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We present Specific Reaction Parameter Multigrid POTFIT (SRP-MGPF), an automated

methodology for the generation of global potential energy surfaces (PES), molecular

properties surfaces, e.g., dipole, polarizabilities, etc. using a single random geometry

as input. The SRP-MGPF workflow integrates: (i) a fully automated procedure for the

global topographical characterization of a (intermolecular) PES based on the Transition

State Search Using Chemical Dynamical Simulations (TSSCDS) family of methods;i (ii)

the global optimization of the parameters of a semiempirical Hamiltonian in order to

reproduce a given level of electronic structure theory; and (iii) a tensor decomposition

algorithm which turns the resulting SRP-PES into sum of products (Tucker) form with the

Multigrid POTFIT algorithm. The latter is necessary for quantum dynamical studies within

the Multiconfiguration Time-Dependent Hartree (MCTDH) quantum dynamics method.

To demonstrate our approach, we have applied our methodology to the cis-trans

isomerization reaction in HONO in full dimensionality (6D). The resulting SRP-PES has

been validated through the computation of classical on-the-fly dynamical calculations as

well as calculations of the lowest vibrational eigenstates of HONO as well as high-energy

wavepacket propagations.

Keywords: PES, sums-of-products, tensor-decomposition, quantum dynamics, reparametrized semiempirical,

TSSCDS, global optimization

1. INTRODUCTION

A detailed knowledge of the topography of a Potential Energy Surface (PES) is a highly desirable
prerequisite for the simulation of any dynamical process. Topography on its own, however,
does not fully determine the behavior of a system and dynamics calculations become mandatory
(Tuckerman et al., 2002; Peláez et al., 2014). Furthermore, for an accurate theoretical description of
molecular processes (spectroscopy, reactivity), one should, if possible, resort to nuclear quantum
dynamics calculations (Gatti, 2014). In the specific case of vibrational problems, powerful methods
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based on the resolution of the time-independent Schrödinger
equation exist such as vibrational self-consistent field/vibrational
configuration interaction (VSCF/VCI) (Rauhut, 2007; Neff and
Rauhut, 2009), vibrational second-order perturbation theory
(VPT2) (Barone, 2005) and vibrational coupled-cluster theory
(Christiansen, 2004). For an extensive and recent review of
some of them, the reader is referred to a recent publication
(Puzzarini et al., 2019). However, owing to our interest in
describing chemical processes, we shall turn our attention toward
methods able to describe wave packet propagations. In this
context, within the last few years, we have experienced a boost
in dynamical methodologies capable of describing the dynamics
of molecular systems up to medium-large size, ranging from
semiclassical (Levine et al., 2008; Shalashilin, 2010) to fully
quantal (Gatti, 2014). With respect to the latter, by far, the
most popular approaches nowadays are those based on, or
related to, the grid-based Multiconfiguration Time-Dependent
Hartree (MCTDH) algorithm (Beck et al., 2000). In MCTDH,
a molecular wavefunction (WF) is expanded in a basis of time-
dependent nuclear orbitals. Taken MCTDH as reference, two
powerful multiconfigurational methods exist. On the one hand,
the partially grid-based G-MCTDH method in which some of
the time-dependent basis functions are substituted by (typically
frozen) Gaussians functions (G) (Burghardt et al., 2008), and
the Variational Multiconfigurational Gaussian (vMCG) method
(Richings et al., 2015) (and its direct-dynamics (DD) extension)
which are grid-free and use Gaussian functions only. For the
sake of completeness, one should mention the recent and
promising direct-dynamics approach of MCTDH by Richings
and Habershon (2018).

It should be evident that the quality of the results of any
dynamical calculation is limited by the accuracy and efficiency
of the underlying electronic structure method used to represent
the PES, either globally (as in grid-based methods) or locally (on-
the-fly approaches). When expressed globally on a grid, formally
as a multidimensional tensor, the limitation lies on the number
of dynamical degrees of freedom and the possibility of fitting
the PES to an appropriate functional form. In the case of on-
the-fly methods, on the other hand, the number of degrees
of freedom (DOF) it is not the main limiting factor but the
number of electrons, in other words, the level of theory and
its performance in the form of electronic structure software
calls (energies, gradients, Hessians) at each time-step. This fact
constrains on-the-fly approaches to modest levels of theory.

Obtaining a fit for a high-dimensional PES is a complex
and tedious task. Whatever the approach, any fitting procedure
requires a more or less large set of reference values (molecular
energies and/or gradients and, possibly, properties such as
dipoles) which will constitute the data to which an algorithm will
try to fit a given function. Ad hoc analytical functions are usually
added to the resulting fit in order to ensure a correct physical
behavior, for instance in the asymptotic regions, or to guarantee
a correct periodicity of the potential as in the case of rotors.
Focusing on the fitting methods typically used in combination
with nuclear quantum dynamical approaches, many techniques
have been proposed. To name but a few, popular methods
include the permutationally invariant polynomials (Braams and

Bowman, 2009), the interpolating moving least-squares (Dawes
et al., 2007), the triatomics-in-molecules approximation (Sanz-
Sanz et al., 2013), Shephard interpolation schemes (Frankcombe
and Collins, 2011). Moreover, for more than a decade now,
Neural Network (NN) approaches have (re)gained preeminence
being triggered by the pioneering work of Manzhos and
Carrington (2006) and, very recently, their application to
MCTDH by Pradhan and Brown (2017). In this line, Jiang and
Guo have gone a step further and have developed a NN approach
with implicit nuclear permutational symmetry (Jiang and Guo,
2014). For the sake of completeness, one should mention the
works of Rauhut (2004) and Sparta et al. (2010) in which PESs
for vibrational calculations are generated in an automated and
adaptive fashion. Powerful and accurate as these methods are, a
high degree of expertise is still required to master and to apply
these techniques, particularly for medium-large systems (≥6D),
thus preventing them from a wider-spread use. Furthermore, in
studies where external fields (e.g., a laser) are needed, surfaces
of molecular properties are also required and, as a consequence,
extra fits are necessary.

In this work, we present Specific Reaction Parameter
Multigrid POTFIT (SRP-MGPF), a method which provides a
well-balanced solution to the aforementioned issues. SRP-MGPF
is able to generate a chemically-accurate PES as well as the
same-level-of-theorymolecular properties surfaces, starting from
a single input geometry and requiring minimal intervention of
the user. In this sense, we can safely affirm that the procedure
is quasi black-box in nature. SRP-MGPF relies on three main
steps: (i) generation of a set of reference geometries (energies
and properties); (ii) reparametrization of a semiempirical
Hamiltonian (Specific Reaction Parameter Hamiltonian, SRP)
based on the previous information; and (iii) tensor-decomposing
the SRP with MGPF. We shall focus on the standard MCTDH
method for which a global PES needs to be fitted into some
kind of functional form and, typically, refitted to a grid.
Furthermore, our results can also be directly applied to any on-
the-fly methodology. It should be highlighted at this point that
reparametrized semiempirical Hamiltonians have been typically
used in direct dynamics studies as well as in kinetic studies
(Rossi and Truhlar, 1995; Troya, 2005; Rodríguez-Fernández
et al., 2017). Moreover, semiempirical Hamiltonians have been
successfully used in describing dynamics on electronically excited
states (Toniolo et al., 2003; Silva-Junior and Thiel, 2010). It
should be stressed that SRPmethods qualify as quantum chemical
ones. As such an SRP does not include, necessarily, any fitting
functions. Hence, the SRP parameters obtained through our
fitting process will define a level of electronic structure close to
a high-level reference one.

In our approach, as generator set for the reference fitting
points, we employ the so-called Reaction Network (RXN)
(Martínez-Núñez, 2015b), i.e., the complete set of stationary
points (minima, transition states,. . . ) of a PES. The RXN captures
the main topographical (even topological) features of the target
PES and thus constitutes a sensible choice for the reference set.
Characterization of the topography of a PES is, however, not an
evident task. To this end, we make use of the recently developed
Transition State Search Using Chemical Dynamics Simulations
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(TSSCDS) (Martínez-Núñez, 2015a,b) method which relies on
the efficient sampling of configuration space combined with
a graph-theory based identification of transition state (TS)
structures, which are finally optimized and the corresponding
Minimum Energy Paths obtained with standard methods. The
TSSCDS approach has been recently extended to specifically
study van der Waals complexes (vdW) or, more generally, non-
covalently bound systems (vdW-TSSCDS) (Kopec et al., 2019).

A set of optimal semiempirical Hamiltonian parameters
is then obtained by global minimization of the Root-Mean
Square Error (RMSE) between a set of reference ab initio
energies, for instance, (on the RXN-derived geometries) and the
corresponding SRP ones. The SRP approach to PESs presents
interesting features that make it very appealing when compared
to formally higher-level methods (Density Functional Theory,
DFT, or ab initio). First, SRPs are fast-computing parametrized
electronic structure methods, some of the integrals are neglected
while the remaining are parametrized to reproduce high-level
results. As such, they typically exhibit a correct physical behavior.
Second, in contrast to other fitting procedures (for instance
based on any kind of polynomial expansions or neural networks),
SRPs exhibit a correct behavior outside the fitting boundaries, if
the SRP parameters remain somewhat physical (small variation
with respect to their reference values). Third, by varying
the SRP parameters we can simultaneously fit both energies
and the molecular properties accessible to the semiempirical
software. It should be highlighted that in the usual approach
energies and properties (e.g., dipole) are computed at a set
of reference geometries and then need to be independently
fitted to either potential energy surfaces or property surfaces
(x-dipole, y-dipole, etc.). In contrast, in our method a single
optimization process suffices to yield a simultaneous fit of all
properties simultaneously, provided that information on the
desired properties is included in the reference data. Last, but not
least, the number of parameters is independent of the number
of atoms. They only depend on the number of different atoms
(and possibly on their chemical function) and, as such, it is in a
sense not affected by the curse of dimensionality. In our specific
approach, we have used as base model chemistry the Parametric
Method 7 (PM7) method as implemented in the OpenMOPAC
software package (Stewart, 2016). This choice is justified by the
quality of the obtained results as well as its efficiency in terms of
computational time (PM7 is orders of magnitude faster than ab
initiomethods) (Stewart, 2013).

The final step, specific for grid-based methods, is the tensor-
decomposition of the SRP-PES into an appropriate form. To this
end, we utilize the Multigrid POTFIT (MGPF) algorithm (Peláez
and Meyer, 2013), succinctly described in section 2.3. MGPF
has been successfully applied to the computation of vibrational
eigenstates (Peláez et al., 2014), infrared (IR) spectra (Peláez
and Meyer, 2017), and electron dynamics including continuum
(Haller et al., 2019) With SRP-MGPF, owing to the extreme
efficiency of the semiempirical calculations, we can directly
generate the SRP-PES on a grid.

This manuscript is structured as follows. In section 2 we
provide a succinct introduction to the methods employed in
our workflow. In section 3, which presents the application

of our novel methodology to the HONO molecule in full-
dimensionality, we carefully discuss all specific aspects related to
the actual calculations. Section 4 concludes the paper and gives
some hints on future developments and possible applications of
the method.

2. THEORY AND COMPUTATIONAL
DETAILS

Our automatedmethodology for computing a global PES consists
of three steps: (1) automatic and global determination of
stationary points (minima and transition states), as well as the
corresponding Intrinsic Reaction Coordinate paths (IRCs), the
so-called Reaction Network (RXN); (2) reparametrization of a
semiempirical Hamiltonian (SRP) to reproduce a desired level of
electronic structure theory (e.g., ab initio) using the RXN and
neighboring points; and (3) tensor-decomposition of the SRP
Hamiltonian with the MGPF algorithm. It should be noted that
after stage (2), we already have a global PES which can be used
in conjunction with any type of on-the-fly dynamics scheme.
We shall describe in the following each of the above mentioned
stages. First of all, we shall discuss our specific procedure for
the reparametrization of semiempirical Hamiltonians. Then, we
shall present our way of generating a set of reference points
based on the RXN obtained using the (vdW-)TSSCDS method
(Martínez-Núñez, 2015a,b). Subsequently, we shall discuss how
we integrate this information in combination with the NLOpt
(Johnson, 2011) library and the openMOPAC software (Stewart,
2016) to produce an optimal set of SRP parameters. The resulting
SRP-PES is then interfaced with MCTDH through the Multigrid
POTFIT program (Peláez and Meyer, 2013) thus generating a
SRP-MGPF PES on the grid and in sums-of-product (SOP) form.

Finally, it should be highlighted that, for the graphical
representations, we have made extensive use of the SciPy
scientific tools by Jones et al. (2001).

2.1. Global Optimization of Semi-empirical
Hamiltonians Parameters
Semiempirical potentials can be seen as parametrized Hartree-
Fock methods in which some of the electronic integrals are either
neglected or replaced by parameters obtained as fitting constants
using large sets of reference data (high-level ab initio calculations
and/or experimental data) (Stewart, 2013; Thiel, 2014). In this
sense, semiempirical methods lie somewhere between force fields
and ab initio methods (Stewart, 2013). Owing to the lower
amount of integral calculations, semiempirical methods are
orders of magnitude faster than ab initio methods and, hence,
they are routinely used in the study of large systems (Christensen
et al., 2016). In addition to this, with a suitable configuration
interaction formalism, semiempirical methods can also be used
for the study of excited states (Toniolo et al., 2003; Silva-Junior
and Thiel, 2010). A milestone in the usage of semiempiricals
was achieved by Rossi and Truhlar (1995) who introduced the
idea of reparametrizing a semiempirical Hamiltonian in order
to reproduce a given high-level ab initio level of theory for a
specific chemical reaction (or family thereof), hence the name of
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Specific Reaction Parameter (SRP) Hamiltonians. Since then, this
technique has been successfully applied to the study of chemical
reactions of large-dimensional systems using classical dynamics
(Layfield et al., 2008) as well as to kinetic studies (Rodríguez-
Fernández et al., 2017). In the present work, we go a step further
and will use the SRP approach for the generation of a PES
suitable for quantum dynamical studies. To this end, we used the
publicly available non-linear global optimization library NLOpt
(Johnson, 2011) to reparametrize the PM7 semiempirical model
(Stewart, 2013) as implemented in openMOPAC (Stewart, 2016).
The choice of PM7 responds not only to its proven accuracy but
also to the fact that it includes diatomic parameters in addition to
the standard atomic ones, thus providing extra flexibility to the
optimization process (Stewart, 2013). Hereafter, we shall refer to
the set of SRP parameters as {ζi}Di=1, being D the total number
of parameters. It is important to notice that the latter depends
on the number of atom types and not on the dimensionality
of the system. It should be stressed that we are dealing with a
fitting functionwhich has an implicit physical character (HF-like)
and, as such, it is expected to yield a global qualitatively-correct
behavior and to require less fitting points than other traditional
fitting approaches.

The problem that concerns us is thus the global optimization
of a deterministic non-linear objective function χ(ζ ): RD →
R, Equation (1), with a bounded parameter space (ζi ∈
[ζmin

i , ζmax
i ], i = 1, . . . ,D). In our specific case, we do not

make use of the derivatives of this target function since: (i)
the analytical expressions are unavailable; (ii) their numerical
determination would be expensive and, more importantly,
complicated due to the highly-corrugated character of the RMSE
landscape (see Figure 1). We shall consider then a derivative-free
optimization algorithm (Rios and Sahinidis, 2013). As general
expression of the objective function (χ) we have considered
a rms-like function (see Equation 1) composed by two terms:
(i) a first one accounting for the error in the energies and (ii)
a the second one corresponding to the error in the harmonic
frequencies of the stationary points of the PES, with respect to
our reference calculations.We have observed that the inclusion of
the latter helps to preserve the correct topography of the PES, for
instance the first order saddle point character of transition states.

χ0(ζ ) =

√

√

√

√

n
∑

i=1

ωE(Eabi ) · [Eabi − E
srp
i (ζ )]2

n
+

m
∑

j=1

ωF(1Fj) · [Fabj − F
srp
j (ζ )]2

m

(1)

where ζ is a vector containing the semiempirical parameters
and n,m represent the number of (relative) energy data points
(Eab/srp) and harmonic frequencies (Fab/srp), respectively, the
labels referring to ab initio (ab) and semiempirical (srp) data. The
weighting functions ωE(Eabi ) and ωF(1Fj) (with 1Fj = Fabj −

F
srp
j ) have been defined as exponential step functions:

f (x) =







1 x ≤ α

eβ(x−α) x > α

(2)

FIGURE 1 | Graphical representation of the optimization process of the set of

SRP parameters ({ζ }). The vertical axis displays the RMSE between our

reference data and our target function (see Equation 3), which in the figure

depends just on two parameters (ζ1, ζ2). Non-overlapping clusters (red dots

enclosed in a red circle) of walkers (red dots) are generated. In each cluster,

the optimal solution is locally minimized (red dotted curved arrows) and

compared to the rest of solutions. For a large enough number of clusters,

convergence to the global minimum is guaranteed. In this representation, we

have used a modified Ackley function (Ackley, 1987).

where α,β are parameters adjusted a priori and x corresponds to
the selected argument (Eabi ,1Fj). However, in practice, we have
obtained satisfactory results with a much simpler expression:

χ1(ζ ) =

√

√

√

√

n+m
∑

i=1

ωG(Gab
i ) · [Gab

i − G
srp
i (ζ )]2

n+m
(3)

where Gi = Ei||Fi are the components of a vector constructed
by concatenating the vectors of energies and harmonic
frequencies, respectively. As strategy, we have performed a
global optimization step followed by local optimizations in order
to refine the results. For the former, we used the Multi-Level
Single-Linkage (MLSL) algorithm (Kan and Timmer, 1987) and
for the latter we used the Bound Optimization BY Quadratic
Approximation (BOBYQA) (Powell, 2009).

2.2. Automated Generation of the Set of
Reference Points
In the following, we shall describe our automated methodology
for the generation of a set of fitting points for the
reparametrization of a semiempirical Hamiltonian. In brief,
we propose the use of the whole set of stationary points of a
given PES, the so-called RXN (Martínez-Núñez, 2015a,b; Kopec
et al., 2019), as initial set from which neighboring geometries
spanning the region of configuration space of interest will be
generated. The main advantage of our method is that starting
from a single initial input geometry, a global Potential Energy
Surface is generated.

We propose as first step the determination of the ensemble
of stationary points (RXN) on a given PES which will be
used as seed for the subsequent generation of the remaining
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FIGURE 2 | One-dimensional representation of the TSSCDS procedure. A low level (LL) PES (upper energy curve, in red) is sampled starting from a given minimum

(geometry indicated by a red dotted line). Classical random trajectories (black arrows) in combination with a graph theory based method (Bond Breaking/Formation

Search, BBFS Martínez-Núñez, 2015a,b) lead to the determination of TS candidate structures (marked as x in red bold font), compatible with the total energy of the

trajectories, from which LL optimizations are started. Subsequent optimization at the desired high-level (HL) are performed using the LL TS as guess structures.

fitting points. Indeed, the stationary points correspond to
the molecular configurations which carry the most relevant
topographical information of a given PES and, as such, make
ideal candidates for fitting purposes. Finding stationary points,
however, is a very tedious task which heavily relies on large
amounts of chemical intuition. Fortunately, a family of methods
for the automated determination of the RXN has been recently
proposed, the so-called Transition State Search Using Chemical
Dynamics (TSSCDS) (Martínez-Núñez, 2015a,b) as well as its
generalization, vdW-TSSCDS (Kopec et al., 2019). The former
is optimal for the study of unimolecular processes whereas the
latter has been specifically designed to study non-covalently
bound systems. The workflow in both cases is analogous
(see Figure 2) and the difference lies in the way transition
states (TSs) are characterized. Starting from an initial random
geometry (or small set thereof), a large number of high-
energy classical trajectories is run using a low-level (LL) of
electronic structure theory (semiempirical in our case, other
methods are also possible) to compute the forces. The geometries
along these trajectories are analyzed by a graph-theory based
algorithm (Bond Breaking/Formation Search, BBFS Martínez-
Núñez, 2015a,b; Kopec et al., 2019) which detects conformations
in which bonds are broken and/or formed. It should be
highlighted that this step is precisely what determines the
difference between TSSCDS and vdW-TSSCDS. In the former,
a square connectivity matrix based on covalent distances is
defined, whereas in the latter this matrix takes block-diagonal

form and includes both covalent and non-covalent (van der
Waals) distances, thus allowing for the determination of non-
covalent saddle points. The so-determined structures, candidates
to TSs, are optimized at the LL and subsequently reoptimized
at an appropriate higher level of theory, say, ab initio or DFT.
Obviously, this process can be continued by further refinements.
From this set of final high-level TSs, IRC calculations connecting
minima are performed. And, as a result of this, the so-called
Reaction Network (RXN) is obtained, that is, all stationary
structures together with their connectivities compatible with a
given total energy (that of the initial classical trajectories). For
further details on the method, the interested reader is referred to
the original publications (Martínez-Núñez, 2015a,b; Kopec et al.,
2019). As indicated, the RXN will serve us as initial set from
which the full set of fitting points will be generated. The total
number of stationary points (NRXN) is:

NRXN = nmin + nTS + nasymp + . . . , (4)

where nX , (with X=min, TS, asymp,. . .) is the number of minima,
transition states (TS), asymptotic products, respectively. This
initial set will be extended by systematically adding a set of
neighboring geometries. This can be achieved in different ways.
In our case, we have chosen to distort each of the NRXN points
following an n-body type of scheme inspired by a previous
work (Pradhan and Brown, 2017). The novelty of our procedure
lies in the fact that we observe convergence in the RMSE at
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each order of the expansion. As it will be clear later, this
convergence provides us with an efficient error control and allows
to determine a minimal number of fitting points necessary to
achieve a given RMSE. The total number of fitting points (Nref )
can be calculated as:

Nref = NRXN ·
[

f
∑

i∈1D

N
(1D)
i +

f
∑

i∈2D

N
(2D)
i + . . .

]

+ rnd(fD)

+

nTS
∑

i

NIRC
i +

nasymp
∑

i

N(asymp) + . . . (5)

where f is the number of degrees of freedom of the molecular
system, N is the number of generated reference geometries
of a given type, for instance, NnD are grid points from a n-
dimensional (D) grid and NIRC

i are the IRC points stemming
from TSi, rnd(fD) are random geometries in the full-D
configuration space, n is the number of stationary points of
a kind. Considering, for instance, a normal mode or internal
coordinate local representation, 1D would refer to displacements
along each mode/coordinate (leaving the remaining coordinates
fixed at their equilibrium values) and nD refers to grids of
points generated through simultaneous displacement along n
modes/coordinates, leaving the remaining fixed as before.

Our goal is now to determine the minimum number of fitting
points leading to the smallest possible RMSE (defined as the
difference between reference PES and SRP-PES), or, in other
words, the optimal set of SRP parameters ({ζopt}). It should be
emphasized that we are dealing with moderate-size configuration
spaces, in our specific case HONO (6D), the parameter space
is 34-dimensional. Hence, in order to systematically search for
the global minimum in SRP parameter space ({ζ }), we increase
the number of reference points in a controlled way according
to the following prescription. Starting with the PM7 parameters
({ζPM7}) as initial guess, the RMSE(ζ ) landscape is explored in
a first stage using a small number of ab initio reference data
and a big number of iterations (typically of the order of 105)
of the non-linear optimization algorithm (MLSL in our case).
This allows to locate the most-likely candidate parameter set to
global minimum. The latter is used as a guess in subsequent local
optimization stages (BOBYQA). At each of these, extended sets of
points are generated in the form of nD distortions. At each level
(1D, 2D, etc.) and for each set, we carry out local optimizations,
compare the resulting RMSEs and take as optimal the number of
points (set) that leads to a satisfactory value of RMSE, in the form
of convergence, thus guaranteeing the condition of minimum
number of points.

2.3. Generation of the SRP-MGPF Potential
Energy Surface
As any other grid-based method, MCTDH quantum dynamics
relies on a discretization of the configuration space known as
primitive grid (Kosloff, 1988). In an f -dimensional molecular
system (typically f = 3N-6, with N being the number of atoms),
a set of iκ = 1, . . . ,Nκ grids points is defined for the κ-th
DOF with κ = 1, . . . , f . In other words, a given grid point

I ≡ (i1, . . . , if ) has an associated molecular configuration (Q ≡
(qi, . . . , qf )). The wavefunction in MCTDH is expressed in a
two-layer scheme, a first one in terms of time-dependent single-
particle basis functions (SPFs, {ϕ(κ)}):

9(q1, . . . , qf , t) =
∑

j1

. . .
∑

jf

Aj1···jf (t)

f
∏

κ=1

ϕ
(κ)
j (qκ , t) (6)

and a second in which each SPF is, in turn, expressed in a
time-independent basis set ({χ (κ)(qκ )}):

ϕ
(κ)
jκ

(qκ , t) =
Nκ
∑

iκ=1

c
(κ)
jκ iκ

(t)χ (κ)
iκ

(qκ ) (7)

the latter, typically, Discrete Variable Representation (DVR)
functions (Beck et al., 2000; Light and Carrington, 2000). In
this frame, each grid point iκ (κ-th DOF, q(κ)) is associated
to a localized time-independent basis function (χ (κ)(q(κ))).
Obviously, a minimum number of basis functions, or conversely
grid points must exist to achieve the numerical convergence of a
given calculation. Such grid representations imply that quantities,
particularly the PES, are represented by f -dimensional tensors,
where f is the number of DOF. If each DOF is represented by
10 grid points, a tensor of 10f grid points would be necessary
to represent the PES. It should be clear at this point that that
generation of such a high-dimensional PES tensor directly from
electronic structure (i.e., quantum chemistry) codes is, nowadays,
a prohibitively-long process.

Apart from diminishing the computational time associated
to each quantum chemical calculation, solutions to this issue
must imply a reduction in the number of grid points necessary
to achieve an accurate grid representation of the PES. This
can be achieved in two ways. When considering a more or
less localized region of the PES (i.e., centered around a given
minimum), local approaches such as the Quartic Force Field
representation (QFF) can be used. This is the case when
computing vibrational eigenenergies and/or eigenstates (Barone,
2005; Ávila and Carrington, 2009; Neff and Rauhut, 2009). On the
other hand, when more global representations are needed (e.g.,
spectroscopy in multi-well problems, reactivity, etc.) one has to
resort to more elaborated forms such as tensor-decomposition
algorithms (Kolda and Bader, 2009) or Neural Networks (NN)
representations (Manzhos et al., 2006). Two examples of this
have been recently proposed for a 6D problem (HONO). With
respect to the former, Baranov and Oseledets have used a Tensor-
Train tensor-decomposition approach (Baranov and Oseledets,
2015) and Pradhan and Brown have illustrated the use of an
exponential NN ansatz to represent the same PES (Pradhan and
Brown, 2017). In both cases, the number of data-points (i.e., high-
level ab initio calls) needed to perform the fit was of the order of
∼ 104. Upon an increase of the dimensionality of the problem,
this last figure is expected to increase, at least, polynomically,
hence preventing the use of these techniques for larger systems.

Our method deals with the aforementioned issues by
combining an extremely efficient level of electronic structure,
a reparametrized semiempirical Hamiltonian, with an efficient
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TABLE 1 | Number and description of the fitting points used in each

SRP-optimization stage and the algorithm used in the process.

No.

points

Class of points Type of

optimization

53 core Global/Local

367 1D + core Local

546 1D + 2D + core Local

648 1D + 2D + rnd(6D) + core Local

954 1D + 2D + rnd(6D) + LIIC-IRC + core Local

1084 1D + 2D + rnd(6D) + LIIC-IRC + rnd(LIIC) + core Local

Structures have been generated within a set of fixed boundaries defined in Table 3. The

initial set of geometries (labeled core) consists on 53 points, namely: MIN1, MIN2, TS1,

1D- and 2D-distorted structures using the latter as reference geometries [26 1D, 14 2D],

and 10 6D-randomly distorted (rnd(6D)) geometries. The number of points at each new

set is cumulative. It includes nD-distorted geometries (n = 1, 2, 6), LIIC structures and

distortions thereof [noted as rnd(LIIC)]. The algorithm for global optimization is MLSL and

for local is BOBYQA (see section 2.1). The number of iterations in the global step has

been set up to 100,000 and in the local one to 2,000.

and accurate tensor decomposition scheme, Multigrid POTFIT
(MGPF) (Peláez and Meyer, 2013). This tensor decomposition
algorithm transforms a multidimensional function (e.g., PES)
into Tucker product form (Equation 8) in an quasi black-
box manner. MGPF, implemented in the MCTDH software
package (Worth et al., 2016), avoids running over the full
(primitive) MCTDH grid and, instead, uses a series of coarser
(nested) grids using a number of PES data-points comparable
to the aforementioned methods. However, the big difference is
that in our case we shall perform SRP calls, in other words,
our ab initio method will have the computational cost of a
semiempirical one. In fact, as shown by our results (see Table 1
in section 3.1), we need no more than hundreds of high-level
electronic structure calls in comparison to the tenths of thousands
points required by previous methods. This, obviously, leads
to a (small) error inherent to the SRP approximation, but in
contrast permits the extension of our approach toward higher-
dimensional systems with a little more effort. In the following
lines, we shall describe the actual MGPF approach that we
have used.

In MGPF, we use a sum-of-products or Tucker expansion for
the PES:

V =

[m1 ,...,mf ]
∑

j1 ,...,jf

Cj1,...,jf

f
∏

κ=1

v
(κ)
j (8)

which, in tensor notation, can be written as:
Kolda and Bader (2009)

V = C ×1 v
(1)T ×2 v

(2)T · · · ×f v
(f )T (9)

There C is the so-called core tensor and v
(κ) are the expansion

basis sets for the κ-th DOF. The reader is referred to the
original article for a full description of the method and its
capabilities (Peláez and Meyer, 2013). More specifically, our
current application uses a bottom-up approach to MGPF (Peláez

and Meyer, in preparation). The MGPF basis sets ({ṽ(κ)}) can be
expressed as:

ṽ
(κ) = ρ(κ)′ρ(κ)−1

v
(κ) . (10)

There we have introduced potential density matrices of the form:
Peláez and Meyer (2013)

ρ
(κ)
kk′

: =
∑

Iκ

VIκ
k
VIκ

k′
κ = 1, . . . , f . (11)

where the first index (k) runs along the primitive grid in ρ(κ)′

and along the coarse one in ρ(κ). The transpose of these basis sets
reads then:

ṽ
(κ)T = v

(κ)T (ρ(κ)′ρ(κ)−1)T (12)

Substituting in the MGPF expansion VMGPF of the form Equation
(9), we unitarily transform both the MGPF basis set (ṽ) and the
MGPF core tensor (C) using the complete basis v: Peláez and
Meyer (in preparation)

Ṽ
MGPF

= C ×1 (v
(1)T

v
(1))ṽ(1)

T
×2 (v

(2)T
v
(2))ṽ(2) · · · ×f (v

(f )T
v
(f ))ṽ(f ) (13)

It should be noted that this transformation does not change the
representation. Then one obtains:

Ṽ
MGPF

= V ×1 γ̃
(1)T ×2 γ̃

(2)T · · · ×f γ̃
(f )T (14)

where V is the tensor of the energies on the coarse grid and
γ̃ (κ)=ρ(κ)′ρ(κ)−1 is the newMGPF basis set. Both quantities, core
tensor (V) and potential density matrices are directly computed
by interfacing theMGPF routine ofMCTDH to the openMOPAC
software package.

2.4. Calculation of Vibrational Properties:
Eigenenergies and Eigenstates
To provide a stringent test to the quality of our series of
chemically accurate SRP-PES, in addition to RMSEs we have
also computed ground and vibrationally excited eigenstates and
compared them to those of the reference PES (Richter et al.,
2004). These vibrational calculations have been computed using
the Heidelberg version of the MCTDH software package (Worth
et al., 2016) using our SRP-MGPF PES, as described above.
It should be highlighted that the problem we are considering
(HONO) features a double well and, consequently, single-
reference approaches (e.g., QFF) are not well-suited to its study.

The calculation of the vibrational eigenstates and
eigenenergies has been performed by propagating a guess
WF in negative imaginary time using the so-called Improved
Relaxation method (Meyer and Worth, 2003; Meyer et al.,
2006). The MCTDH equations of motion (EOM) are here
obtained through a time-independent variational principle. As
a result, the propagated configuration interaction coefficients
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FIGURE 3 | MP2/cc-pVDZ (intermediate HL) structures of HONO automatically obtained using the TSSCDS algorithm on a PM7 (LL) PES. Target geometries in the

cis-trans isomerization region (MIN1, MIN2, TS1) were subsequently reoptimized at the CCSD(T)/cc-pVQZ (final HL) level of theory.

(A, see Equation 6) are obtained through diagonalization of the
Hamiltonian in the basis of the configurations:

∑

L

〈8J |H|8L〉AL = EAJ , (15)

and the single-particle basis functions (SPFs) are evolved in
imaginary time using the standard MCTDH EOM (Beck et al.,
2000). This iterative procedure is repeated until convergence
in the energy. Moreover, a block version of this algorithm,
the so-called Block Improved Relaxation, can be used to
converge several eigenstates simultaneously, thus leading to the
determination of a set of vibrationally excited states.

3. RESULTS AND DISCUSSION

In this section, we present the application of the SRP-MGPF
methodology to the actual computation of the HONO (6D)
PES for the cis-trans isomerization region, which has become a
benchmark for this type of studies (Baranov and Oseledets, 2015;
Pradhan and Brown, 2017). In the following subsections, we shall
discuss the details on the generation of the fitting reference set of
points, the reparametrization of the semiempirical Hamiltonian
(SRP), and the technical details concerning the direct MGPF
tensor decomposition of the SRP-PES into Tucker form. It should
be stressed that the novelty and robustness of our approach
resides in the fact that requires a minimum intervention of
the user, thus qualifying as a quasi-black box approach. For
the time being, we have interfaced the software openMOPAC
to the MCTDH software package through the use of the
MGPF tensor decomposition algorithm (Peláez and Meyer,
2013), hence allowing quantum dynamical simulations on a
SRP-MGPF PES.

3.1. Computation of the SRP-MGPF PES
for the cis-trans Isomerization Region in
the HONO System (6D)
The first stage in our automated fitting procedure has been the
determination of the stationary points of HONO, accomplished
through the use of the TSSCDS package (Barnes et al., 2019),
as described in section 2.2. Starting from a single random input
geometry, LL guess structures have been obtained (see Martínez-
Núñez, 2015a,b for a detailed discussion). Figure 3 presents
the corresponding MP2/cc-pvDZ structures. The relevant
geometries for our study cis (MIN1), trans (MIN2) as well as
the TS connecting them (TS1) have been reoptimized at the
CCSD(T)/cc-pVQZ level of theory. Their geometrical parameters
and harmonic frequencies are presented in Tables S10–S13. The
reason behind the choice of this level of theory is that we
have taken as model chemistry the CCSD(T)/cc-pVQZ quality
analytical PES of Richter et al. (2004)

The generation of the remaining reference geometries and
corresponding energies has been done according to our heuristic
approach described in section 2.2. A set of geometries in the form
of nD-product grids (n=1, 2) and 6D-random structures have
been generated using the three lowest energy stationary points
of HONO as pivotal geometries, namely: cis, trans-conformers
and the corresponding TS (see Figure 3: MIN1, MIN2, and TS1,
respectively). Moreover, the reaction path among them has been
taken into account through a piecewise Linear Interpolation in
Internal Coordinates (LIIC) (Soto et al., 2006) between the cis-TS
and TS-trans pairs of stationary points (see Figure S1) as well as
a cloud of distorted structures around them. To ensure that the
latter remain close to the reaction path (LIIC), each i-th geometry
along the LIIC has been generated by distorting along a set of
directions resulting from the linear combination of the normal
modes of the end structures according to:

1EQi = (1− Xi) · EQinit + Xi · EQfin
EQ ∈ R

3N−7
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where EQfin =TS1, EQinit =MIN1/MIN2. Xi is a number that
depends on the distance to the end structure. The closer to
EQfin the more 1EQ resembles the normal modes of the end
structure (TS1). Each of our LIIC consists of 50 points and the
aforementioned distance is simply taken as the ordinal i within
the LIIC. It should be noted that the torsion mode has not
been included (3N − 7 modes in total), since it approximately
corresponds to the reaction coordinate. Finally, for a given
displacement (1EQ), the geometries around the i-th geometry
along the LIIC have been computed as:

ERi = ER
(0)
i +

3N−7
∑

j=1

fj · 1EQi,j

where ER(0)i is the original geometry of the i-th point of the LIIC, fj
is a small random factor, and 1EQi,j is the j-th component of 1EQi.

This systematic manner of generating reference points serves
us to control the convergence of the RMSE error at each
expansion order, in other words, how insensitive the RMSE is
to an increase in the density of points in specific directions (or
combinations thereof). This, in turn, provides us with a good
estimate of the lowest possible number of reference geometries
at each stage. In Table 1, we present the different convergence
stages in terms of number of fitting points used together with
the associated optimization algorithm. As it can be observed, at
each specific stage, we either increase the density of points in
the indicated directions (modes/coordinates) or add a new class
of points in the form of a LIIC, for instance.

The first stage consists on a global optimization (MLSL)
followed by a local one (BOBYQA) using a small number of
judiciously chosen points: the RXN and a cloud of random
geometries around them, adding up to a total of 53 points.
This has enabled a very large number of iterations (105). The
underlying hypothesis behind this calculation is that a reasonable
and cheap estimate of the global minimum (set of SRP parameters
yielding the minimum RMSE) can be obtained. Our best set of
parameters at this stage (ζ 53, where 53 is the number of fitting
points) yielded an initial RMSE of 806.8 cm−1 (Table S1). In
the subsequent stages, we have performed local optimizations
(BOBYQA) with 2,000 iterations. Before proceeding any further,
we would like to justify the use of a global algorithm exclusively
at the first stage, in other words, ζ53 must indeed correspond
to a set near the global minimum or a local deep minimum.
First, from a computational perspective, it should be noted
that a small number of fitting points is ideally suited for this
task. Second, we have performed calculations justifying this fact.
Table S2 (column 2) presents the BOBYQA variation of the
RMSE for an increasing number of 1D-sets of fitting points.
It can be observed that upon increase of this number, from
192 until 2088 fitting points, the RMSE monotonically decreases
from 482.13 cm−1 till 365.13 cm−1. According to our reasonings
above, one should take the SRP parameters of the last set of
points (ζ 1542 or ζ 2088) corresponding to the best RMSE of the
1D-series. For the sake of efficiency, we considered the ζ 1542.
With this set of SRP parameters, we recomputed the whole
series of RMSEs for the different sets of 1D-points and we

observed a very close agreement with the BOBYQA values,
except for the 192 set. This shows that indeed all sets of
parameters of this series (from ζ 367 on) lie within the same
RMSE landscape region (see Figure 4) and, in turn, validates our
initial approach with a small number of representative points.
One can then safely conclude that just 367 fitting points are
necessary to improve the SRP-fitting at the 1D-level. Hence,
subsequent 2D optimizations will start with the (ζ 367) set. A
detailed description of all stages and RMSE values is presented
in Tables S1–S9. A somewhat more complete information can
be obtained through the cumulative error computed by addition
of the RMSEs resulting form the configurations up to a certain
energy value (see Figure 5). It can observed that for all sets of
parameters, with the exception of ζ 53, the RMSEs remain below
the limit of chemical accuracy (1 kcal/mol≈ 350 cm−1) within
the targeted PES region (cis-trans isomerization). Moreover, in
the last stage we have removed all structures with energies
above 5000 cm−1 (above the classical barrier) and included an
extra set of random points around the stationary points. This
new set of points has been used to BOBYQA reoptimize the
SRP. We observe a clear improvement of the RMSE in such
a way that, up to 8000 cm−1, the RMSE is inferior to the
chemical accuracy level. The correctness of these results has been
supported by a calculation using a validation set consisting of
1200 6D random points with energies below 12000 cm−1 for
which the same pattern is obtained. We have also compared the
geometries and harmonic frequencies of all stationary points at
the reference ab initio level of theory and at the SRP level for each
stage. Geometries are displayed in Tables S10–S12 and harmonic
frequencies are shown in Table 2. As it can be observed, SRP
does indeed improve, in terms of both geometrical parameters
and harmonic frequencies, with respect to the original PM7
and, furthermore, we obtain a very good agreement with the
reference ab initio data. This is particularly true for the last
stage (ζ 1084).

To finalize this section, we present in Figure 6 a comparison
of 2D projections of the cis-trans isomerization regions for:
(i) the reference surface, (ii) the SRP-PES(ζ 1084); and (iii) the
PM7 semiempirical Hamiltonian. These contour plots have been
obtained through orthogonalization of the two LIIC vectors used
in Figure 6. The positive effect of the reparametrization can be
clearly observed: while PM7 provides a blurred description of the
TS region, the SRP-PES reproduces it correctly.

3.1.1. Classical Molecular Dynamics on the SRP-PES
As a first test of the quality of the SRP-PES, we have carried out
classical molecular dynamics simulations for the HONO system
in full dimensionality using the VENUS96 software package
(Hu et al., 1991). Classical trajectories have been run using the
reference PES (Richter et al., 2004). The energies of the so-
obtained geometries have been subsequently computed at the
SRP-PES level and compared to the original calculation. Starting
from the equilibrium geometries of the cis and trans isomers,
we have propagated for 1 ps each trajectory with a time-step
of 5fs. The vibrational energy of each starting geometry was
classically distributed in a random way between all normal
modes using the option normal mode sampling of the VENUS
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FIGURE 4 | Percentage of variation of the SRP parameters with respect to the original PM7 ones. Each fitting stage is represented by its optimal parameters, ζN,

where N is the number of points used in the process (see Table 1). On abscissas we present the label of semiempirical parameters for the different type of atoms in

HONO. Standard semiempirical parameter labeling has been used (Stewart, 2013). Parameters from USSH until HSPO correspond to a single type of atom whereas

parameters labeled ALPBXY and XFACXY correspond to two-atom ones (atom X and atom Y).

FIGURE 5 | Cumulative RMSE for each SRP-fit labeled by its set of parameters, ζN, where N is the number of points used in the fit (see Table 1). The last set (ζVS)

corresponds to the validation set. The red dotted horizontal line represents the value of the chemical accuracy (1 kcal/mol≈ 350 cm−1).

software. We have computed 10 trajectories per isomer, each
isomer having 4 different vibrational energies (5, 10, 15, and
20 kcal/mol) thus making a total of 80 trajectories and 16,080
geometries. In Figure 7, we present a comparison of the variation

of the potential energies along two of these trajectories. As it
can be observed, the PM7 largely deviates from the reference
calculation both in their relative values and the phase, whereas
SRP-PES follows closely the ab initio values. In particular, it

Frontiers in Chemistry | www.frontiersin.org 10 August 2019 | Volume 7 | Article 576

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Panadés-Barrueta et al. Specific Reaction Parameter Multigrid POTFIT

TABLE 2 | Harmonic frequencies of the normal modes of each stationary point at the CCSD(T)/cc-pVQZ ab initio level of theory and corresponding values for the PM7

method and the SRPs in the different stages of the optimization.

Harmonic frequencies (cm−1)

Ab initio ζPM7 ζ53 ζ367 ζ546 ζ648 ζ954 ζ1084

TS

-599.2 -553.6 -581.0 -565.1 -568.7 -570.3 -573.3 -606.8

559.1 621.7 512.2 467.1 465.5 463.6 463.8 597.2

791.2 1021.3 654.7 649.5 652.7 653.6 654.9 738.4

1122.3 1175.3 1174.3 1092.3 1099.8 1095.8 1106.8 1195.4

1728.0 1839.5 1763.8 1705.8 1709.4 1710.5 1711.0 1737.9

3785.3 2801.7 3747.9 3568.9 3585.3 3585.0 3586.4 3736.2

cis

648.7 589.0 615.4 613.0 616.1 618.2 619.3 622.5

687.9 629.2 724.9 712.0 718.4 716.0 718.4 698.9

901.9 1084.8 745.3 715.4 721.0 721.7 728.4 854.2

1350.9 1346.0 1316.4 1252.5 1255.9 1253.7 1262.3 1369.5

1675.5 1823.5 1725.5 1693.2 1696.6 1698.3 1701.6 1719.1

3632.1 2802.9 3668.9 3504.6 3519.8 3520.0 3521.4 3667.3

trans

574.8 455.9 517.1 515.2 517.1 518.1 521.6 540.5

633.1 609.8 533.3 515.2 519.1 523.7 528.3 602.5

839.6 1096.0 730.5 736.6 741.7 744.7 748.9 835.1

1319.3 1308.8 1232.9 1130.0 1136.9 1131.6 1148.4 1264.6

1732.6 1826.5 1715.9 1666.7 1670.2 1671.9 1674.8 1704.7

3790.8 2828.3 3815.8 3662.7 3678.9 3680.9 3682.9 3796.1

FIGURE 6 | Comparison of the 2D projections of the cis-trans isomerization region for: (i) reference PES (Richter et al., 2004) (left panel); (ii) SRP-PES (ζ1084 ) (middle

panel); and (iii) PM7-PES (right panel). These projections have been obtained by orthonormalization of two linear interpolation (LIIC) vectors as described in Soto et al.

(2006).

is remarkable the fact that for low energies PM7 presents a
large amount of structures with energies below the value of the
global minimum, the trans conformer. To finalize this subsection,
we would like to provide some performance features of the
SRP-PES which directly show the efficiency of the underlying
openMOPAC software. In the case of theHONO, from an average
of the order of ∼104 points, we have obtained a mean CPU-
time of 10−2 s per single-point energy. Moreover, Hessians are
computed in less than a second. This properties make SRP
approaches suitable for any on-the-fly type of calculation. In
particular, we are currently exploring their use with non-grid
based quantum dynamical methods such as the Direct-Dynamics
Variational Multiconfigurational Gaussian (DD-vMCG) method
(Richings et al., 2015).

3.2. Full Quantum Analysis of the
Vibrational Properties of the SRP-PES for
the cis-trans HONO System (6D)
To further assess the quality of our SRP-PES we have computed
vibrational properties by means of MCTDH quantum dynamical
calculations and the results have been compared to the ones
from the reference PES (Richter et al., 2004). More specifically,
ground and excited vibrational states as well as vibrational
spectra, in the form of Fourier transforms of autocorrelation
functions. At this point, it should be recalled that our main goal
is not to achieve spectroscopical accuracy but to provide PESs,
in a fully automated fashion, accurate enough to disentangle
chemical processes.
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3.2.1. MGPF Tensor Decomposition of the HONO 6D

PES
To interface the SRP-PES with the MCTDH quantum dynamics
software package, we have used the Multigrid POTFIT tensor
decomposition algorithm (Peláez and Meyer, 2013). More
specifically, all PES calls within the MGPF workflow have been
addressed directly to the openMOPAC software package using
an external set of optimal SRP parameters. In other words, at
each grid point, i.e., configuration, a SCF process is performed.
Of course, this is only possible due to the high efficiency of the
underlying PM7 frame. This fact, precisely, has allowed us to
circumvent the issues encountered in previous studies in which
the ab initio energies were generated directly from a quantum
chemical calculation thus severely limiting the level of theory
which could be applied.

We have carried out bottom-upMGPF calculations Peláez and
Meyer (2013) to the different SRP-PESs at different parameter
optimization stages. In Table S14, we present a comparison in
terms of CPU time and memory needs for a reference exact
Tucker decomposition (using POTFIT, PF) (Jäckle and Meyer,

FIGURE 7 | Comparison of ab initio (blue line), PM7 (green line), and SRP-PES

(ζ1084) (orange line) energies for the geometries generated in classical

on-the-fly trajectories of HONO(6D) with total energies (randomly distributed

among all modes) of 10 and 20 kcal/mol starting at: (A) the trans-conformer

and (B) the cis-conformer.

1996) and the different MGPF tensor decomposition levels that
we have used in this work. The full primitive grid, needed in
PF, consists of 2.804· 107 points. In contrast, the coarse grids in
MGPFs include every third, fourth, or fifth fine grid point for
each DOF. These coarse grids have been labeled ev3, ev4, and
ev5 and consist of 172,800, 51,200, and 18,432 coarse grid points,
respectively. The MGPF partial grids increase these figures by
a factor <10. This is due to the fact that the contracted mode
lies fully in the fine grid (see section IIIB in Peláez and Meyer,
2013). Hence, as expected, MGPF is orders of magnitude less
demanding that an exact decomposition. The global RMSE values
show that MGPF PES are accurate, cheap and, more importantly,
add a very small (global, full grid) error to the PES. Finally, it
should also be highlighted that none of our SRP-PES present
energies below the global minimum (trans conformer), whereas
the PM7 does. In other words, PM7 presents artificial PES
structure when compared to the reference one.We have observed
that even the simplest SRP optimization corrects this wrong
behavior.

3.2.2. MCTDH Quantum Molecular Dynamics on the

SRP-MGPF
As discussed in section 2.3, MCTDH requires the discretisation
of the configuration space. The HONO (6D) molecule has been
represented in internal coordinates (see Figure 8) as in previous
works (Peláez and Meyer, 2013; Pradhan and Brown, 2017),
and a Discrete Variable Representation (DVR) grid has been
defined accordingly (see Table 3). We have performed ground
and excited eigenstate vibrational calculations for the reference
PES, the PM7-MGPF PES as well as for selected SRP-MGPF
PES using the Improved Relaxation algorithm and its Block
version, as implemented in the Heidelberg version of MCTDH
(Meyer et al., 2006). We have combined the physical modes
into logical particles as follows: [φ=15], [dOH=10] [u2, dON=25],
[u1, dNO=25], where the number represents the number of single-
particle functions (SPFs) and ui = cos θi (see Figure 8). In all
cases, the initial wave packet has been propagated in negative
imaginary time (see section 2.4) during 500 fs.

With respect to ground state energies, the reference PES yields
a value of 4367.7 cm−1 for the Zero Point Energy (ZPE) and the
PM7-MGPF PES a value of 3221.3 cm−1, well off the analytical
one. We attribute this discrepancy to the artificial structure of

FIGURE 8 | Definition of the internal coordinates of HONO used in this work.
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the PES revealed by the presence of negative energies (geometries
with energies below the global minimum, trans conformer) as
discussed in section 3.2.1) and clearly illustrated in Figure 7.
On the other hand, concerning the SRP-MGPF PESs, a nice
convergence can be observed upon increase of the number
of fitting points, toward a final value of 4332.8 cm−1 which
compares well with the analytical one. It is also remarkable that a
simple fit using only 53 fitting points already leads to a qualitative
improvement with respect to PM7. Moreover, our results show
that the ZPE values are somewhat insensitive to the size of the
coarse grid (cf. last three rows of Table 4). Consequently, we shall
use hereafter the ev5 SRP-MGPF scheme.

We have also computed the 20 lowest-lying vibrational
eigenstates of HONO (Table 5). It should be noted that this
energy interval spans all HONO fundamentals except the OH
stretching mode. For this, we have considered four different
PES, namely: (i) PM7-MGPF, SRP-MGPF with ζ 53 and ζ 1084,
as well as the reference (exact) PES. The first remark to be
done is that the original PM7-MGPF PES fails to predict
the initial vibrational state corresponding to the ground state
of the cis conformer (Richter et al., 2004). In contrast,
even at the minimum level of reparametrization (ζ 53), this

TABLE 3 | Definition of the MCTDH primitive grid: HO denotes a harmonic

oscillator (Hermite) and cos a cosine Discrete Variable Representation (DVR) basis

functions.

DOF DVR N Range

dOH HO 18 [1.30, 2.45]

dNO HO 13 [1.90, 2.60]

u2 HO 13 [-0.65, -0.10]

dON HO 16 [2.10, 3.25]

u1 HO 18 [-0.65, 0.25]

φ cos 32 [0, 2π/2]

N is the number of primitive (fine) grid points. The range represents the first and last grid

points in atomic units for the distances and φ is the torsion angle in radians. Cosines of

the valence angles have been used: ui = cos θi . See Figure 8 for the definition. Physical

degrees of freedom have been combined into logical modes or particles according to the

following scheme: [φ], [dOH ] [u2,dON ], [u1,dNO ]. The first particle (φ) has been contracted

in MGPF (see section IIIB in Peláez and Meyer, 2013).

TABLE 4 | Ground state energies of HONO using PESs of different quality.

Set MGPF ZPE (cm−1)

ζPM7 ev4 3221.3

ζ53 ev4 4070.7

ζ648 ev4 4095.0

ζ1084 ev4 4332.8

ζ1084 ev5 4330.8

ζ1084 ev3 4332.9

The first column indicates the set of SRP parameters used, labeled by its set of

parameters, ζN , where N is the number of points used in the fit (see Table 1). The second

column presents the size of the MGPF coarse grid: evn indicates a coarse grid in which

every (ev) n-th fine grid point has been considered (see section 3.2.1). The final column

presents the Zero Point Energies (ZPE) for each of the previous PES.

eigenstate is obtained. Furthermore, this incorrect behavior
worsens upon increase of the energy. In fact, eigenenergies
are off by several hundreds of cm−1 in almost the its whole
range. This can be readily understood by simple observation
of the 2D contour plots of the cis-trans region of the PES
(see Figure 6). In contrast, both SRP-MGPFs nicely follow the
reference values and, what is more important, the discrepancies
(of the order of tens of cm−1) do not increase but remain, in
average, constant.

Finally, to take into account higher excited vibrational states,
we have computed a vibrational spectrum by Fourier transform

TABLE 5 | Comparison of the 20 lowest vibrational eigenvalues of HONO for

different PESs denoted by its set of parameters, ζN, where N is the number of

points used in the fit (see Table 1).

Vibrational eigenenergies (cm−1)

ζPM7 ζ53 ζ1084 Analytical

0.0 0.0 0.0 0.0

593.6 163.0 88.5 94.1

794.3 604.7 597.1 600.8

1070.6 693.2 703.9 710.7

1151.5 706.9 822.3 795.9

1186.3 888.9 917.9 944.1

1365.9 1134.3 1012.5 1055.4

1403.1 1204.8 1189.7 1188.1

1641.3 1221.6 1234.7 1264.9

1659.6 1263.0 1317.9 1306.6

1751.1 1308.9 1363.5 1312.8

1773.1 1361.6 1417.2 1385.3

1811.5 1395.7 1451.1 1404.8

1869.9 1424.9 1530.5 1547.9

1968.7 1426.3 1607.7 1574.9

2011.4 1612.4 1633.9 1640.9

2060.3 1656.9 1690.9 1689.9

2118.1 1698.3 1743.0 1726.0

2136.5 1748.6 1778.7 1762.4

2226.5 1842.0 1785.8 1779.7

2253.3 1853.0 1807.3 1829.0

RMSE 360.2 58.4 24.5 –

N/A – [42.0] –

MAD 53.7 38.3 23.7 –

N/A – [25.5] –

Energies have been computed by MCTDH Block Improved Relaxation (see section 2.4).

All PESs have been MGPFitted using a coarse grid consisting on 18,432 points, the so-

called ev5 (see section 3.2.1). The first column presents the PM7-MGPF values (PM7),

second and third correspond to SRP-MGPF with ζ 53 and ζ 1084, respectively. The last

column presents the corresponding eigenenergies obtained using the analytical surface by

Richter et al. (2004). The last four rows present the RMSE and themean-absolute deviation

(MAD) of each set of eigenvalues with respect to the analytical ones. The values in square

brackets indicate the RMSE and MAD values taking into account the corresponding

OH stretching anharmonic frequencies. The latter have been obtained through Fourier

transform of an autocorrelation function (see Figure 9): (i) Analytical: 3533.8 cm-1 and (ii)

ζ 1084: 3695.7 cm-1. It should be noted that the PM7 values could not be determined

(indicated by N/A) owing to a wrong behavior of the PM7-PES at this energy range

(see Figure 9).
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FIGURE 9 | Vibrational spectra computed as the Fourier transform of the

autocorrelation function obtained after excitation of one quantum in the OH

stretching vibration centered the cis conformer region: (i) green line

corresponds to the PM7-MGPF PES; (ii) orange line to the SRP-MGPF (ζ1084 )

PES; and (iii) blue line, the reference PES (ab initio) (Richter et al., 2004).

of the autocorrelation function corresponding to the dynamics
of a wave packet generated by excitation of a quantum of
energy in the OH stretching mode in the cis region of the
potential. As observed (Figure 9), the PM7-MGPF spectrum is
radically different to that of the reference PES, whereas the SRP-
MGPF one shows the correct behavior. Apart from the, certainly
not unexpected, shift in energy, both reference PES and SRP-
MGPF reveal that the OH mode is practically uncoupled from
the rest.

4. CONCLUSIONS AND FUTURE
PROSPECTS

We have introduced Specific Reaction Parameter Multigrid
POTFIT (SRP-MGPF) a methodology which permits the
generation of global chemically accurate Potential Energy
Surfaces in sums-of-products (Tucker) form in a quasi black-
box manner starting from a random input geometry. The SRP-
MGPF workflow combines: (i) the automated determination of
stationary points of a Potential Energy Surface (PES); (ii) the
reparametrization of a Semiempirical Hamiltonian (SRP) using
high-level ab initio data; and (iii) direct tensor-decomposition
of the resulting SRP-PES with the Multigrid POTFIT (MGPF)
algorithm. The resulting surface can be used with any on-the-
fly dynamical software or, after MGPF, with grid-based quantum
dynamical method, in particular the Multiconfiguration Time-
Dependent Hartree (MCTDH) method. We have proven the
validity of this method by fitting the SRP-MGPF PES for the
HONO system in full dimensionality (6D) and reproducing,
to a good agreement, the vibrational properties of a surface
of CCSD(T)/cc-pVQZ quality. Current work deals with the
extension of the method to treat coupled electronic excited

states. To finalize, it should be highlighted that SRP-MGPF
provides an inexpensive and accurate enough means of
performing full-dimensional chemically meaningful quantum or
classical simulations.
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