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Binary metal oxides composed of molybdenum–vanadium oxides are promising

candidates for supercapacitors. Here, we report the synthesis of one-dimensional

V0.13Mo0.87O2.935 nanowires through a facile one-step hydrothermal method. This

nanowire presented a high specific capacitance of 394.6 F g−1 (1mV s−1) as an

electrode applied to the supercapacitor. Importantly, this electrode showed a perfect

rate capability of 91.5% (2 to 10A g−1) and a continuous verified outstanding

cyclic voltammetry of 97.6% after 10,000 cycles. These superior electrochemical

properties make the synthesized V0.13Mo0.87O2.935 nanowires a prospective candidate

for high-performance supercapacitors.
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INTRODUCTION

Due to overconsumption of non-renewable resources and the growing threat of global warming,
reliable and clean energy supplies, such as the secondary battery and supercapacitor (SC) science
and technology, are in urgent need of a breakthrough (Liu et al., 2016; Salanne et al., 2016; Liu
M. et al., 2018; Liang et al., 2019). SCs are becoming more appealing than ever because of their
rapid recharge capabilities, high power density, and durable life cycles (Salanne et al., 2016; Du
et al., 2018; Kirubasankar et al., 2018; Ho and Lin, 2019; Le et al., 2019; Ma et al., 2019; Yang L.
et al., 2019). It is well-established that three main electrode materials include conducting polymer,
transition metal oxide, and carbon materials (Jabeen et al., 2016a,b; Chen et al., 2017; Li et al., 2018;
Idrees et al., 2019). In this regard, transition metal oxides can increase the efficiency and improve
the specific capacitances compared to conducting polymers and carbon materials (Yang et al., 2015;
Fu et al., 2016; Qin et al., 2016a,b; Meng et al., 2017; An and Cheng, 2018). Unfortunately, it has
either insufficient electrochemical stability or low conductivity, which still greatly hampers their
widespread applications in SCs (Jiang et al., 2012). Therefore, an innovative material that can be
applied as a significant electrode material in the field of SCs is still needed.

In the last few years, binary metal oxides with stoichiometric or even nonstoichiometric
composition such as NiCo2O4 (Ma et al., 2016), NiFe2O4 (Yu et al., 2014), and MnCo2O4.5 (Hu
et al., 2019) have achieved efficient energy storage. It stems from its defect–effect mechanisms (Ellis
et al., 2007; Wang et al., 2017) or possible jump processes (Hu et al., 2012; Li et al., 2018; Yang
Y. et al., 2019) that provided the needed efficient electron conductivity. Also, the electrochemical
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behavior of these binary metal oxides is different to simple
metal oxides attributed to their composition, including the
species and ratios of elements. In particular, binary metal oxides
based on molybdenum oxides or vanadium oxides are also
regarded as a potential candidate for SCs. Many binary metals–
molybdenum oxides, such as NiMoO4 (Cheng et al., 2015), a-
MnMoO4 (Purushothaman et al., 2012), CoMoO4•0.9H2O (Liu
et al., 2014), and NiMoO4 (Mehrez et al., 2019), and binary
metal–vanadium oxides, such as β-Na0.33V2O5 (Hong Trang
et al., 2014), Li3VO4 (Iwama et al., 2016), and BiVO4 (Patil
et al., 2016; Guo et al., 2019), have been prepared for high-
performance SCs. Despite the tremendous efforts that have been
made on the electrode materials for these binary metal oxides,
researchers continue to explore the performance of the electrode
material for sustainable, low-cost, and clean energy storage
and conversion technologies. Especially, binary metal oxides
composed of molybdenum–vanadium oxide are also expected to
be of favorable potential as SCs. However, such reports are rare.

Herein, we report a simple preparation of one-
dimensional V0.13Mo0.87O2.935 nanowires through a one-step
hydrothermal method. This nanowire electrode exhibits
a high specific capacitance of 394.6 F g−1 (1mV s−1) as
an electrode material in SC. Additionally, this electrode
showed a rate capability of 91.5% (2 to 10A g−1) and
an outstanding cycle stability (97.6% after 10,000 cycles).
Therefore, one-dimensional V0.13Mo0.87O2.935 nanowires
have been prepared and applied as a high-performance SC
electrode material.

EXPERIMENTAL

Preparation
Firstly, the molybdenum powder (Mo, 0.192 g, 2 mmol) was
mixed with 37ml of deionized H2O and 3ml of hydrogen
peroxide at room temperature and then continuous stirred till the
solution became light yellow. After that, 0.088 g of ammonium
vanadate (NH4VO3, 0.75 mmol) was added to the solution until
the solid powder was completely dissolved. Then, the resulting
solution was decanted into a Teflon reaction kettle and heated
in oven at 200◦C for 48 h. After cooling to room temperature,
the obtained crude products were treated with 2M nitric acid.
Finally, the nanowires were collected through washing with
distilled H2O till neutral and then dried under air at 60◦C
for 18 h.

Material Characterizations
The X-ray diffractometer (XRD; with Cu-Kα radiation) presented
the structure and phase of one-dimensional V0.13Mo0.87O2.935

nanowires. The nanowires’ morphological feature was studied
by a scanning electron microscope (SEM; S-4800) and
a transmission electron microscope (TEM; JEM-2100F).
Compositions of the samples were tested by X-ray photoelectron
spectroscopy (Thermo ESCALAB 250XI). An automated
nitrogen adsorption analyzer (ASAP 2020, Micromeritics,
America) presented N2 adsorption–desorption isotherm under
the 77 K conditions.

Electrochemical Characterizations
Electrochemistry performances were tested in three electrode
systems with 1M Na2SO4 electrolyte using Autolab potentiostat
(PGSTAT302N). A saturated calomel electrode (SCE) was used
as the reference electrode and a platinum (Pt) foil was used as
the counter electrode. The working electrode was a mixture of
one-dimensional V0.13Mo0.87O2.935 nanowires, acetylene black,
and polyvinylidene fluoride (PVDF) according to a certain
mass ratio (80:15:5) in a few N-methyl pyrrolidinone (NMP).
After the mixture was stirred for 24 h, the formed slurry was
dripped on graphite paper and then vacuum dried at 60◦C
for 15 h. Cyclic voltammetry (CV) measurement was carried
out in a voltage range of 0–1.0V at different sweeping rates
(1, 5, 10, 25, 50, 75, and 100mV s−1), and galvanostatic
charge–discharge (GCD) was tested at different current densities
(2, 4, 6, 8, and 10A g−1). EIS data are obtained at a
frequency from 10−2 to 105 Hz with an AC amplitude
of 5 mV.

RESULTS AND DISCUSSIONS

In the present work, the phase for one-dimensional
V0.13Mo0.87O2.935 nanowire was first characterized. The
XRD spectrum for the prepared product is indicated in Figure 1

in that all diffraction peaks matched a hexagonal phase of one-
dimensional V0.13Mo0.87O2.935 nanowires (JCPDS card No. 48-
0766). No characteristic peaks from impurity have been detected,
suggesting that the pure one-dimensional V0.13Mo0.87O2.935

nanowires were prepared. Furthermore, the diffraction
peaks were sharp and intense, showing their high degree
of crystallinity.

The SEM image in Figure 2a depicts the typical morphology
of the one-dimensional V0.13Mo0.87O2.935 nanowires, which
consists of a number of uniform nanowires with an edge length
of more than 10µm. For more detail, the samples were examined
by TEM as indicated in Figure 2b in that the diameters of the

FIGURE 1 | XRD spectrum of the one-dimensional V0.13Mo0.87O2.935

nanowires.
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nanowires are 20–30 nm with uniform nanostructures. The HR-
TEM image is indicated in Figure 2c; those one-dimensional
V0.13Mo0.87O2.935 nanowires have a similar crystal structure and
no amorphous phase on the surface. It could be deduced from
the lattice fringes that the lattice spacing is 0.26 nm, agreeing to
the (220) plane of one-dimensional V0.13Mo0.87O2.935 nanowires.
In further studying the details, the brighter spots in the FFT
pattern (illustration in Figure 2c) pointed out an excellent crystal.
Besides, Figure 2d confirmed that the lattice spacing of 0.26 nm
in Figure 2c belongs to the (220) plane. These results closely
matched the data obtained from the XRD analysis, further
confirming the crystal structure of V0.13Mo0.87O2.935 nanowires.

The X-ray photoelectron spectroscopy (XPS) shows that the
one-dimensional V0.13Mo0.87O2.935 nanowires are composed of
three elements: V, Mo, and O (Figure S1 of the Supporting

Information). The XPS peak of V 2p in Figure 3A was
determined to be a peak of V 2p3/2 of 517.1 eV, and the V 2p1/2
peak of V5+ was not included because the low mole percentage
of vanadium in the compound was the smallest (Geert et al.,
2004; Liu X. et al., 2018). Figure 3B shows the Mo 3d spectrum
composed of two peaks, the Mo 3d3/2 from the peak at 236.0 eV
indicates Mo6+, and another peak at 232.9 eV could be due to
the superposition of Mo 3d5/2 and Mo 3d3/2, which indicates
Mo6+ and Mo5+ (Bica de Moraes et al., 2004). Meanwhile, in
Figure 3C, the XPS peak of the O 1s was observed at 530.8 eV.
In addition, the existence of Mo5+ was ascribed to the oxygen
anion vacancy in the framework of the compound structure, so
that molybdenum is only coordinated by five oxygen species.

The one-dimensional V0.13Mo0.87O2.935 nanowires were
further investigated by the N2 adsorption–desorption isotherms

FIGURE 2 | (a) SEM, (b) TEM, and (c) HR-TEM images of the one-dimensional V0.13Mo0.87O2.935 nanowires; the illustration shows the FFT pattern and (d) the

corresponding lattice spacing obtained from (c).

FIGURE 3 | XPS spectra of (A) V 2p, (B) Mo 3d, and (C) O 1s electrons in V0.13Mo0.87O2.935 nanowires.
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as indicated in Figure 4. According to IUPAC, the N2

adsorption–desorption isotherms of the V0.13Mo0.87O2.935

nanowires are a typical type IV adsorption isotherm with the
H3 hysteresis loop, exhibiting a mesoporous structure with slit-
shaped pores. The BET-specific surface area and pore diameters

FIGURE 4 | The N2 adsorption–desorption isotherm and pore size

distributions (illustration) of the one-dimensional V0.13Mo0.87O2.935

nanowires.

(illustration in Figure 4) of the V0.13Mo0.87O2.935 nanowires
are about 54.2 m2 g−1 and 80 nm, respectively, which may be
attributed to the assembly of the nanowires in space. This porous
structure contributes to the diffusion of electrolyte ions and
transport during the charge and discharge process of the SC
electrodes (Hou et al., 2018, 2019).

The as-prepared one-dimensional V0.13Mo0.87O2.935

nanowires were applied to SC electrode materials. Figure 5A
depicts the CV curves tested in the voltage from 0 to 1.0V.
Approximate rectangle-shaped and symmetrical CV curves
were viewed without redox peaks, showing an EDLC-
dominated capacitance behavior of the one-dimensional
V0.13Mo0.87O2.935 nanowires (Hung et al., 2011; Lokhande
et al., 2011; Pujari et al., 2016). Besides, the specific capacitance
(Table S1 of the Supporting Information) of one-dimensional
V0.13Mo0.87O2.935 nanowires was very high and was 394.6 F
g−1 at 1mV s−1. Notably, it can be seen that the CV
curve mostly remains in an approximately rectangle-like
shape with a sweeping rate between 1 and 100mV s−1,
which confirmed good electrochemical reversibility and
outstanding high-energy storage performance; the CV plot
tilt increases with increasing scan rates owing to the fact that
the electrons do not migrate from the inside of the material
to the surface of the electrode in time. Figure 5B shows
the GCD curves of the one-dimensional V0.13Mo0.87O2.935

nanowire electrode at different current densities. It displayed

FIGURE 5 | (A) CV and (B) GCD curves of the one-dimensional V0.13Mo0.87O2.935 nanowire electrodes on different sweeping rates and current densities,

respectively. (C) Rate performance and (D) cycle stability of the V0.13Mo0.87O2.935 nanowire electrodes, in 1M Na2SO4 electrolyte.
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FIGURE 6 | Nyquist plot before and after 10,000 cycles of the

one-dimensional V0.13Mo0.87O2.935 nanowire electrodes, with the inset

showing the corresponding equivalent circuit.

proximate central symmetry voltage profiles, which were
consistent compared to the CV results, pointing to the one-
dimensional V0.13Mo0.87O2.935 nanowires having an excellent
reversibility across the whole potential region. Furthermore,
one-dimensional V0.13Mo0.87O2.935 nanowire electrodes
presented high specific capacitances from 385.2 to 352.5 F
g−1 while discharge current density was enhanced to 2, 4, 6,
8, and 10A g−1 (Table S2 of the Supporting Information).
Compared with other binary metal oxide electrodes, one-
dimensional V0.13Mo0.87O2.935 nanowire electrodes also
indicated a strengthened specific capacitance as reported in the
literature, such as CoMoO4 (384 F g−1) (Li et al., 2018), BiVO4

(116.3 F g−1) (Patil et al., 2016), and MnMoO4 (168.32 F g−1)
(Veerasubramani et al., 2014).

The specific capacitances of the V0.13Mo0.87O2.935 electrodes

with different current densities are indicated in Figure 5C.

It maintained a remarkable rate performance of 91.5% from
2 to 10A g−1. This result may be attributed to the active
materials to form porous channels through intertwined networks,
enabling efficient electrolyte transport and accessibility of
active sites (Jiang et al., 2011). Therefore, it is possible to
maintain a high specific capacitance even at higher current
densities. Figure 5D indicates the long-term cycle stability
of the one-dimensional V0.13Mo0.87O2.935 nanowire electrode,
which was tested through CV tests repeating 10,000 cycles at
50mV s−1. It can be observed that its specific capacitance
retention showed outstanding stability, with the increase in
some cycles fluctuating only a little. After 10,000 cycles,
the retention rate value was found to be 97.6% of the
initial value.

The V0.13Mo0.87O2.935 electrodes were subjected to
electrochemical impedance spectroscopy (EIS) to explore
relevant charge transfer resistance. Figure 6 shows the Nyquist
plot before and after 10,000 cycles of the one-dimensional

V0.13Mo0.87O2.935 nanowire electrodes. The inset shows the
corresponding equivalent circuit by its corresponding fitting
curve (Figure S2 in Supporting Information), which was fitted
by an equivalent circuit consisting of a bulk solution resistance
Rs, a charge-transfer Rct , and constant phase element (CPE). The
Rs values of the one-dimensional V0.13Mo0.87O2.935 nanowire
electrode before and after 10,000 cycles are 2.02 and 2.10Ω ,
respectively. Also, the value of Rct was connected with charge
transfer after 10,000 cycles and is only slightly higher than
before (68.6 vs. 50.1Ω), manifesting superior conductivity and
stability of the one-dimensional V0.13Mo0.87O2.935 nanowire
microstructure owing to good ion conductivity of the interface
between electrolyte and electrodes.

CONCLUSIONS

In summary, one-dimensional V0.13Mo0.87O2.935 nanowires were
synthesized under a facile one-step hydrothermal condition.
For application in a SC electrode, it was found to present a
high specific capacitance of 394.6 F g−1 (1mV s−1). Besides,
this electrode showed a perfect rate capability of 91.5%
at the current density that was enhanced five times and
outstanding long-term cyclic stability (97.6% after 10,000 cycles).
This study offers a common preparation method of binary
molybdenum–vanadium oxide used in SCs with a superior
electrochemical property.
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