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A Global Optimizer for Nanoclusters

Maya Khatun, Rajat Shubhro Majumdar and Anakuthil Anoop*

Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India

We have developed an algorithm to automatically build the global minimum and other
low-energy minima of nanoclusters. This method is implemented in PyAR (https://
github.com/anooplab/pyar) program. The global optimization in PyAR involves two parts,
generation of several trial geometries and gradient-based local optimization of the trial
geometries. While generating the trial geometries, a Tabu list is used for storing the
information of the already used trial geometries to avoid using the similar trial geometries.
In this recursive algorithm, an n-sized cluster is built from the geometries of n—1 clusters.
The overall procedure automatically generates many unique minimum energy geometries
of clusters with size from 2 up to n using this evolutionary growth strategy. We have
used our strategy on some of the well-studied clusters such as Pd, Pt, Au, and Al
homometallic clusters, Ru-Pt and Au-Pt binary clusters, and Ag-Au-Pt ternary cluster.
We have analyzed some of the popular parameters to characterize the clusters, such
as relative energy, singlet-triplet energy difference, binding energy, second-order energy
difference, and mixing energy, and compared with the reported properties.

Keywords: global optimization, PyAR, nanocluster, binary cluster, ternary cluster, nanoalloys, cluster builder

1. INTRODUCTION

A major focus in modern nanoscience is to understand the properties of materials on the atomic
scale (Eberhardt, 2002). Subnanometer scale metal clusters are of great interest due to their
structural and electronic properties (Baletto and Ferrando, 2005), which makes them useful for
applications in various field like nanotechnology, electronics, medical device and catalysis (Saha
et al.,, 2012). The atomic clusters may comprise of atoms of the same element such as in fullerenes
or atoms of different elements as in nanoalloys (Johnston, 2002). A molecular-level understanding
of small nanoclusters would provide insights into the largely empirical field of nanoscience.

Theoretical study of nanoclusters can help us to understand the smooth transition from atoms
to bulk materials, especially the size-dependent evolution of the properties (Jortner, 1992; Edwards
et al., 1998). The primary input for the theoretical study is their geometry. While determining the
geometry of nanoclusters by experiments is extremely difficult, the atomic structure of clusters can
be predicted theoretically by geometry optimization tools that are specifically designed for global
optimization (Zhao et al., 2017).

Global optimization of functions is an essential part of various research fields and have many
real-life applications (Floudas and Gounaris, 2008; Barbati et al., 2012; Khare and Rangnekar, 2013).
The global optimization (GO) is the process of finding the best solution, “global maximum” or
“global minimum” (GM), based on one or more criteria for a mathematically formulated function
(Jager et al., 2018). The global optimization in our context refers to finding the most stable geometry
for a particular cluster, that is the lowest energy atomic arrangements on the potential energy
surface (PES). The global minima of atomic clusters (Davis et al., 2015; Shayeghi et al., 2015a) are
essential as these are often the most likely structure to be formed in the experiment. Thus, finding
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the global minimum and other low-lying minima on the PES is
helpful to interpret the experimental results (Shayeghi et al., 2014,
2015b; Gotz et al., 2016).

The efficiency of geometry optimization (GO) algorithm
is crucial for the success in the attempts to understand the
cluster science. Some of the popular GO algorithms are Genetic
Algorithms (GA) (Johnston, 2003), Basin Hopping (BH) (Wales
and Scheraga, 1999), Particle Swarm Optimization (PSO) (Lv
etal., 2012; Shi et al., 2019), Artificial Bee Colony (ABC) (Zhang
and Dolg, 2015), Simulated Annealing (Kirkpatrick et al., 1983),
Threshold Algorithms (Schon et al., 1996) etc. These general GO
algorithms are employed in the studies of metal clusters with
varying degrees of success. As for any applications of GO, there is
no universal method that works for all the molecular systems in
chemistry and is an open area of research.

A major challenge in any GO method is the computational
complexity, the exponential increase in the search space with
system size (Doye and Wales, 1998). A GO algorithm must
combine a locally confined search with the wide exploration
of the regions without revisiting the same regions (Heiles
and Johnston, 2013) in the PES in a computationally effective
way. The fine balance of local search and global exploration
is required. The re-examination of a minimum only gives
redundant information wasting computational resources. On the
other hand, confining the search only to a small neighboring
area does not allow the algorithm to find the GM in other
funnels on the PES. Metadynamics algorithms overcome the
revisiting problem by adding time-dependent repulsive bias
potential function of collective variables to discourage revisiting
the already visited areas. Tabu-search based algorithms (Glover,
1986, 1989, 1990) store the information of previously visited areas
to avoid the searching of the already explored region.

In this article, we explain our strategy to find the global
minima geometries of atomic clusters—unary, binary and ternary
nanoclusters. We have combined two strategies to improve the
efficiency: the Tabu-search algorithm to reduce the time spent
on the already found minima and a novel recursive approach
to reduce the search space by making use of the solutions from
the smaller problem. That is, we build the solutions of n sized
cluster based on the solutions of n — 1 sized cluster. This way,
the unique geometries of cluster size n can be built bottoms-up
starting from the single atom. This method is particularly useful
for studying the evolution of structure and properties with the
growth of cluster size. We have discussed the implementation
and the validation by applying on the known metallic clusters.
We have compared the geometries and a few representative
properties of the clusters generated by our algorithm with the
reported geometries and corresponding properties.

2. THEORETICAL APPROACH
2.1. Cluster Building and Optimization

Our method for the global optimization of the geometries
of atomic clusters is an adaptation of our approach for the
automated exploration of reaction and aggregation implemented
in PyAR (Nandi et al,, 2017; Anoop, 2019) program. In this
section, we will explain the philosophy and implementation of

the aggr egat or modules used for the building of nanoclusters
(Figure 1). The global optimization for nanoclusters in PyAR
involves two parts, generation of several trial geometries and
gradient-based local optimization of these trial geometries. In
our algorithm, the search for solutions of n-sized cluster make
use of the solutions from the search on the n — 1 sized clusters.
At each cycle, the problem is reduced to find the best relative
orientations between two species. This approach is analogous to
finding the solution of the traveling salesman problem with N
cities by adding one more city to the solution of the problem with
N-1 cities. The overall procedure automatically generates several
unique minimum energy geometries of clusters with size up to n
using our evolutionary growth strategy.

This process can be imagined as growing the cluster by adding
atoms one by one. The method is similar to the cluster-fusion
algorithm of Solov’yov et al. (2004). When the second atom is
added to the first one, there is only one possible geometry and
there is only one variable—the distance between the atoms. The
trial geometry for the dimer is generated as follows. The first atom
(called as seed) is placed at the origin of the Cartesian coordinate
system. For placing the second atom (named monomer), the
value for the x-coordinate is generated as a random number
between 0 and 1. Then, the value of x is increased in small steps
of 0.1 A until x is larger than the sum of covalent radii of both
atoms (x > (R, + Rp)). This way, the second atom is placed in
the X-axis at a distance of no close-contact between the atoms.

The third atom could be placed anywhere in the xy-plane
at a distance from the existing atoms of the dimer avoiding
close-contacts. Here, the dimer is the seed, and the atom is
the monomer. The xy-plane (the search space) is divided into
four quadrants. The new atoms are placed in each quadrant
sequentially. The quadrant is chosen by generating random
numbers for x and y coordinates within a suitable range to fit
a particular quadrant. The new coordinates created by these
random numbers are normalized so that the point is at a unit
distance from the origin. As described above, the third atom
initially placed at this position is translated away from the origin
to avoid any close contacts.

The search space for the addition of the fourth atom and
further on is three-dimensional. The 3D space around the
trimer (and larger n’mers) is divided into eight octants. The
new atoms are placed in random positions at unit distance
from the origin in each of these octants sequentially. The
reason for dividing the space into octants is to distribute
the new trial geometries evenly so that even with a few trial
geometries, there is a chance of exploring different region
of space and getting dissimilar geometries. This way, N trial
geometries are generated. N is a user-provided parameter. All
the trial geometries will be optimized using local, gradient-based
optimizers. The optimizations are done by the interfaced software
as described later in this section.

Some of the optimized geometries obtained by the gradient-
based optimization of these trial geometries may belong to the
same minima in the PES, with small differences in geometrical
parameters depending on the convergence criteria. Comparison
of geometries based on Cartesian coordinates such as RMSD
of the atomic positions may fail because the optimization may
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FIGURE 1 | The flowchart for the cluster building method.
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reorient the molecule, and the Cartesian coordinates are not
rotationally invariant. Besides, the same geometry with different
ordering of atoms will also be shown as different geometries
by such comparisons. Therefore, we have implemented various
molecular representations to find the similarity.

One of such representations that we have used in this work
is the molecular fingerprints, computed as follows. An n-by-n
matrix, known as Coulomb matrix (Rupp et al., 2012; Sadeghi
et al,, 2013), is made in which the off-diagonal elements are the
pairwise Coulomb repulsions Zé—?
are Z}*/2. The Z; and Z; are the core charge of atom i and j.
The Coulomb matrix is diagonalized. The sorted eigenvalues are
considered as the molecular fingerprints. The fingerprint is used
as the feature vector for clustering algorithm (see below) and
the euclidean distance between the fingerprints is used as the
measure of similarity.

Using the molecular fingerprint representation, these
optimized geometries are analyzed and clustered into groups (up
to 8 clusters) of similar geometries using clustering algorithms
(Nandi et al., 2018) in Scikit-learn (Pedregosa et al., 2011) python
library. The most stable geometry from each of these clusters are
selected as the minima for this n’mer and the most stable among
the minima is the global minimum geometry for this n’mer. All
of these minima are considered for further growth by adding a
new atom. This way the degree of freedom of w’'mer (3N — 6) is
reduced to 3.

Besides the reduction in complexity, the other significant
improvement to increase the efficiency is to avoid revisiting the
already visited regions. In our context, we store all the randomly
created points and compare the new point with the stored points.
For a reasonable comparison, all the positions are generated at
a unit distance from the origin, i. e. positions lie on the surface
of the sphere of a unit radius (1 A). If the new position is within
the threshold distance from any of the stored positions, the new
position is rejected. This threshold distance is initially set as 0.3A
and is increased by 5 % in each cycle. As this idea is adapted
from Tabu-search algorithm (Glover, 1986, 1989, 1990), the list
of stored positions is referred as the Tabu list. This method of
filtering the position makes sure that the trial geometries are
sufficiently dissimilar.

The N trial geometries created by the method explained above
will be optimized with the electronic structure programs that
are interfaced with PyAR. Currently we have interfaced with
Gaussian 09/16 (Frisch et al., 2016), MOPAC (Stewart, 2016),
PSI4 (Turney et al, 2012), ORCA (Neese, 2018), Turbomole
(Furche et al., 2014), XTB (Grimme et al.,, 2017). The user
can choose the program and the methods (functional-basis set,
semiempirical method). There are few rounds of optimizations.
The full set of trial geometries will be initially optimized by loose
convergence setting. After filtering similar geometries based on
the similarity based on molecular fingerprints, a smaller set of
selected geometries will be optimized with standard convergence
criteria. In principle, we can also make the automatic procedure
to use initial screening with fast and less accurate methods
followed by calculations with slow and more accurate methods
on a smaller number of geometries.

and the diagonal elements

The methodology described above is for the homometallic
clusters. We have extended the procedure to create the binary,
ternary and other heteroatomic clusters that are even more
interesting and challenging. For making binary clusters, we use
both the input atoms as the seed and the monomer instead
of one being the seed and the other as the monomer. The
procedure, implemented as bi nary_aggr egat or, generates
all combinations of binary clusters of size ranging from A;B;
to ApBp. The algorithm first treats “A” as the seed and “B” as
the monomer and repeats the cycle until the number of “B”
atoms reaches n. Hence, the row of the matrix is built ranging
from A1B; till A;B,. When B is considered as seed and A as
the monomer, another row is built ranging from A;B till A,B;.
Similarly, by using AxBy, x < m andy < n, other rows of the matrix
can be generated.

We added another layer over the bi nary_aggr egat or
to build the ternary clusters by including a third element. The
ternary_aggr egat or operates analogously by adding the
element C sequentially to each combination of binary clusters
made by bi nary_aggr egat or . The new monomer is added
until it reaches its desired size of the third element. Thus, for
each of the binary cluster (A;Bj; i = 1-m, j=1-n), the 3rd element
is added as a monomer to generate ternary clusters ranging
from (ApB,Cy) to (AnB,C)) where 1 is the maximum number
of element C.

Current procedures for binary and ternary clusters
are expensive because we used exhaustive enumeration.
Exhaustive exploration is required until we find some
guiding principles for understanding the mixing behaviors
of these alloys.

2.2. Properties of Clusters

The relative stabilities of the clusters built using the above
described methods can be calculated using the following
popular parameters.

2.2.1. Homometallic Clusters

2.2.1.1. Relative energy (RE/eV):

The energy of a cluster compared with the most stable isomer
(GM). The higher RE means a lower stability.

2.2.1.2. Singlet triplet energy difference (AEst/eV):

The energy difference between the singlet and triplet state is
AEst = Eyipler — Egingler- The cluster with a positive AEgr has
a singlet ground state, and the cluster with a negative AEgr has a
triplet ground state.

2.2.1.3. Binding energy per atom (BE/eV):
The binding energy per atom (BE or BEPA) is calculated by
Equation (1):

BE = %[En — nE;] (1)

where, E, is energy of n atomic cluster; n is the cluster size or
aggregation number; E; is the energy of an atom.
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2.2.1.4. Second-order energy difference ( §2E(n), SOD/eV):
The SOD indicates the higher stability of a cluster of N atoms
relative to its heavier and lighter neighbors. Therefore, 82E(n)
is more relevant in interpreting experimental mass spectral
intensities than the BE (Rogan et al., 2005). Large maxima of
82E(n) shows the higher probability of finding these clusters.

82E(n) = Eyg1 + Eq—y — 2E, (2)

where, E,; is the total energy of n 4+ 1 atomic cluster; E,_; is
the total energy of n — 1 atomic cluster; E,, is the total energy of n
atomic cluster; and # is the cluster size.

2.2.2. Energy Parameters for Binary and Ternary
Nanoalloys

2.2.2.1. Binding energy per atom (BE/eV):

The BE for binary and ternary clusters (Song et al, 2005;
Demiroglu et al., 2017) is given by Equations (3) and (4):

1
Ey, = N[Etot(AmBn) — mEo1(A1) — nEgo(B1)] (3)

1
Ey, = N.[Etot(AmBnCl) — mEyt(A1) — nEsot(B1) — [E1+(C1))
(4)

where, m, n, and [ are the numbers of A, B, and C atoms; E;y: (A1),
Eyot(B1), and Eyy(C) are the electronic energies of a single A, B
or C atom and N is the total number of atoms (N = m + n + [)
in the particular cluster.

2.2.2.2. Mixing energy (ME/eV):

The mixing energy (Song et al., 2005; Pacheco-Contreras et al.,
2018) is an indicator of the stability of the binary cluster with
respect to its unary counterpart, given by Equation (5):

Etot(Aern) _ nEtot(Bern)

6 = Eot (A By) —
tot(AmBp) — m m+n mtn

(5)

where, E;t (A, By) is the total energy of the alloy, Eys(A,+,) and
Etot(Bm+n) are the total energies of the pure metal clusters, A and
B of the same size (m + n). A negative value of § means a decrease
of energy upon mixing and therefore, a favorable mixing.

3. COMPUTATIONAL DETAILS

We used the PyAR program to build the clusters, primarily with
the Tight-Binding semi-empirical method, GFN-xTB, with the
XTB program (Grimme et al., 2017). This combination is denoted
as PyAR|XTB. In a few cases, the selected geometries from
PyAR|XTB were reoptimized using PBEO (Adamo and Barone,
1999) functional and def2-TZVP basis set with the ORCA4.0.1.2
(Neese, 2018) program. These minima from PBE0/def2-TZVP
was characterized as true minima with no imaginary frequency.
This combined method is denoted as PyAR|XTB||PBE0. We have
used another combination where the clusters are built using
the ORCA program as the interface using the PBE functional
or the BP86 (Perdew, 1986; Becke, 1988) functional and the
def2-SVP basis set (Weigend and Ahlrichs, 2005), denoted as

PyAR|ORCA. We have added Grimme’s dispersion corrections
(D3-BJ) (Grimme et al., 2011) in all DFT calculations. We have
used effective core potential (ECP) (Pettersson et al., 1983) in
the DFT calculations to add the relativistic effect for all the
transition metals.

4. RESULTS AND DISCUSSION

We have built various metal clusters—homometallic
nanoclusters, bimetallic and trimetallic nanoalloys. In this
work, our focus was to validate our approach for its ability
to generate the global minimum (GM) and other unique
local minima and reproduce the qualitative trends in various
properties. Therefore, we have chosen the clusters and alloys that
are studied extensively—Pd, Au, Pt, and Al homometallic clusters
and Ru-Pt, Au-Pt, Ag-Au-Pt nanoalloys. We have compared
the GM geometries and few other low-lying local minima with
the corresponding reported geometries. We calculated few
properties such as relative energy, binding energy, singlet-triplet
energy difference, second-order energy difference, and mixing
energy of the clusters and alloys made by our program and
compared with the values and trends reported in the literature.
Due to the difference in electronic structure theories in different
studies, differences are expected in absolute numbers, but overall
trends were similar.

4.1. Homometallic Nanoclusters

4.1.1. Palladium

The first example for this study of nanoclusters is the palladium
nanoclusters. We have located the unique geometries of Pd,
(n=2-15) clusters using our algorithm implemented in PyAR
program. We used two different methods for the global
optimization, PyAR|XTB and PyAR|ORCA(PBE). We have also
used a two-layer approach in which the search for geometries is
done by one method and the selected geometries are optimized
again at a different method. For example in the method named
as PyAR|XTB||PBEQ, the search was done with PyAR|XTB and
the geometries selected by this method were further optimized
with PBEO. We have employed two more DFT functionals in this
study, PyAR|XTB|[B3LYP and PyAR|XTB||M06. We have further
compared the geometries of Pd, clusters in singlet and triplet
electronic states. The global minimum geometries of singlet Pd,
clusters are shown in Figure 2.

Only one minimum was found for triatomic palladium
clusters, Pd3, which has a triangular geometry. The shape of
Pdj is slightly distorted from the equilateral triangle with the
base angle of 59.9° such non-equilateral geometry was also
reported by Nava et al. (2003). The average bond length and bond
dissociation energy are 2.54 A and 2.57 eV at PBEO/def2-TZVP
compared to the values from CAS/MRSDCI level calculation
(Balasubramanian, 1989) which are 2.67 A and 3.28 eV.

As the cluster size grew, the program has selected more than
one unique structures for clusters with n = 4-15. The relative
energies (RE, the energy compared to the global minimum
isomer) of all the non-global-minimum geometries are shown
in Figure 2, along with the results from Nava et al. (2003)
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for comparison. All the larger Pd, clusters, n > 3, have three-
dimensional global minima. Some of these GM geometries are
discussed below.

The most stable structure for Pd4 cluster is tetrahedral.
Bond dissociation energy is 4.77 eV at PBE0/def2-TZVP level
compared to 5.07eV at the MRSDCI level calculations (Dai and
Balasubramanian, 1995). The bond length is 2.62 A at PBEO/def2-
TZVP, 2.68 A at MRSDCI (Dai and Balasubramanian, 1995)
and 2.61 A using other DFT calculations (Xiao et al., 1999). We
found another minimum, a bicyclic, non-planar, butterfly-like
geometry, not reported before, which is 0.50 eV higher in energy
than the tetrahedral GM structure. Global minimum geometry
of Pds is trigonal bipyramid. The average bond length in this
geometry is 2.74 A, and the binding energy of the TBP structure
we calculated at PBEQ/def2-TZVP is 1.34 eV, similar to the
reported values from the DFT calculation (Wen et al., 2018) using
GGA functional (BP/DNP), 2.704 A and 1.73 eV, respectively.
The Pdg cluster has an octahedral global minimum. Thus,
the most symmetric platonic geometries—trigonal, tetrahedral,
trigonal bipyramidal, and octahedral-are the global minima
for Pds-Pds.

The most stable geometry of Pd; from the PyAR|XTB
calculations is pentagonal bipyramidal (PBP), but is a non-
platonic geometry, octahedral core with one cap when PBE and
PBEO methods were used. The PBP was not a minimum, and the
trigonal bipyramid with two caps is the next higher energy isomer
that has a RE of 0.13 eV compared to GM in PBEQ. In the triplet

state, the PBP is the most stable structure at BP86 (Nava et al.,
2003) and BLYP (Rogan et al., 2005) levels. According to Nava
et al. (2003), the mono-capped octahedral and bicapped-TBP
Pd; are only 0.03eV and 0.05eV higher in energy, respectively,
compared to the most stable PBP.

The symmetric dodecahedral geometry was found to be the
lowest energy cluster for Pdg. From Pdg to Pd;3, pentagonal
bipyramidal (PBP) based structures dominate the global minima.
For Pd;3, the most symmetrical icosahedral structure is not the
GM in our calculation (R.E. = 0.21 eV), in agreement with the
calculations by Nava et al. (2003) and Reveles et al. (2012) in
which the symmetric geometry is higher in energy compared to
the most stable geometry by 0.13 eV (BP86/SVP) and 0.16 eV
(PBE/DZVP), respectively. The Pd;4 has an icosahedral core with
one cap.

We have calculated the selected geometries in the triplet state
as the report (Nava et al, 2003) suggested that many of the
Pd clusters have triplet ground states. The AEgr is shown in
Figure S1. In PBEQ, all Pd, clusters have negative AEgr, i. e.
have triplet ground state, except for Pd atom. The ground state
of the Pd atom has a closed-shell electronic configuration. The
dimer is well established as a triplet ground state in the literature
(Lin et al., 1969; Zacarias et al., 1999; Nava et al., 2003), which is
reproduced by our DFT result as well—the singlet Pd, has higher
energy (0.45 eV) than its triplet state. The dissociation energy of
dimer is 0.64 eV which is in agreement with the experimental
dissociation energy 0.73 £ 0.26 eV (Lin et al,, 1969) as well as
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FIGURE 3 | (A) Variation of binding energy (BE; eV/atom) with the cluster size for the most stable palladium cluster obtained with different methods. * values from
Nava et al. (2003). (B) Second order energy difference (eV) plotted as a function of cluster size (n) for the lowest-energy isomers of singlet and triplet state. The
geometries obtained using PyAR|XTB calculation were re-optimized at PBEO/def2-TZVP.

1.0
s
©
E; 0.5
-t
Q
g 00
11
Q
T
e -0.5
=]
g
)
g -10
0 —— SOD singlet
i —— SOD triplet
2 4 6 8 10 12 14
Cluster Size (n)
B

various density functional calculations done by Zacarias et al.
(1999). The GFN-xTB results, however, showed that all the Pd,
clusters, except Pdg, have singlet ground state. The AEgr in GFN-
xTB is large positive for n = 1, 3, and 5, but are slightly positive for
n =2, 4, 7-15. Thus, AEgr is not well represented by GFN-xTB
in this Pd,, clusters.

The binding energy per atom (BE/eV) increases as the
cluster grows, the trend consistently reproduced by all methods
(Figure 3A), GFN-xTB, BP86 (Nava et al., 2003), PBE, PBEO,
B3LYP, and M06 calculations. The most stable geometries as well
as the qualitative features in the overall binding energies gives us
a promising strategy for the building of large scale clusters. We
can use a two-stage approach where a semiempirical calculations
is used for the exploration of minima using PyAR, followed by
the optimization in DFT for the selected geometries.

The second order energy difference (SOD; Figure 3B) is useful
for understanding the stability of cluster with size n compared
to the clusters with size n — 1 and n + 1. The computed SOD
for Pd,, cluster shows that Pd,, Pd4, Pdg are more stable than its
neighbors. The clusters with even number of atoms are relatively
more stable than the ones with odd number of atoms. This
observation is in agreement with Rogan et al. (2005) and Wen
et al. (2018) which showed that Pd,, Pdy, and Pdg are relatively
stable than their neighbors.

In short, the study of Pd,, clusters show that the GM structures
obtained by our methodology are in good agreement with
those from the reported GM structures by other studies (Nava
et al., 2003; Rogan et al., 2005). We have studied three more
homometallic clusters, Au, Pt and Al, and we have focused
different aspects of each clusters below.

4.1.2. Gold

After the study of Pd nanoclusters, we have applied our method
to explore the minima of gold clusters using PyAR|XTB(GFN-
xTB) and PyAR|ORCA(BP86/def2-SVP). We have generated
geometries up to n = 10 with PyAR|DFT and up to 20 with

PyAR|GNF-xTB. The GM structures for n = 4 — 8 obtained from
our calculations in both the methods are identical with reported
structures from CCSD(T) calculations Shi et al. (2010), Baek et al.
(2017). Auy obtained as a thombus type structure. The global
minimum of gold pentamer is W-shaped, and the hexamer is a
planar triangle. The GM of Auy has an Au capped the edge of
planar triangular Aug. The Aug has GM where an Au is capped
to each edges of a square.

For Aus, the PyAR|BP86 run found triangular and bent
geometries. While, the global minima at CCSD(T) level is
triangular (Baek et al., 2017), our results at BP86, PBE and
PBEO shows the bent geometry as GM. The bent structure was
not a minima with PyAR|GFN-xTB and M06 functional, the
optimization resulted in a triangular geometry. Thus, other than
Augs, all the other geometries for Auy; n = 4 — 8 have identical
geometries in GFn-xTB and DFT.

The bond length of gold dimer is calculated as 2.472 A by
GFN-xTB and 2.543 A by BP86 which are in good agreement
with the experimental value 2.490 A. One of the important energy
parameters, cohesive energy (CE) of Au, is 1.117 eV by our BP86
calculation. This is comparable with 1.1481 eV at the CCSD(T)
level (Shi et al., 2010) and 1.1524 eV from experiment (Bishea
and Morse, 1991). The CE by GFN-xTB, 4.005 eV, is too high. For
the gold trimer, the calculated CE is 1.172 eV, the reported results
are 1.161 eV (Shi et al., 2010) and 1.255 eV (James et al., 1994).
Auy has a CE of 1.487 eV, comparable with the CCSD(T) value
of 1.556 eV (Shi et al., 2010). While the results from our BP86
calculations follow the trend with the reported CCSD(T) (Shi
et al.,, 2010) and experimental (Bishea and Morse, 1991; James
et al., 1994) results, the GFN-xTB overestimates the CE.

The GM geometries shown in Figure 4 reveal that the gold
clusters have flat GM up to the cluster size of ten atoms. Alj;
has a 3D geometry. Thus, our approach is able to capture the
structure evolution from 2D geometry to 3D geometry that can
be attributed to the use of multiple unique seed geometries to
build the clusters rather than using only the GM geometry. All the
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FIGURE 4 | The global minimum structures of Aun; n = 2-20, obtained by the global search using PyAR|XTB.

selected geometries of Aujg and Auyg is shown in Figure S2. The
lowest-energy isomers of Aujo below 0.4 eV include planar and
3D geometries—the best two are planar. As we have seen above,
while the Pd clusters prefer 3D geometries throughout the size
range we have studied, the gold clusters remain flat for small sizes,
up to 10 in GFN-XTB and BP86 levels.

To study the effect of the number of orientations (N) used in
the run, we carried out separate runs with different values of N.
As the size of the cluster increases, the N becomes more and more
important. For example, the GM (shown with ** in Figure S2A
produced by one of the PyAR|XTB run with N = 8 is only one
of the local minima, not a GM, in the GA-DFT study (Shayeghi
etal., 2015a). However, another run with more orientations along
with GFN-xTB resulted in the GM from the GA-DFT and other
calculations (Gotz et al., 2013; Shayeghi et al., 2015a). Similar run
with DFT also produced the latter GM. The effect is more evident
in the Auyg cluster.

The Auyg has a highly symmetric tetrahedral (Ty) geometry
which is one of the most often found structures in the
experiment (Gruene et al.,, 2008) and is one of the most stable
geometry in various theoretical calculations (Assadollahzadeh
and Schwerdtfeger, 2009; Shayeghi et al.,, 2015a). The lowest-
energy Auyo isomers in the range below 0.5 eV are shown
in Figure S2B). Our geometries are comparable to the ones
from previously studied GA-DFT, BH-DFT calculations and the
experimental result (Gruene et al., 2008; Shayeghi et al., 2015a;
Zhao et al., 2017).

The search for global minimum using only eight orientations
was able to locate the tetrahedral global minimum geometry of
Auy, however, not always. By varying the number of orientations
in the search—N =8, 16, 32, and 64—we checked the probability

of getting the global minimum. When the orientation number
is 32, GM structure was found in a single run. As one can
anticipate, the possible ways in which the new atom can be
added to the (n — 1)™ cluster increases on increasing the cluster
size. Therefore, we have to increase the number of orientation
With increasing cluster size. We have illustrated this by plotting
the binding energy per atom for the runs with number of
orientation as 8, 16, 32, and 64 (Figure 5A). We have made
an option aut 0 for the number of orientation N in which N
doubles after each cycle starting with eight in the first cycle,
then N increases as 16, 32, 64, 128, 256 and up to a maximum
of 512.

4.1.3. Platinum

We studied platinum nanoclusters as the next example as the
Pt-based nanoclusters are useful materials with applications
in various heterogeneous catalysis. Jennings and coworkers
performed GA-DFT searches on small-sized (Pt,, n = 3-6)
platinum clusters to find their GM structures. The study showed
that Pt clusters have non-singlet ground states, and the geometry
of GM’s can vary for different spin multiplicity (Jennings and
Johnston, 2013). Thus, we have performed three different global
minimum searches with multiplicities 1, 3, and 5 on Pty; n = 3-6
with PyAR|XTB.

We have observed different global minima for different
multiplicities (Figure 6) for Pty and Pts, in agreement with
the GA-DFT study. The Pt has the same triangular geometry
in singlet and triplet states, and singlet is the ground state.
There are two geometries, 4a and 4b for Pt;. The 4b has
the lowest energy in its singlet state. The ground state of
4a is a triplet, however, it is higher in energy than the
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FIGURE 5 | Binding energy per atom (eV/atom) for (A) Aun; n = 2-20 with the number of orientations (N = 8, 16, 32, and 64) and for three different runs done on (B)
platinum and (C) aluminum using PyAR|XTB(GFN-xTB) calculation.

AL

3a 4a 4b
RE (eV) 0.00 0.11 0.82 0.00 -0.34 0.56 -1.66 1.59 -0.42
M-M (A) 2.35 2.39 2.36 242 251 2.32 2.40 242 2.47

5a* 5b 6a
RE (eV) 0.00 NA NA 0.00 -0.49 0.00 0.00 -0.41 0.28
M-M (A% 235 NA NA 945 259 2.52 243 247 2.49

FIGURE 6 | Low energy structures found for pure Pt clusters, from Ptg to Ptg, with different spin multiplicities. *Only singlet state was converged for 5a. Relative
energies (RE/ev) and average bond lengths (ﬂ) of singlet, triplet, and quintet states shown in normal, italics, and bold fonts.

singlet-4b. The 5a is minima only in singlet state. The  4.1.4. Aluminum
GM for Pts is 5b in triplet state. The Pts has a triplet  The last example for the homometallic cluster in this article is the
ground state (5b). aluminum cluster. We have built the global minimum structures
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FIGURE 7 | Global minimum structures of Aln; n = 3-8, obtained by the global search using PyAR|XTB, PyAR|BP86, and reported results (Ahlrichs and Elliott, 1999).

of Al nanoclusters up to Al;, with PyAR|XTB, and up to Alg with
PyAR|BP86. There are several theoretical studies on Al clusters at
various levels of theory, such as Sutton-Chen empirical potential
(Joswig and Springborg, 2003), DFT (Ahlrichs and Elliott, 1999;
Rao and Jena, 1999), and CCSD(T) (Shinde and Shukla, 2014;
Lépez-Estrada and Orgaz, 2015).

The most stable structure for the trimer, Alj is triangular in
both the calculations, PyAR|(XTB, BP86). The bent and linear
isomers are 0.53 eV and 0.63 eV higher in energy compared to the
most stable structure at BP86/def2-SVP level. We found a planar
rhombus geometry for Aly with PyAR|BP86 in agreement with
the reported ab initio methods. PYAR|GFN-xTB calculation gave
a slightly different non-planar rhombus geometry as the most
stable structure, but tetrahedron is a minima at GA-Sutton Chen
potential. The GM of Als is a planar W-shaped structure in our
calculation (PyAR|(XTB, BP86)) in agreement with the reported
minima from ab initio calculations.

The GM of Alg by PyAR|XTB is a TBP with an edge-cap, but
PyAR|BP86 calculation gave a crown-shaped structure as GM

(Figure 7). The structure of Als reported by Jones and Ahlrichs
(Jones, 1993; Ahlrichs and Elliott, 1999) is a distorted octahedron,
not in agreement with any of our minima. For Aly, the trigonal
bipyramid with two capped atoms is the GM at PyAR|XTB, while
PyAR|BP86 produced a mono-capped octahedron that matched
with the reported minima. The octamer Alg showed capped
trigonal bipyramid as the minima by PyAR|XTB, octahedral core
with two edge-capped by PyAR|BP86 that matched with SC
potential (Joswig and Springborg, 2003) and DFT studies (Jones,
1993; Ahlrichs and Elliott, 1999).

4.1.5. General Features

We have studied various features of the approach to finding the
global minima of metal nanoclusters. In gold and aluminum
clusters, we have compared different methods. All the methods,
including semiempirical, produced the same global minima
for gold clusters, while the GM was highly dependent on the
method for Al clusters. Hence, the choice of appropriate method
is crucial.
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Some of the clusters have different structural motifs for
different sizes. Our method was able to capture the changes in
the structural motifs. The global minima for gold clusters were
flat upto the size of ten and were 3D geometries afterwards.
In order to check these structural changes, we have carried out
PyAR|XTB calculation on carbon clusters. We have observed
minima corresponding to linear, monocyclic, tricyclic, and the
bowl shapes (Figure S3).

We have checked the variation in binding energy per atom
on varying the number of orientations (N) in the Au cluster
(Figure 5A). The use of more orientations was crucial, especially
for the larger clusters. We have then checked the variation in BE
for three separate runs for Pt and Al clusters. While the plot of BE
for each run (Figure 5B) shows nearly perfect overlapping lines
for Pt clusters, the BE’s sightly differ for Al clusters (Figure 5C).

As the cluster size increases, the search space increases. Hence,
either increase the N, or carry out multiple runs, to ensure that
most of the local minima are found that increases the chance of
finding the global minima. Between these two options, increasing
N is better as the Tabu list ensures that the trial geometries are
dissimilar, while multiple runs may end up in exploring the same
local minima more often.

4.2, Binary Clusters

The mixing of two elements may result in properties that are
different from the pure forms of each elemental clusters. In
the case of binary clusters, we have to consider all different
compositions between two elements. Here we have exhaustively
explored all combinations in AiB;, wherel <i<m;1<j<n;
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FIGURE 8 | The optimized global minimum geometries of Ru-Pt binary clusters of size 2-7.
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FIGURE 9 | (A) Binding energy per atom (eV/atom) with increasing size from 2 to 14 and (B) mixing Energy vs. number of Ru atom for Ru-Pt binary clusters.
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the cluster size N = m + n, for ruthenium-platinum and gold-
platinum binary clusters. One notable feature in the geometries is
that, one of the elements tends to become part of the core, while
the other tends to be on the surface. The other property of interest
is the mixing energy that shows the stability of binary clusters
compared to that of the pure unary clusters.

4.2.1. Ruthenium-Platinum Binary Clusters

The binary Ru-Pt nanoalloys showed remarkable enhancement
in catalytic activity for CO oxidation (Arico et al.,, 2001; Liu et al.,
2006), compared to when platinum is used in its pure form as a
catalyst (Bion et al., 2008), and avoids some of the drawbacks. We
applied our method for building binary clusters implemented in
bi nary_aggr egat or in PyAR to build Ru-Pt binary system
with the interface to XTB program using GFN-xTB method. We
built the Ru-Pt binary clusters up to a total cluster size of 14,
i.e, RujPt; --- RuyPt;. The lowest energetic clusters are shown
in Figure 8 for a size of 2 to 7.

The general features of the GM geometries match with the
reported trend (Demiroglu et al., 2017). In general, the Ru prefers
to occupy the core of the clusters with the maximum number
of bonds. The Pt, on the other hand, minimizes its number of
bonds by seeping on to the surface, having at most three bonds.
This observation is in accordance with the higher cohesive energy
of Ru (6.74 eV) compared to Pt. (5.84 eV) (Kittel, 2005). The
binding energy of the Ru, dimer is lower than that of Pt,, 2.00
eV and 1.94 eV, and the Ru-Pt has the higher binding energy
than both (2.13 eV) (Demiroglu et al., 2017). The GM geometries
from PyAR|XTB maintain these qualitative features although
the individual structures are not identical with the reported
structures from Demiroglu et al., as most of these geometries have
high spin ground states and we have considered only singlet states
(Demiroglu et al., 2017).

For the cluster size of four, all the combinations of (Ru,Pt)4
have similar, non-planar bitriangular geometries. Ru-Ru bond is
shorter in RuyPty, but two Pt atoms prefer to stay away from
each other. For cluster size higher than four, the geometry of GM
changes with composition. As the composition of Ru increases

in (Ru, Pt)s, the structure changes from planar to 3-D. Similar
planar structures were found for Ru; Pty and Ru,Pt;. For cluster
sizes with six and seven atoms also, the clusters with a higher
composition of Ru have 3-D structures.

The binding energy per atom increases with the cluster size
for (Ru, Pt)x binary cluster in the range that we have considered,
up to total cluster size 14. Figure 9A shows the average binding
energy vs. cluster size of the Ru-Pt clusters, which includes all
the selected unique isomers along with GM. The highest BE for
each cluster size increases as the cluster grows and gains the
highest stability at nine and then again at 13. Our semi-empirical
results are in qualitative agreement with the reported DFT results
(Demiroglu et al., 2017).

We have calculated the mixing energy (8), the excess energy
of nanoalloy over the pure cluster of the same size, for RuPt
binary clusters of size N = m + n = 2-7. The effect of mixing
Ru with Pt in small clusters calculated as a function of Ru atoms
for all compositions of RupPt, from 2 < N < 7 clusters
are plotted in Figure 9B. The mixing is favorable when § is
negative. In our calculation, mixed clusters are more stabilized
than the pure clusters except for RusPt; and RusPt,. The DFT
calculation by Demiroglu et al. (2017), on the other hand, shown
positive mixing energy for RuszPt;. Ru-Pt diatomic molecule
is more stable than the pure Ru, or Pt, dimer. The clusters
with one Ru atom (Ru;jPty) more stable than the other possible
combinations for N = 2, 5, and 7. Two Ru atoms made the binary
clusters more feasible when N = 3, 4, and 6. Therefore, (Ru, Pt)n
binary clusters with a lesser composition of Ru atoms (one or
two) are more favorable in our calculation using semi-empirical
method (PyAR|GFN-xTB).

4.2.2. Platinum-Gold Binary Clusters

Platinum-Gold nanoalloys are one of the most studied binary
clusters because of their catalytic properties, for example, as a
catalyst for CO adsorption (Logsdail et al., 2009; Kaizuka et al.,
2010). Song et al. have studied the bonding properties of CO on
Pt-Au binary clusters (Song et al., 2005). The catalytic activity
of a cluster largely depends on the electronic properties. By
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T T

introducing gold atom in the pure platinum cluster, the electronic
properties and thereby, catalytic activity is enhanced.

We have built the (Pt, Au)y binary clusters; N = 2-14 using
PyAR|XTB. The lowest energy structures of N = 2-7 are shown
in Figure 10. For (Pt,Au); cluster, the PtyAu has a triangular

geometry with Pt-Pt and Pt-Au bonds, while the PtAu; has
a bent structure with both the Au atoms bonded to Pt and
has long Au-Au distance. PtAus has a planar structure with
a triangle of PtAu, and an exocyclic Au attached to Pt. The
other (Pt,Au)y structures, Pty Au, and Ptz Au; has similar bicyclic
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quasi-planar structures. Among the (Pt,Au)s clusters, Au;Ptzand
AuzPt; where the composition of either gold or platinum is 60%
have similar geometries as GM. The (Pt,Au)s with 80% gold
composition makes the structure having a triangular base, but the
higher percentage of platinum changes the geometry to a fused
four-and-three-membered rings.

As the cluster grows in size, the composition of the alloy will
show significant effects on the structure and other properties. For
cluster sizes of six and seven atoms, the structures with a higher
composition of gold prefer to form planar-like structure. When
the composition of Pt is maximum, the cluster tends to acquire
a 3D geometry. While Au occupies external sites, Pt occupies the
core sites. Apart from these general features, the GM geometries
from our study do not match well with the global minimum
geometries reported in the literature (Song et al., 2005), due to
the different level of theory applied (GFN-XxTB vs PW91/PAW)
for studying the clusters.

We estimated the average binding energy for (Pt, Au)y
clusters (N = 2-14) using PyAR|GFN-xTB. The cluster gains
the highest stability when it reaches the size nine and again at
size 14 in Figure 11A. We compared our results (PyAR|XTB)
with the DFT results by Song et al. (2005). Binding energies
of planar PtjAujz, Pt;Auy, and PtzAu; are shown in 10
with the corresponding reported values. The planar minima
of PtyAu;, Pt3Auy, and PtyAusz are in agreement with the
reported geometries.

We have calculated the mixing energy—the stability of mixed
cluster compared to its pure form—for the (Pt, Au)x clusters.
Most of the GM geometries with combinations of PtmAu, (2 <
m + n < 7) clusters have negative mixing energy, except for
Pt; Auy, Pt;Aus (Figure 11B). Hence, the mixing is, in general,
favorable. For cluster size up to seven, the clusters with one or
two Pt atoms have the highest stability.

4.3. Ternary Aggregate

The catalytic activity of metal nanoclusters can be enhanced by
introducing a second element as well as a third element. Some
ternary metal clusters were shown to have higher activity than

their unary or binary counterparts (Fang et al., 2011). However,
the details of the mechanisms for the enhanced activity is largely
unknown as even the structural details of these binary, ternary
or other heterometallic clusters are unknown. Finding the global
minima of the ternary cluster is even more difficult as compared
to the unary and binary systems. Ternary cluster, A|B,C, (1 +
m + n = N), can have geometries different from their unary or
binary counterparts and can have different structures for different
compositions. This high level of complexity in the PES is a
challenge for the high-level theoretical calculations to explore
the surfaces efficiently. There is a lot to be learnt about the
ternary clusters; computational chemistry can serve greatly in
this endeavor.

We have studied Platinum-Gold-Silver clusters as an example
for a ternary system to validate the t er nary_aggr egat or
module implemented in PyAR program. We have built the Pt-
Ag-Au cluster of total size up to 15 using xTB interface. In the
GM geometries, Pt and Ag are near the core, while Au atoms
are in the periphery. As we have discussed in the binary systems,
these preferences can be attributed to the bond strengths. The
bond strength calculated at GFN-XTB level follows the order:
Ag-Ag (-5.19 eV) > Pt-Pt (-4.4 eV)> Au-Au(-3.9 eV); the bond
energy is given in parenthesis. The geometries of the most stable
ternary clusters are shown in Figure 12. Most of the structures
are quasi-planar or three-dimensional. The general features of the
minima are in accordance with the studies by Pacheco-Contreras
et al. using Basin Hopping global search with Gupta Potential (as
the force field), and using DFT for final optimization for more
accuracy (Pacheco-Contreras et al., 2018).

5. CONCLUSIONS

We have developed a methodology to build the unique
geometries of nanoclusters and nanoalloys. The clusters are
built by adding atoms one-by-one starting from one atom
up to the desired size. The following steps are involved in
the method: (a) For adding an atom to the N-sized cluster,
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FIGURE 12 | Ternary clusters of Ag, Au, and Pt generated using PyAR|XTB program.

several trial orientations are generated by placing the atom
at different random positions around the cluster, (b) These
orientations are then optimized by gradient-based methods by
the interfaced electronic structure programs, (c) From all the
optimized geometries, the similar geometries are removed, the
unique structures are selected by clustering algorithms, and
these selected geometries are used for the next cycle. These
steps (a—c) are repeated to add an atom to all the selected seed

molecules. This atoms are added until the cluster grows to the
desired size. The similarity between the molecules are compared
using the molecular representation based on fingerprints of the
Coulomb matrix.

We studied nanoclusters of palladium, gold, platinum, and
aluminum, binary clusters of Ru-Pt and Au-Pt, and ternary
clusters of Ag-Au-Pt. The method is shown to produce all the
reported global minimum structures, along with other minima,
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when we used the same or similar electronic structure methods
and the same spin-states. Differences were seen when we used
the semiempirical GFN-xTB method to compare the reported
structure and properties from DFT or CCSD(T) studies. We have
also evaluated some popular properties such as binding energy
per atom, mixing energy, and compared with the reported ones.

We have varied some of the parameters in our approach
for comparison of efficiency in finding the global minima and
other properties of metal nanoclusters. We have compared
different electronic structure methods, semiempirical and a few
DFT functionals, in gold and aluminum clusters. While all the
methods produced the same global minima for gold clusters, the
geometries of maximum stability were highly dependent on the
method for Al clusters. The method dependency was also seen
in identifying the ground spin-state in Pt clusters. Thus, we can
use less expensive methods such as semiempirical methods or
empirical potentials for the clusters which do not change the
ground-state multiplicity, and for which these methods give good
results comparable to high-level ab initio or DFT methods. We
can also use a two-layer approach where the initial search is
done by cheaper methods, and the selected geometries can be
optimized at a higher level.

We checked the effect of varying the number of orientations
by comparing the binding energy per atom in the Au clusters. The
study showed that as the cluster size increase more orientations
has to be used for better results. In the same way, the result from
different runs may vary if a small number of orientations are
used, as was found by comparing the BE for three separate runs
for Pt and Al clusters. As the cluster size increases, the search
space increases and hence either number of orientations has to
be increased or multiple runs have to be carried out to ensure
that most of the local minima are found to increase the chance of
finding the global minima.

A major potential challenge in such cluster-growing methods
is the ability to capture the changes in structural motifs. We have
seen that the GM’s in Auy,, clusters changed from 2D to 3D on
going from n = 10-11. We also found similar structural changes
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