein

identification,” In New and Emerging Proteomic Techniques. Methods in

Molecular BiologyTM . New Jersey: Humana Press, 217–28.

Beland, F. A., Olson, G. R., Mendoza, M. C. B., Marques, M. M., and Doerge, D.

R. (2015). Carcinogenicity of glycidamide in B6C3F 1 mice and F344/N rats

from a two-year drinking water exposure. Food Chem. Toxicol. 86, 104–115.

doi: 10.1016/j.fct.2015.09.017

Bruderer, R., Bernhardt, O. M., Gandhi, T., Miladinović, S. M., Cheng, L. Y.,
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