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Nitrogen-containing organic compounds possess the most important status in drug

molecules and agricultural chemicals. More than 80% currently used drugs have at

least a C-N bond. The green and mild methodology to prepare diverse C-N bonds to

replace traditional harsh preparation protocols is always a hotspot in modern synthetic

chemistry. TiO2-based nanomaterials, considered as environmentally benign, stable, and

powerful photocatalysts, have recently been applied in some certain challenging organic

synthesis including construction of useful C-N compounds under mild conditions that

are impossible to complete by conventional catalysis. This mini review would present

state-of-the-art paragon examples of TiO2 photocatalyzed C-N bond formations. The

discussion would be divided into twomain sections: (1) N-alkylation of amines and (2) C-N

formation in heterocycle synthesis. Especially, the mechanism of TiO2 photocatalytic C-N

bond formation through activating alcohol into C=O by photo-induced hole followed by

C=NH-R formation and finally hydrogenating C=NH-R into C-N bonds by combination

of photo-induced electron/H+ assisted with loaded-Pt would be covered in detail. We

believe that the mini-review will bring new insights into TiO2 photocatalysis applied to

construct challenging organic compounds through enabling photo-induced hole and

electron in a concerted way on coupling two substrate molecules together with respect

to their conventionally independent catalysis behavior.

Keywords: TiO2, heterogeneous photocatalysis, C-N bond formation, amine, heterocycle

INTRODUCTION

Nitrogen is among the most ubiquitous elements in the nature. The nitrogen-containing
organic structure unit constitutes the basic building block of life, such as proteins, DNA,
and RNA. Moreover, most natural products, pharmaceuticals and agrochemicals demand
nitrogen-containing group for their particular activity (Taylor et al., 2014). Nowadays, a number
of catalytic methods have been exploited to construct diverse functional C-N bonds. Among them,
palladium catalyzed Buchwald-Hartwig reaction (Bruno et al., 2013; Ruiz-Castillo and Buchwald,
2016; Heravi et al., 2018) and copper catalyzed Ullmann reaction (Beletskaya and Cheprakov,
2012) and Chan-Lam coupling (Fischer and Koenig, 2011; Qiao and Lam, 2011; Duan et al.,
2019) are the first choices due to their high efficiency, excellent chemo-, regioselectivity, and
yields (see Figure 1, top). Despite their widespread uses, these transition-metal catalyzed methods
have some intrinsic disadvantages. For example, the reactions usually proceed under obligatory
high refluxing temperature, rigorous, and complicated anaerobic and anhydrous manipulation; the
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FIGURE 1 | C-N bond construction through transition-metal catalytic strategy (Top), general pathway of organic synthesis mediated by TiO2 photocatalysis (Bottom).

catalysts generally demand complex and expensive ligands; there
are non-trivial separations of homogeneous catalysts; the bio-
toxicity of the transition-metal catalyst easily remain in the final
product. What is more, these catalytic strategies require strictly
pre-functionalized substrates because common C-H compounds
do not quite meet the request of the target C-N bonds synthesis.
All of these issues call for alternative catalytic approaches
(Santoro et al., 2016; Ma et al., 2018b) directly activating C-H
bonds of more common compounds to construct diverse C-
N bonds.

In recent years, heterogeneous photoredox synthesis has
experienced a renaissance with the emergence of new and
highly active photocatalysts (Kisch, 2013, 2017; Friedmann
et al., 2016; Parrino et al., 2018). Among the heterogeneous
semiconductor photocatalysts, TiO2 nanoparticle, as the most

explored one, is prevalently investigated because it possesses very
powerful photo-generated hole on valance band and electrons
on conduction band, by which most inert C-H bonds can
be readily activated for the synthesis of value-added organic
products by TiO2 or metal-loaded/TiO2 photocatalysis (see
Figure 1, bottom) (Kuntz, 1997; Yurdakal et al., 2008; Zhang
et al., 2008, 2014; Higashimoto et al., 2009; Füldner et al.,
2010; Kohtani et al., 2010, 2018; Zhu et al., 2010; Palmisano
et al., 2011; Cherevatskaya and Koenig, 2014; Manley et al.,
2014; Hoffmann, 2015; Lang et al., 2015a,b; Manley and Walton,
2015; Ma et al., 2017, 2018a, 2019; Ma and Li, 2018; Wang
Y. et al., 2018;). However, these previous TiO2 photocatalysis
examples for synthetic applications mainly activate the substrates
separately on photo-induce valence band and conduction band,
and the products are either oxidative or reductive products
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(see Figure 1, bottom). There are very rare reports focused
on coupling photo-induced holes and electrons synergistically
to realize more significant cross-coupling reactions with wider
substrate scopes and excellent functional group tolerability.

Very recently, TiO2 photocatalysis is developed to successfully
tune photo-induced hole/electron pair synergistically for
synthetically important coupling reactions such as C-C bonds
formation (Manley et al., 2012; Rueping et al., 2012; Ma
et al., 2015; Liu et al., 2016; Nauth et al., 2018) and C-N
bond formations (Vila and Rueping, 2013) (see Figure 1,
bottom). These examples evidently endowed TiO2 photocatalysis
prominent perspective for organic synthetic applications. Since
TiO2 photocatalyzed oxidation, reduction, and C-C formation
have been extensively reviewed (Palmisano et al., 2007, 2010;
Ravelli et al., 2011; Augugliaro et al., 2015), this mini-review
mainly focus on the TiO2 photocatalyzed useful C-N bond
formations. We will divide the discussion into two sections:
N-alkylation of amines (see Figure 2, bottom Equations 1–4) and
C-N formation in heterocycle synthesis (see Figure 2, bottom
Equations 5–6).

Why C-N bonds can be formed by TiO2 photocatalyst in
these two kinds of reactions? The main reason is that in
these two C-N bond formation reactions, the photo-induced
hole oxidation and electron reduction are highly coupled
by an intermediate. For the case of N-alkylation of amines
(see Figure 2, top), TiO2 photocatalysis uses and activates
environmentally more friendly C-H and -OH bond of alcohol -
CH2-OH into -HC=O bond intermediates by photo-induce hole
powerful oxidation, which readily reacts with R-NH2 substrates
into -HC=N-R even without catalysis. Finally, the as-formed
key C=N-R intermediates are hydrogenated into –CH2-NH-
R by conduction band electron coupled with H+ assisted by
loaded Pt. Such an imine intermediate formation is much
easier to yield C-N bond than that of two transmetalation
steps (R1C-Pd(II)-X2Lx to R1C-Pd(II)-O-

tBuLx→ R1C-Pd(II)-
NR2Lx) in transition-metal catalysis(see Figure 1, top). For
the case of C-N formation in heterocycle synthesis, unlike
the above-mentioned pathway that valence-band hole and
conduction-band electron both act on the same substrate and
the other substrate R2NH involves in coupling reaction with
alcohol photo-oxidized product aldehyde without photocatalysis,
this kind of reaction depends on photo-induced holes and
electrons separately activates two substrates by two-electron-
transfer. And the two separate intermediates implements double
condensation of -HC=O and R-NH2 and provide the final
cyclization product. These two C-N bond formation reactions
both require valence-band holes and conduction-band electrons
synergistic interaction. Moreover, the formation of a long life-
time intermediate –C=NR is the prerequisite for the sufficient
probability to couple conduction-band electron/H+ for target
product. The previously reported TiO2 photocatalysis could
not realize A + B→C type coupling reaction, because it lacks
the suitable long life-time stable intermediate to accommodate
and tune the synergistic interaction of valence-band hole and
conduction-band electron. In the following sections, we will
introduce and comment on these two typical kinds of TiO2

photocatalytic C-N synthesis in detail.

TiO2 PHOTOCATALYZED AMINE
N-ALKYLATION

N-alkylated amines are very important nitrogen-containing
compounds in pharmaceuticals, agrochemicals, dyes, and
functional materials. The traditional synthetic routes for N-
alkylated amines can be divided into two categories: (i) reductive
aminations using carbonyls, amines, and stoichiometric metal
hydride reductants (Abdel-Magid and Mehrman, 2006); (ii)
transition-metal catalyzed substitution of amines with alkyl or
aryl halides or pseudo halides (Shin et al., 2015). Although,
these mature methodologies are viable and provide excellent
yields for most amines, they still suffer from some drawbacks
such as the bio-toxicity of aldehydes, organic halides, and
transition-metal catalyst, the harsh operating conditions such
as high temperature and the use of hazardous metal hydrides
as reductants. The high temperature above 100◦C can be very
detrimental for the late-stage functionalization of unstable and
oxidable primary amines. To meet these demands, using a
greener alkylating reagent and conducting the reaction in milder
conditions are highly desirable. TiO2 photocatalysis using low-
toxic alcohols as alkylating reagents can be an excellent choice to
solve this issue. This success is largely ascribed to both powerful
potential of photo-generated hole in initiating more inert but less
toxic substrates and hole-electrons as traceless reagents in the
final products.

Dating back to 1983, Kagiya et al. reported that primary
alkyl amine could be photo-dimerized to yield secondary dialkyl
amine with the loss of NH3 by Pt/TiO2 photocatalyst in
aqueous suspension (Equation 1) (Nishimoto et al., 1983). The
authors proposed that TiO2 photo-induced valence-band hole
was responsible for the oxidation of primary amine to primary
iminium ion. The nucleophilic attack of the remaining amine
to iminium ion generated the coupled secondary imine, while
the photo-induced conduction-band electrons reduced aqueous
proton and combined with Pt nanoparticle generating Pt-H
species. The Pt-H species reduced secondary imine to the target
dialkyl amine. This work inaugurated the application of TiO2

photocatalysis to C-N coupling reactions.
Using alcohols other than aliphatic amines as alkylating

reagents was proven to be a more efficient strategy with
less side reactions for the Pt/TiO2 photocatalyzed amine N-
alkylation because alcohols are more stable than aliphatic
amines under UV-light irradiation. Kagiya et al. reported that
unsymmetrical secondary amine or tertiary amine could be
synthesized by the photocatalytic cross-coupling between amine
and alcohol (Ohtani et al., 1986, 1990) (Equation 2). In an
alcoholic solution, primary amine could be transformed to
the N-alkylated product by Pt/TiO2 photocatalysis. Prolonged
irradiation leaded the formation of N,N’-dialkylated products.
Cyclic and acyclic secondary amine participated in N-alkylation
providing tertiary amine. The authors proposed that the amine
product was initially transformed to iminium ion as in the
previous examples. Photo-induced electrons reduced alcoholic
proton yielding H2. H2 adsorbed on Pt nanoparticles performed
the in-situ reduction of secondary imine to N-alkylated
secondary amines. The substitution of N-alkylating reagent
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FIGURE 2 | C-N bond constructions by TiO2 photocatalysis (Top) two kinds of C-N bond formation catalyzed by TiO2 photocatalysis: (Equations 1–4) N-alkylation

and (Equations 5, 6) N-heterocyclization using alcohols as starting reagents. Equations (1)–(6) see details in the following main text (Bottom).
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and solvent from amine and H2O to alcohol greatly enhanced
the yield. This mainly originated to the more facile loss of
H2O compared with NH3. On the other hand, reduction
of proton in alcohol was extremely easier than proton
in H2O.

Although, amine N-alkylation by Pt/TiO2 photocatalysis
experienced success in 1980s, the issue on the control of
chemoselectivity between N-monoalkylation and N,N’-
dialkylation had no practicability by using this catalyst
system. Shiraishi et al. solved this issue by the utilization of
Pd/TiO2 photocatalyst other than Pt/TiO2. (Shiraishi et al.,
2013) (Equation 3) Loading Pd nanoparticles with 2–2.5 nm
diameter onto TiO2 surface can achieve the highest yield
of N-monoalkylation product. This catalyst promoted the
rate-determining-step, i.e., imine hydrogenation utmost. The
secret to obtain the N-monoalkylation products with high
chemoselectivity was the control of suitable irradiation time and
the application of sterically hindered substrates.

Apart from Pt/TiO2 and Pd/TiO2, Au/TiO2 also
photocatalyzed the N-alkylation of aniline using alcohols as
alkylating reagents (Stibal et al., 2013). Moreover, one-pot
tandem synthesis of N-alkylated aniline can be achieved
from nitrobenzene substrates by this method. The authors
observed dialkylated product only when methanol was used
as alkylating reagent. Using other chain alcohols all provided
N-monoalkylated products. The lowest pKa conferred methanol
with the highest reactivity to form the dialkylated products.

Compared with Pt, Pd, and Au/TiO2 photocatalyst, Ag/TiO2

evidenced its power in wider substrates scope and better
functional group tolerability. Saito et al. reported that under UV
irradiation, Ag/TiO2 photocatalyst can initiate N-methylation to
amines with various functional groups intact (Tsarev et al., 2015).
Amines possessing N-benzyl, N-allyl, N-Boc, hydroxyl, ether,
acetal, carboxamide, formamide, and olefin groups were all well-
tolerated under this mild photoreaction conditions. Moreover,
this method can be used to the methylation of chiral amine with
almost complete chirality retention. Otherwise, NH3 and proline
N-methylation can be successfully accomplished in aqueous
solution with unreduced yields. Besides, this method has very
high selectivity to amine substrates in the presence of various
other reducible compounds.

Besides intermolecular N-alkylation, intramolecular N-
alkylation can also be realized using Pt/TiO2 photocatalyst.
Uyeda et al. reported that 2,3,4,9-tetrahydro-1H-carbazoles can
be synthesized via a photocatalytic Pictet-Spengler reaction from
2-(1H-indol-3-yl)ethan-1-amine and methanol (Adolph et al.,
2017) (Equation 4). They discovered that an intermolecular
N-methylation between methanol and 2-(1H-indol-3-yl) ethan-
1-amine can be coupled with the intramolecular C-C bond
formation on indole 2-position and N-methyl group. Only
Pt/TiO2 could provide the target cyclization carbazole product,
while other metals such as Au, Ag, or Pd loaded TiO2 all did
not realize this transformation. Ag and Au could not effectively
convert the tryptamine substrate. Pd/TiO2 had the power to
completely consume the reactant. However, N-methylation other
than cyclization product was generated under this condition.
A wide substrate scope was explored and various functional

groups were tolerated with this method. Moreover, this
photocatalysis system could be applied to other intermolecular
multicomponent reactions such as intermolecular addition,
Strecker reaction, Mannich, and Ugi-type reaction with good to
excellent yields.

Cu/TiO2 and Au/TiO2 mixed photocatalyst could alkylate
the complex functionalized aromatic amines (Wang L.-M.
et al., 2018). In this composite catalyst, Au/TiO2 moiety
was responsible for dehydrogenation of alcohol to form
aldehyde in-situ, while Cu/TiO2 moiety catalyzed the
reduction of imine intermediate to the final N-alkylated
amine product. This report was the first example applying mixed
metal/TiO2 based photocatalyst for N-alkylation of complex
functionalized amines.

Although, TiO2 photocatalysis has accumulated a plethora
of delicate examples for amine N-alkylation to complement
traditional reductive amination and transition-metal catalyzed
processes, there are still much spaces and gaps for the
researcher in this area to surpass. Firstly, developing more
low-cost non-noble-metal loaded TiO2 photocatalyst systems
to achieve the same or higher yields and chemoselectivity for
amine N-alkylation are strongly demanded. Second, if visible-
light active TiO2 photocatalyst systems can be applied in this
transformation, the solar energy utilization efficiency would be
greatly enhanced since the current TiO2 and metal-loaded TiO2

nanoparticle systems can only capture the UV light, which
covers only 5% energy in sun spectrum. Last but not the
least, enhancing the chemoselectivity of more complex target
molecules with accurate tuning between N-monoalkylation
and N,N’-dialkylation is extremely pivotal for the further
development in this field. Especially, due to the more and more
rigorous demanding in chiral pure pharmaceuticals, realizing
asymmetric N-alkylation by TiO2 heterogeneous photocatalyst
systems would be the ultimate goal. In order to realize
this, fabricating diverse asymmetric TiO2 surfaces may be
the ideal choice compared with previously reported adding
molecular chiral co-catalyst into the suspension. If all the above-
mentioned limitations were perfectly resolved, in light of its
powerful potential to activate nearly any inert C-H compounds,
this method using TiO2 heterogeneous photocatalyst would
possess the comparable status to cover the shortages for
transition-metal catalysis, which commonly requires highly
functionalized substrates.

TiO2 PHOTOCATALYZED
N-HETEROCYCLE FORMATION

N-heterocycles are the most important molecular scaffold
for life. A lot of natural products comprised N-heterocycles.
Moreover, the report provided by FDA demonstrated that
about 60% pharmaceutical molecules contain N-heterocycles
(Newman and Cragg, 2016). Although, there are a number
of methodologies to prepare N-heterocycles de novo by
transition-metal (Shaikh and Hong, 2016) or acid/base catalysis
(Doustkhah et al., 2019), developing much greener and
economic methods without uses of unavailable starting materials
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or pre-functionalized substrates are urgently desired. TiO2

photocatalysts are deemed to be ideal choice for this task because
of their powerful ability to activate most inert C-H, C-C, and
C-X bonds of common substrates and the environmentally
benign properties.

As early as 1990s, Park et al. firstly realized the N-
heterocycle formation by TiO2 photocatalysis (Park et al.,
1995) (Equation 5). Upon UV irradiation, TiO2 nanoparticles
catalyzed the synthesis of 4-ethoxy-l,2,3,4-tetrahydroquinoline
from nitroarene and ethanol in a one-pot process, in which
ethanol was transformed sequentially to acetaldehyde and ethyl
vinyl ether, while nitroarene was transformed to Schiff base
by a reductive amination process. The final hetero-Diers-Alder
cycloaddition furnished the target tetrahydroquinoline product
with∼71% yield.

Under aerobic conditions, TiO2/zeolite photocatalyst system
furnished 2-methyl quinoxaline and quinoxaline from o-
phenyldiamine and propyleneglycol with 22.5 and 12.6% yield,
respectively (Rao and Subrahmanyam, 2002) (Equation 6).
The proposed mechanism included three steps: (1) TiO2

photocatalyzed oxidation of propyleneglycol to 2-oxopropanal
using photo-induced valence-band holes. And the corresponding
conduction-band electrons were consumed by O2. The in-
situ generated 2-oxopropanal condensed with o-phenyldiamine
yielding 2-methyl quinoxaline. Further photo-oxidation of
2-methyl quinoxaline by photo-induced holes yielded the
radical cation, which was transformed to methyl radical
by a proton-coupled-electron transfer process by zeolite.
The sequential oxidation and decarboxylation steps generated
quinoxaline product. The introduction of unselective dioxygen
and secondary reactive oxygen species may be the reason for the
lower yield.

By the combinative use of TiO2 photocatalyst with p-
toluenesulfonic acid as a co-catalyst, quinolines could be
synthesized from nitrobenzenes (Hakki et al., 2009, 2013). Based
on the GC-MS chromatograms analysis of the intermediates,
the authors deduced a different reaction pathway that the
condensation between two Schiff-bases and acetaldehyde
and the sequential cyclization and dehydration facilitated
quinoline products other than the conventional crotonaldehyde
route. The detection of N-ethyl-3,5-dimethylbenzenamine
and the absence of crotonaldehyde in the GC-MS tracing
analysis during the photo-reaction evidenced this proposition.
Moreover, the same group demonstrated that acid-modified
mesoporous SiO2 decorated with TiO2 could also realize
this transformation in anaerobic alcoholic solution yielding
poly-substituted quinolines.

CONCLUSION

We have conducted a thorough review of the paragon examples
of TiO2 photocatalyzed C-N formations. Although, still in its
infantile period compared with transition-metal catalysis and
organocatalysis, TiO2 photocatalysis has demonstrated its power
for a number of concrete examples to construct C-N bonds using

alcohols as mild and green alkylating reagents for amine N-
alkylation and the de novo synthesis of five- or six-membered
N-heterocycles. Such a catalytic strategy stems from the powerful
photo-generated holes/electrons on TiO2 nanoparticle surfaces,
which readily activates inert C-H, C-C, and C-X of common
organic compounds to construct useful C-N compounds.
Figure 2, bottom summarized the yields and quantum yield of
C-N compounds obtained by these TiO2-based photocatalysts.
Compared with a number of various visible-light responsive
photocatalyst materials, TiO2 possesses higher valence-band hole
oxidative ability (Evb = 2.7V vs. NHE at pH = 7). This
confers it more possibility for activation of organic compounds
inert bonds such as C-H and C-X. So, the dehydrogenation
process of C-OH to C=O on TiO2 photocatalysis proceeds
facilely. However, due to the moderate reductive ability of
its conduction-band (Ecb = −0.5V vs. NHE at pH = 7),
realizing C-N single bond formation usually requires the noble-
metal assistance. Some visible-light responsive nanomaterials
including Au, Pd nanoparticles, metal-organic frameworks, CdS,
ZnIn2S4, and BiVO4, these photocatalysts has narrower band-
gap, but lower ability to activate inert bonds. Most of these
photocatalysts were applied in the aerobic oxidation of amine
to imine. In these transformations, dioxygen other than C=N
intermediates acts as the final electron acceptor. Apart from
these SPR and semiconductor-based photocatalysts, organic
materials such as g-C3N4 and graphene are recently experiencing
a burgeoning period in photoredox organic synthesis (Nan
et al., 2013; Yang and Xu, 2013; Zhang et al., 2015). A
number of transformations such as C-N, C=N formation,
alcohol oxidation to carbonyl, nitroarene reduction to aniline,
N=N formation in azobenzene, etc., were successfully achieved
by these carbon-based materials (Su et al., 2010; Dai et al.,
2018). In spite of some disadvantages such as limited substrate
scopes and reaction types, less functional group tolerability and
poor chemo- and regioselectivity, TiO2 photocatalysis has its
incomparable long-comings: being extremely stable under strong
acidic, basic, oxidative, reductive and illuminative conditions,
non-toxic to environment, facile in recycling, and reusing
without apparent loss of catalytic activity. TiO2 photocatalysis
is considered as the future star for applications in organic
synthesis. To cover the current gaps, more research focus
should be concentrated on the following several issues: (i)
Enlarging the scope of TiO2 absorption is very important
for more efficient transformations initiated by visible-light or
even near-infrared light. (ii) Developing TiO2 photocatalysis
systems with stereoselectivity can meet the demand for
contemporary medicinal chemistry. (iii) More reaction types
should be established and wider substrates scopes and better
functional group tolerability should be achieved. (iv) The
gram-scale or kilogram-scale synthesis by TiO2 photocatalysis
should be emphasized via promoting the quantum efficiency of
photocatalysts or quickly removing the products from the surface
of photocatalysts. Thereby, TiO2 photocatalysis will embrace a
brighter future in the field of natural product, pharmaceuticals,
agrochemicals, and fine-chemicals synthesis after these demands
are met.
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