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Biofilm-forming bacteria present formidable challenges across diverse settings, and there

is a need for new antimicrobial agents that are both environmentally acceptable and

relatively potent against microorganisms in the biofilm state. The antimicrobial activity

of three naturally occurring, low molecular weight, phenols, and their derivatives were

evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas

aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their

corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were

evaluated. Allyl derivatives showed a consistent increased potency with both killing and

inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This

result underscores the importance of using biofilm assays to develop structure-activity

relationships when the end target is biofilm.
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INTRODUCTION

Pseudomonas aeruginosa is a Gram-negative, rod shaped bacterium with a pronounced tendency
to form biofilms. It is also an opportunistic pathogen that exhibits multidrug resistance (Hubble
et al., 2018). Its ubiquity in hospital-acquired infection has provided impetus for advancements in
treating infections and diminishing the number of associated illnesses. Staphylococcus epidermidis is
a Gram-positive bacterium typically found on human skin andmucosa. This pathogen is known for
causing infections in prosthetic joints and valves as well as in postoperative wounds and the urinary
tract, due to catheter use. S. epidermidis is also among the five most common organisms found
to cause hospital acquired infections (Sakimura et al., 2015). Unlike P. aeruginosa, S. epidermidis
is typically a harmless commensal bacteria, although its ability to form biofilms increases its
persistence on medical devices. With recent advances in understanding biofilm development,
including molecular mechanisms and cell surface proteins of S. epidermidis, this opportunistic
pathogen is gaining increased interest within the medical field (Büttner et al., 2015).

The majority of microorganisms in nature, including those responsible for hospital-acquired
infections, live in association with surfaces as biofilms (Persat et al., 2015). Due to the secretion
of proteins, extracellular DNA and polysaccharides, biofilm communities are encased in a robust
matrix which reduces their susceptibility to antimicrobial agents as well as the immune system
(Costerton et al., 1999; Donlan, 2001; Nadell et al., 2015; Otto, 2018). This poses a health concern
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due to the potential for these organisms to cause serious
infections in patients with indwelling medical devices and
those who are undergoing surgical procedures, stressing the
need for novel methods in treating biofilm mediated infections
(Richards and Melander, 2009; Xu et al., 2017). According to
the Agency for Health care Research and Quality, hospital-
acquired infections are in the top 10 leading causes of death
in the United States, and are consequently responsible for
nearly 100 thousand deaths per year (Collins, 2008). Several
methods to prevent and inhibit biofilm formation have been
proposed or implemented to varying degrees of success including
chemical and physical modification of surfaces and application of
antimicrobial compounds (Chmielewski and Frank, 2003; Cortés
et al., 2011; Artini et al., 2017).

Phenols constitute an extensive class of compounds that have
been shown to present antimicrobial properties against a wide
range of bacteria (Lucchini et al., 1990; Cronin and Schultz,
1996; Puupponen-Pimia et al., 2001; Maddox et al., 2010; Alves
et al., 2013; Shahzad et al., 2015; Villalobos Mdel et al., 2016;
Pinheiro et al., 2018). Maddox et al. (2010) demonstrated that
low-molecular weight phenolic compounds inhibit the growth
of X. fastidiosa, a Gram-negative bacterium and plant pathogen,
in vitro. Alves et al. (2013) studied phenolic compounds and
their activity against S. epidermidis, E. coli, Past. Multocida, N.
gonorrhoeae,MRSA, and several other Gram-negative andGram-
positive bacteria. Several essential oils have also been shown to
present antimicrobial properties against taxonomically diverse
bacteria both in planktonic and biofilm assays (Filoche et al.,
2005; Ceylan and Ugur, 2015; Snoussi et al., 2015; Yang et al.,
2015). This includes a variety of phenolic essential oils that have
been studied as therapeutic and antimicrobial agents, such as
thymol (1a), carvacrol (2a), and eugenol (3a) (Figure 1) which
are plant metabolites (Juven et al., 1994; Shetty et al., 1996;
Rasooli and Mirmostafa, 2003; Friedman, 2014; Marchese et al.,
2017; Memar et al., 2017; Pinheiro et al., 2018). In a 2018 study,
Pinheiro et al. (2018) studied thymol (1a) carvacrol (2a), eugenol
(3a), “ortho-eugenol” (3b) and guaiacol (3c) as well as several
chlorinated and allyl phenyl ether derivatives; these compounds
were shown to be active toward several bacteria including S.
aureus and P. aeruginosa. Eugenol has also been successfully
evaluated for its antibacterial, antifungal, antiviral, anti-parasitic,
and anti-cancer activity (Knobloch et al., 1989; Raja, 2015).
In another study by Friedman (2014) several bioactivities of
carvacrol (2a), including cell membrane disruptive properties,
are extensively evaluated. This article also concludes that
carvacrol has great potential to be used as a therapeutic for
human infection and disease.

A number of structurally diverse essential oils, including
thymol (1b), carvacrol (2a), and eugenol (3a) have been evaluated
for their antimicrobial and anti-biofilm properties. Essential
oils have been shown to act as biofilm inhibitors against
Staphylococci (Al-Shuneigat et al., 2005; Noumi et al., 2018;
Patsilinakos et al., 2019) as well as Pseudomonas (Carezzano
et al., 2017; Farisa Banu et al., 2017; Artini et al., 2018).
Thymol (1a) and carvacrol (2a) have demonstrated anti-
biofilm properties, both alone and as a mixture, against diverse
bacteria including Cryptococcus (Kumari et al., 2017), Salmonella

(Cabarkapa et al., 2019), Staphylococci (Neyret et al., 2014),
Enterococcus (Pazarci et al., 2019), and Escherichia (Perez-Conesa
et al., 2006). Eugenol (3a) has also been shown to exhibit anti-
biofilm properties against a variety of Gram-negative and Gram-
positive bacteria including Porphyromonas (Zhang et al., 2017),
Salmonella (Miladi et al., 2017), Escherichia (Perez-Conesa et al.,
2006), and Listeria (Liu et al., 2015).

The mechanism of action of several structurally varied
naturally occurring phenols has been studied against a variety
of microorganisms. The antimicrobial activity of essential oils
has generally been attributed to a cascade of reactions involving
the bacterial cell, as opposed to a single mode of action, which
lead to degradation of the cytoplasmic membrane, damage
of membrane proteins, reduced ATP synthesis, and increased
membrane permeability (Knobloch et al., 1989; Lucchini et al.,
1990; Lambert et al., 2001; Nazzaro et al., 2013). It has also
been well-documented that the hydrophobicity of essential oils
contributes to their antimicrobial activity by enabling them to
disrupt the lipid bilayer in bacterial cells (Sikkema et al., 1994;
Carson et al., 2002).

Carvacrol has been shown to destabilize the cytoplasmic
membrane, increasingmembrane fluidity causing leakage of ions,
a decrease in the pH gradient across the cytoplasmic membrane
and inhibition of ATP synthesis in Bacillus cereus (Ultee et al.,
2002). The importance of the hydroxyl group on the aromatic
ring in carvacrol has also been demonstrated by comparing
carvacrol with similar compounds such as carvacrol methyl
ester, methanol, and cymene; which lack the hydroxyl group
that carvacrol possesses (Dorman and Deans, 2000; Ultee et al.,
2002). Ultee et al. observed that carvacrol is able to diffuse
through the cytoplasmicmembrane, becoming deprotonated and
then binding to a monovalent cation such as potassium it is
able to diffuse out of the cytoplasm where it again takes up
a proton from the external environment, there for acting as
a transmembrane carrier of monovalent cations (Ultee et al.,
2002). Another study by Knobloch et al. (1989) discusses the
antimicrobial activity of essential oils as causing damage to the
biological membrane. Knobloch et al. also speculated that the
acidity of the hydroxyl group on thymol and carvacrol may
attribute to their antimicrobial activity as well.

The effect of eugenol on the cell membrane has also
been examined using C. albicans (Latifah-Munirah et al.,
2015), showing that eugenol, like carvacrol, also targets the
cytoplasmic membrane. Another study by Xu et al. (2016),
demonstrated that eugenol disrupts the cell wall of S. aureus,
increasing permeability, causing leakage of cellular substituents
and permanent damage to the cell membrane. Eugenol has also
been shown to bind to proteins in E. aerogenes and inhibit the
production of enzymes in B. cereus, causing degradation of the
cell membrane (Thoroski et al., 1989;Wendakoon and Sakaguchi,
1995).

A variety of phenolic essential oils and other aromatic alcohols
that are not evaluated in this study, have also been studied for
their mode of action. Wu et al. (2016) reported the antimicrobial
activity and mechanism of action of the natural occurring
phenol, 3-p-trans-coumaroyl-2-hydroxyquinic acid. In this study
it was shown that this phenol caused the loss of cytoplasmic
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FIGURE 1 | Structures of parent compounds, thymol (1a), carvacrol (2a), and eugenol (3a) as well as allyl (1b/c, 2b/c, and 3b/e), 2-methallyl (1d, 2d, and 3g), and

propyl (1e, 2e, and 3d/f) derivatives.

membrane integrity, increased membrane fluidity and caused
conformational changes in membrane proteins of S. aureus.
Aromatic alcohols such as phenoxyethanol have also shown to
increase permeability of the cytoplasmic membrane in E. coli
(Gilbert et al., 1977; Fitzgerald et al., 1992).

In this communication, thymol (1a), carvacrol (2a), and
eugenol (3a) as well as guaiacol are evaluated along with several
2- and 4- allyl, 2-methallyl and 2-n-propyl derivatives (Figure 1).
Thymol (1a), carvacrol (2a), and eugenol (3a) have also been
evaluated for their ability to inhibit adherence and biofilm
formation as well as biofilm eradication (Nostro et al., 2007; El
Abed et al., 2011; Adil et al., 2014; Burt et al., 2014; Moran et al.,
2014; Ceylan and Ugur, 2015; Kifer et al., 2016; Kim et al., 2016;
Gaio et al., 2017; Lee et al., 2017; Miladi et al., 2017; Oh et al.,
2017; Raei et al., 2017; Mohamed et al., 2018; Vazquez-Sanchez
et al., 2018). Oh et al. (2017) has shown that thymol (1a) and
carvacrol (2a) have anti-biofilm effects on the formation of E.

coli and Salmonella. Unlike previous studies, the parent phenolic
compounds are being compared to their allyl, methallyl, and
propyl derivatives, which have not been extensively evaluated
against either planktonic cells or biofilms.

Thymol (1a) and carvacrol (2a) are both monoterpenes and
are constitutional isomers found in thyme, oregano, bergamot,
and other culinary herbs (Figure 1). Both are used as a flavoring
agents as well as in tinctures for their antifungal, antibacterial,
and antiprotozoal properties (Escobar et al., 2010;Marchese et al.,
2016). Eugenol (3a) is an essential oil found in plants such as
vanilla, clove, nutmeg, and cinnamon. It is a flavoring agent
utilized as well as for its antibacterial and anti-inflammatory
properties (Marchese et al., 2017; Tsai et al., 2017). Guaiacol (3c)
was also evaluated and is a naturally occurring phenol found in
guaiacum, a shrub in the Zygophyllaceae family, and in creosote
wood. It is structurally similar to eugenol, although it lacks the
4-allyl appendage. Guaiacol’s ability to inhibit planktonic cell
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growth as well as biofilm formation in a mixture has also been
evaluated (Cooper, 2013; Pinheiro et al., 2018). In this study,
these four compounds and several of their derivatives have been
assessed for potency toward inhibiting planktonic cell growth as
well as their ability to eradicate biofilms.

The 2- and 4-allyl (1b, 2b, 1c, and 2c), n-propyl (1e and 2e)
and 2-methallyl (1d and 2d) derivatives of thymol and carvacrol
as well as the 4-n-propyl derivative of eugenol (3d) and 2-
allyl and 2-methallyl derivative of guaiacol (3b and 3g) were
evaluated, all of which are previously synthesized derivatives
of these essential oils (Bartz et al., 1935; Lupo et al., 2000;
Tsang and Brimble, 2007; Horáček et al., 2013) (Figure 1). None
of these derivatives have previously been evaluated for their
antimicrobial activity against biofilms. The corresponding allyl
ether derivatives of thymol (1a) and carvacrol (1b) have been
studied, Pinheiro et al. (2018) although to our knowledge the
2- and 4- allyl derivatives as well as 2-methallyl and 2-propyl
derivatives have yet to be evaluated against both planktonic cells
and biofilms in the same study. This study not only evaluates
the potency of the derivatives stated above against planktonic
cells but against biofilms as well, illustrating the difference in
potency and trends in potency between these two modes of
microbial growth. The structures that are being evaluated here
are allyl, methallyl, or propyl groups and whether these groups
increase potency of the selected essential oils. The addition of
an allyl group was selected in effort to increase lipophilicity, and
thus to increase permeability toward the cell membrane. Lacey
and Binder (2016) also demonstrated that ethylene binds to an
ethylene binding protein in Synechocystis affecting pili, which
are binding proteins. The 2-methallyl group was also selected to
increase lipophilicity.

The simple analogs 2-allylphenol (3e) and 2-n-propylphenol
(3f) were also evaluated for comparative purposes to the
aforementioned 2-allyl derivatives of the selected essential oils.
The purpose of this investigation was to develop structure activity
relationships for naturally occurring phenol derivatives and to
compare these relationships between planktonic and biofilm
modes of bacterial growth.

MATERIALS AND METHODS

Experimental General Information
Thymol (1a) (99% pure), carvacrol (2a) (95% pure), guaiacol
(99% pure), 2-allyl phenol (95% pure), and eugenol (3a)
(99% pure) were purchased from Tokyo Chemical Industry
Co. (TCI). All other reagents for chemical synthesis were
purchased from commercial sources and used as received
without further purification. Solvents for filtrations, transfers,
and chromatography were certified ACS grade. Thin layer
chromatography was performed on Silicycle Glass Backed TLC
plates, and visualization was accomplished with UV light
(254 nm), and/or potassium permanganate. All 1H NMR spectra
were recorded on a Bruker DRX300. All 13C NMR spectra were
recorded on a Bruker DRX500, all NMR data was reported in
ppm, employing the solvent resonance as the internal standard.

Pseudomonas aeruginosa (PA01 and PA015442) and S.
epidermidis (35984) were obtained from American Type Culture

Collection (ATCC). All bacteria were sub-cultured onto tryptic
soy agar (TSA) plates and incubated at 37◦C for 24 h. Single
colonies were transferred from the plates and inoculated into
25mL tryptic soy broth (TSB) in Erlenmeyer flasks. Culture were
incubated 37◦C for 24 h and 10µL of culture was transferred into
25mL of TSB and the absorbance was read at 600 nm using a
spectrophotometer and standardized to 106-107 CFU/mL.

Efficacy of Naturally Occurring Phenols
and Derivatives on Inhibiting Planktonic
Cells
The minimum inhibitory concentrations (MICs) of all
compounds against S. epidermidis and P. aeruginosa were
determined using a 96-well plate assay previously described by
Xie et al. (2012). The data from at least three replicates were
evaluated for each compound tested. Samples were diluted in
dimethyl sulfoxide (DMSO) and DMSO controls were conducted
as the negative control. Experiments were done in biological
triplicate and technical duplicates were done. Tests for statistical
significance were calculated with a two-tailed t-test assuming
unequal variances.

Efficacy of Naturally Occurring Phenols
and Derivatives on Killing Planktonic Cells
Parent compounds (1a, 2a, and 3a) were used as reference
standards for each synthesized derivative. Both strains were
cultured as described above. Compounds were diluted in 9.9mL
Phosphate-buffered saline (PBS) and 0.1mL DMSO. Each tube
was inoculated and allowed to sit at room temperature for 5 h,
with sampling every hour. For sampling, three 10-fold dilutions
were made in PBS. Each dilution was drop platted using 50 µL.
Plates were incubated for 24 h and colony forming units (CFU)
were counted. The concentration which showed no CFUs after
5 h was established as the lowest concentration which allowed
for no bacterial growth. Negative controls with 9.9mL PBS and
0.1mL DMSO were done as well. Experiments were done in
biological triplicate and technical duplicates were done. Standard
deviations were determined by calculating the standard deviation
for data from triplicate experiments. The mean log reduction
was also determined for each compound evaluated using the
following equation:

Log reduction = log 10

(

A

B

)

where, A is the average number of CFU before treatment and B is
the average number of CFU after treatment.

Efficacy of Naturally Occurring Phenols
and Derivatives on Biofilms
Biofilm Eradication Concentration Assays
Parent compounds (1a, 2a, and 3a) were used as reference
standards for each synthesized derivative. Both strains were
cultured as described above and biofilms were grown in Costar
polystyrene 96-well plates at 37◦C. After 24 h of incubation,
the planktonic-phase cells were gently removed and the wells
washed three times with PBS. Wells were filled with 150 µL
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dilutions of the compound being evaluated. The 96-well plates
were incubated for an additional 24 h at 37◦C. The media was
gently removed and each well filled with 150 µL PBS and
the biofilm broken up through stirring with sterile, wooden
rods. Three 10-fold dilutions of each sample were taken and
drop plated on TSA plates and incubated for 24 h. The biofilm
eradication concentration (BEC) was determined to be the
lowest concentration at which no bacterial growth occurred. This
procedure was modeled based on previously reported procedures
according to Pitts et al. (2003). Negative controls were also
conducted with 150µL PBS in the absence of antimicrobial agent.
Experiments were done in biological triplicate and technical
duplicates were done. Tests for statistical significance were
calculated with a two-tailed t-test assuming unequal variances.

Center for Disease Control (CDC) Biofilm Reactor

Evaluation
The parent compound eugenol (3a) was used as a reference
standards for the synthesized derivatives. A CDC biofilm reactor
was also used to assess potency of compounds toward biofilms.
American Society for Testing and Materials (ASTM) method
E2562–17 which describes how to grow a biofilm in the CDC
biofilm reactor under high shear and continuous flow, and ASTM
method E2871–13, a biofilm efficacy test generally known as the
single tube method were used for this procedure. Formation of
48 h biofilms in a CDC reactor was formed on glass coupons
(4.02 cm2). A CDC reactor containing 340mL of TSB (300 mg/L)
was inoculated with 1mL of a 3.21 × 108 CFU/mL overnight
culture of P. aeruginosa (PA015442), which was grown in TSB
(300 mg/L) overnight. The biofilm was grown in batch condition
at room temperature at 125 rpm for 24 h, and then for 24 h at
room temperature under continuous flow with a feed rate of
11.25 mL/min at 125 rpm. The continuous feed TSB was 100
mg/L. Coupons were then sampled from the reactor in triplicate.
The mean log reduction in viable biofilms cells exposed to each
compound for 1 h was quantitatively measured according to
ASTM method E2871–13. After coupons were removed from
the CDC reactor they were rinsed and transferred to separate,
50mL conical tubes and 4mL of a 100mM solution of the
antimicrobial compound being tested in sterile PBS buffer was
added. The tubes were incubated at room temperature under
static conditions or 1 h. After 1 h 36mL DE broth was added
and the biofilm was disaggregated by a series of vortexing and
sonicating for 30 s each in the order of v/s/v/s/v. Each sample was
diluted 10-fold six times and the diluted samples were drop plated
on (Reasoner’s 2A agar) R2A agar plates, incubated overnight
at 37◦C and enumerated. Experiments were done in biological
duplicate and technical duplicates were done. The mean log
reduction was also determined for each compound evaluated
using the following equation:

Log reduction = log 10

(

A

B

)

where, A is the average number of CFU before treatment and B is
the average number of CFU after treatment.

Chemical Synthesis Procedures
Preparation of

2-(2-propen-1-yl)-6-(1-methylethyl)-3-methylphenol

(1b). Representative Procedure
A 25mL round-bottom flask equipped with a magnetic stirring
bar was charged with thymol 1a (751mg, 5 mmol, 1 equiv)
and anhydrous acetone (5mL) was added. Finely pulverized
potassium carbonate (1.4 g, 10 mmol, 2 equiv) was then added
at room temperature with stirring. The reactant mixture was
heated to reflux and allyl bromide (0.5mL, 6 mmol, 1.2 equiv)
was added. The reactant mixture was heated to reflux for
5 h. The resulting mixture was cooled and filtered through
celite, washed with brine and concentrated in vacuo to remove
solvent and the by-product of diallyl ether. The crude phenyl
ether was dissolved in N,N-diethylaniline (2mL) and heated to
200◦Cwith stirring for 12 h. N,N-diethylaniline was subsequently
removed by washing the mixture with 10% sulfuric acid and
extracting with ethyl acetate. The residue was purified via column
chromatography (25% EtOAc/Hexane for elution) to afford
742mg (78%) of 1b as a yellow oil. 1HNMR data taken in CDCl3
and analytical data included the following. 1H NMR (300 MHz,
CDCl3) 1b: δ 6.98 (d, J = 7.82Hz, 1H), 6.77 (d, J = 7.82Hz, 1H),
5.95 (m, 1H), 5.12 (m, 2H), 4.93 (s, 1H) 3.44 (d, J = 5.88Hz, 2H),
3.16 (sept, J = 6.87Hz, 1H) 2.26 (s, 3H), 1.24 (d, J = 6.87Hz, 6H).
C13 NMR (500 MHz, CDCl3) 1b: δ 19.2 (CH2), 22.9 (CH3), 26.8
(CH2), 29.3 (CH), 115.6 (CH2), 124.3 (C), 128.8 (CH), 132.1 (C),
134.7 (CH), 137.3 (CH), 139.4 (C), 150.7 (C). H1 NMR (300MHz,
CDCl3) Spectral data and general procedures for compounds 1c,
1d, 2b, 2c, 2d, and 3b can be found in the Supplementary Data.

Preparation of

2-(2-n-propyl)-6-(1-methylethyl)-3-methylphenol (1c).

Representative Procedure
A 10mL round-bottom flask was charged with 10% Pd/C (30mg,
0.28 mmol, 0.1 equiv). The round-bottom flask was put under an
atmosphere of hydrogen and 100% ethanol (2mL) was added. 2-
allylthymol (1b) (300mg, 1.5 mmol, 1 equiv) was added at room
temperature and the reaction was allowed to stir for 12 h. The
resulting mixture was filtered through silica and concentrated in
vacuo to afford 260mg (87%) of 1e as a light, yellow oil. 1HNMR
data taken in CDCl3 and analytical data included the following.
1H NMR (300 MHz, CDCl3) 1e: δ 6.95 (d, J = 7.88Hz, 1H),
6.81 (d, J = 7.88Hz, 1H), 2.98 (sept, J = 6.81Hz, 1H), 2.56 (t,
J = 7.89Hz, 2H), 2.25 (s, 3H) 1.59 (q, J = 7.89, 7.32Hz, 2H),
1.36 (d, J = 6.81Hz, 6H) 0.96 (t, J = 7.32Hz, 3H). C13 NMR
(500 MHz, CDCl3) 1e: δ 14.5 (CH3), 19.4 (CH3), 22.3 (CH3),
22.7 (CH2), 27.1 (CH2), 28.8 (CH2), 122.3 (CH), 123.1 (C),
126.5 (CH), 131.3 (CH), 134.7 (C), 150.8 (C). Spectral data and
general procedures for compounds 2e, 3d, and 3f can be found
in the Supplementary Data.

RESULTS AND DISCUSSION

In this study, four 2-allyl derivatives were synthesized, with
the corresponding 4-allyl derivative as a secondary product
(Scheme 1). This was accomplished through the synthesis of
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SCHEME 1 | Representative synthesis, using carvacrol (1a) and derivatives (1b−1d).

the corresponding allyl ether, followed by a thermal Claisen
rearrangement. The allylated compounds 1b–3b, 3a, and 3e were
then hydrogenated to give the propyl derivatives (1e, 2e, 3d, and
3f, Figure 1). Compounds 1a, 2a, and 3c were also converted to
the corresponding methallyl derivatives in an analogous manner.

In an initial study we assessed each naturally occurring phenol
and its derivatives against planktonic cells. Studies have shown
that thymol (1a) and carvacrol (2a) compromise the outer
membrane of Gram-negative bacteria increasing the permeability
of the cytoplasm (El Abed et al., 2011). The 2- and 4-allyl
compounds for thymol (1a) and carvacrol (2a) all showed an
increase in potency toward planktonic cells when compared
to the parent compounds, as seen in Table 1. Interestingly,
the 2-allyl derivatives (1b and 2b) were more potent than the
corresponding 4-allyl isomers (1c and 2c) toward P. aeruginosa,
whereas both isomers had identical MICs against S. epidermidis
(Table 1). The transposed isomer “ortho-eugenol” (3b) was
more potent toward both S. epidermidis and P. aeruginosa than
the parent eugenol (3a). 4-n-propyl-2-methoxyphenol (3d) was
more potent than eugenol (3a). Guaiacol (3c), which does not
possess an allyl appendage was less potent toward S. epidermidis
when compared to eugenol (3a) (Table 1). The methallyl derivate
of carvacrol (2d) was more potent than the n-propyl derivative
(2e) against S. epidermidis, though in the cases of methallyl
thymol (1d) and methallyl eugenol (3g), the n-propyl derivatives
(1e and 3f) were more potent in comparison (Table 1).

PlanktonicMICs of allyl derivatives were generally statistically
significantly lower than the MIC of the parent compound. For
example, the p-values for parent compounds and their allyl
derivatives were also calculated. The p-value of 1a/b against S.
epidermidis is 0.041 and against P. aeruginosa is 0.025. The p-
value of 2a/b against S. epidermidis is 0.0003 and against P.
aeruginosa is 0.0005. Likewise, the p-value of 3a/c against S.
epidermidis is 0.016 although against P. aeruginosawas calculated
to be 0.42 due to the similarities in potency.

Time dependent killing data against planktonic bacteria were
measured for all 2-allyl and parent compounds (Figure 2). It
was shown that over the time period of 5 h, 2-allyl carvacrol

TABLE 1 | Minimum inhibitory concentrations in mM of parent compounds and

derivatives against planktonic cells of S. epidermidis and P. aeruginosa.

MIC (mM)

Compound S. epidermidis

(35984)

P. aeruginosa

(PA01)

Thymol (1a) 2.5 3.9

2-allylthymol (1b) 0.12 0.25

4-allylthymol (1c) 0.12 0.97

2-methallylthymol (1d) 15 31.2

2-n-propylthymol (1e) 7.8 15.62

Carvacrol (2a) 2.5 3.9

2-allylcarvacrol (2b) 0.12 0.25

4-allylcarvacrol (2c) 0.12 0.97

2-methallylcarvacrol (2d) 3.9 31.2

2-n-propylcarvacrol (2e) 7.8 15.62

Eugenol (3a) 15 31.2

ortho-eugenol (3b) 7.8 7.8

Guaiacol (3c) 31.2 31.2

2-methoxy-4-n-propylphenol (3d) 7.8 15.62

2-allylphenol (3e) 7.8 7.8

2-n-propylphenol (3f) 15.62 15.62

2-methallyl-4-methoxyphenol (3g) 62.5 125

(2b) reduced bacterial growth by 79.80% against S. epidermidis
and 79.63% against P. aeruginosa. The parent compound,
carvacrol (2a), only reduced bacterial growth by 15.55% against
S. epidermidis and 2.35% against P. aeruginosa. Similarly, 2-allyl
thymol (1b) reduced the average bacterial growth by 79.00% for
S. epidermidis and 77.93% for P. aeruginosa, while the average
reduction of growth for thymol (1a) was 25.67% for S. epidermidis
and 19.18% for P. aeruginosa. In the eugenol series, against S.
epidermidis, eugenol (3a) and ortho eugenol (3b) had similar
potency after 5 h with a decrease in bacterial growth of 79.76 and
79.34%, respectively. Although, at 4 h, eugenol (3a) was able to
decrease growth by 79.76% while ortho eugenol (3b) decrease
growth by 53.89%. Against P. aeruginosa, eugenol (1a) reduced
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FIGURE 2 | Time kill assays. Compounds were diluted in PBS and DMSO, (9.9:0.1), all controls were PBS and DMSO: (A) carvacrol, 2-allyl carvacrol, and a control

with S. epidermidis, while the concentration of both carvacrol and 2-allyl carvacrol was 1.7mM; (B) carvacrol, 2-allyl carvacrol, and a control with P. aeruginosa. While

the concentration of both carvacrol and 2-allyl carvacrol was 15.6mM; (C) thymol, 2-allyl thymol, and a control with S. epidermidis, at a concentration of 7.8mM;

(D) thymol, 2-allyl thymol, and a control with P. aeruginosa, at a concentration of 30mM; (E) eugenol, “ortho eugenol,” guaiacol, and a control with S. epidermidis, at a

concentration of 1.7mM; (F) eugenol, “ortho eugenol,” guaiacol, and a control with P. aeruginosa, at a concentration of 15.6mM.

growth by 79.60%, while ortho eugenol (3b) reduced growth by
32.88%. Against both bacteria, guaiacol (3c) reduced growth by
<2%. On average, the controls for each study showed a 0.079%
decrease in growth for S. epidermidis and a 0.45% decrease
in P. aeruginosa.

The mean log reduction after 5 h was recorded for all
evaluated compounds as well (Table 2). In this assay the 2-allyl
derivatives of thymol and carvacrol (1b and 2b) exhibited greater
potency than the parent compound. Like 2-allylthymol and 2-
allyl carvacrol, eugenol (3a) also exhibited a 5 log reduction
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TABLE 2 | Mean log reduction after 5 h against of exposure.

S. epidermidis P. aeruginosa

Compound Mean log

reduction

Concentration

(mM)

Mean log

reduction

Concentrations

(mM)

Thymol (1a) 1.9 7.8 1.2 30

2-allylthymol (1b) 5.1 7.8 5 30

Carvacrol (2a) 0.09 1.7 0.37 15.6

2-allylcarvacrol (2b) 5.1 1.7 5 15.6

Eugenol (3a) 5.2 1.7 5.1 15.6

Ortho-eugenol (3b) 2.6 1.7 2.1 15.6

Guaiacol (3c) 0.13 1.7 0.1 15.6

Concentrations of thymol and allyl thymol against S. epidermis was 7.8 and 30mM against

P. aeruginosa, while carvacrol, 2-allylcarvacrol, eugenol, ortho-eugenol, and guaiacol was

exposed at 1.7mM against S. epidermidis and 15.6mM against P. aeruginosa.

after only 5 h, demonstrating that these allylate derivatives have
bactericidal activity toward planktonic cells. Ortho-eugenol (3b)
also exhibited a 5 log reduction against S. epidermidis after 5 h.

The lower mean log reduction further conveys the inferiority
of thymol (1a) and carvacrol (2a) to their 2-allyl derivatives in
killing bacteria (Table 2). This observation is consistent with the
MIC data presented in Table 1. In the dynamic killing assay,
eugenol (3a) was more potent than both guaiacol (3c) and
“ortho-eugenol” (3b) with a mean log reduction of 5.2 against
S. epidermidis and 5.1 against P. aeruginosa (Table 2). This
corresponds to a differing trend in activity when compared to
the MICs in Table 1, where “ortho-eugenol” (3b) demonstrated
a stronger growth inhibition than eugenol (3a).

Efficacious concentrations varied greatly between MICs
and BECs. BECs were consistently higher than MICs,
conforming to the expected lower susceptibility of bacteria
in the biofilm mode of growth. In addition, biofilm assays
exhibited significant differences in the structure-activity
relationship in comparison to planktonic results. Thymol (1a)
and carvacrol (2a) continued to show a higher potency than
their 2-n-propyl derivatives 1e and 2e (Table 1), although
they were more potent than their 2-allyl derivatives 1b and
2b against biofilms (Table 3). The 4-allyl derivatives 1c and
2c however, did have an identical or a slightly lower BEC,
against P. aeruginosa and thus were still more potent than their
2-allyl counterparts.

“Ortho-eugenol” (3b) continued to be more potent than
eugenol (3a) against P. aeruginosa although the BECs for both
compounds against S. epidermidis were identical. Guaiacol (3c)
was the most potent against both bacteria in a biofilm when
compared to other eugenol derivatives, which was dissimilar
to the trend in potency against both killing and inhibiting
planktonic cells (Table 1). The 4-n-propyl derivative of eugenol
(3d) exhibited the same potency as “ortho-eugenol” (3b) against
both bacteria (Table 3). It was interesting here that the MICs for
the 4-n-propyl derivative 3dwere lower than eugenol (3a) against
both bacteria tested, but the BEC against S. epidermidis was the
same for both compounds (Table 3). This information illustrates
that it is not reliable to predict structure activity relationships
against biofilms based on planktonic cell data.

TABLE 3 | Biofilm eradication concentrations in mM of parent compounds and

derivatives against S. epidermidis and P. aeruginosa.

BEC (mM)

Compound S. epidermidis P. aeruginosa

thymol (1a) 3.9 15.6

2-allylthymol (1b) 9.25 31.25

4-allylthymol (1c) 6.5 13

2-n-propylthymol (1e) 31.25 62.5

carvacrol (2a) 1.95 7.5

2-allylcarvacrol (2b) 9.25 31.25

4-allylcarvacrol (2c) 3.25 7.5

2-n-propylcarvacrol (2e) 31.25 62.5

eugenol (3a) 31.25 62.5

ortho-eugenol (3b) 31.25 31.25

guaiacol (3c) 7.8 15.6

2-methoxy-4-n-propylphenol (3d) 31.25 31.25

TABLE 4 | Mean log reductions of thymol, 2-allylthymol, and 2-n-propylthymol

against P. aeruginosa (PA015442).

Compound Mean log reduction Concentration (mM)

Thymol (1a) 4.48 100

2-allylthymol (1b) 0.13 100

2-n-propylthymol (1e) 0.21 100

Unlike what was seen with MICs, the BECs of allyl derivatives
were generally statistically significantly higher than the BECs of
the corresponding parent compound. For example, the p-values
for parent compounds and their allyl derivatives against biofilms
were also calculated. The p-value of 1a/b were calculated to 0.022
be against S. epidermidis and 0.019 against P. aeruginosa. The p-
value of 2a/b were calculated to be 0.009 against S. epidermidis
and 0.023 against P. aeruginosa. The p-value of 3a/c is 0.003
against S. epidermidis and 0.015 against P. aeruginosa.

A CDC Biofilm reactor assay was also used to substantiate
the comparative efficacy of thymol and its allyl and n-propyl
derivatives against P. aeruginosa (PA015442) (Table 4). Here
biofilms were grown in a high sheer environment as opposed
to a static environment in 96-well plates as was done with
BEC evaluations. This increases the biofilms adherence to the
surface which it is grown. The CDC biofilm assay was chosen
for this purpose. Methods were performed in accordance with
ASTM; Designations: E 1054–08, E2562–17, and E2871–13. The
P. aeruginosa strain (PA015442) used in this experiment was used
because it was the strain named in the ASTM procedures. Results
with the CDC biofilm reactor was consistent with the relative
efficacies determined in the BEC assay (Tables 3, 4). Thymol (1a)
had the highest mean log reduction, correlating with the highest
potency (Table 4). The 2-allylthymol (1b) was less potent than
the parent and the n-propyl derivative (1e).

MIC and BECs were also measured for strain PA015442 to
compare with strain PA01 that was used with all other assays
apart from the CDC biofilm reactor. As with strain PA01,
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TABLE 5 | Biofilm eradication concentrations and minimum inhibitor

concentrations of thymol, 2-allylthymol, and 2-n-propylthymol against P.

aeruginosa PA015442, as well as mean log reduction at 100mM.

Mean log reduction MIC (mM) BEC (mM)

Compound PA015442

Thymol (1a) 4.48 0.68 1.37

2-allylthymol (1b) 0.13 0.08 6.5

2-n-propylthymol (1e) 0.21 3.125 25

2-allylthymol (1b) exhibited the highest degree of potency against
planktonic cells of PA015442 with an MIC of 0.08mM, whereas
thymol (1a) had an MIC of 0.68 (Table 5). It was interesting that
thymol (1a), 2-allylthymol (1b) and 2-n-propylthymol (1e) were
more effective against PA015442 (Table 5) than against PA01
in biofilm assays; whereas thymol (1a) had a BEC of 15mM,
2-allylthymol (1b) had a BEC of 31.25mM and 2-n-propylthymol
(1e) a BEC of 62.5mM against the PA01 strain (Table 3). In
planktonic cell assays, the three compounds evaluated against
PA015442 were also more potent toward PA01 (Tables 3, 5).
Again, in accordance with previously observed BEC trends,
thymol (1a) exhibited a lower BEC than both 2-allylthymol (1b)
and 2-n-propylthymol (1e) as seen in Table 5.

The addition of an allyl group to the naturally occurring
phenols thymol (1a) and carvacrol (2a) increased the compounds
potency toward both inhibiting and killing planktonic cells;
although decreased their ability to eradicate biofilms. Similarly,
the elimination of an allyl group from the essential oil eugenol
(3a) decreased potency toward planktonic cells and increased
potency toward biofilms.

Naturally occurring phenols such as thymol (1a), carvacrol
(2a), and eugenol (3a) have been shown to present antimicrobial
properties against both planktonic cells and biofilms (Nostro
et al., 2007; El Abed et al., 2011; Adil et al., 2014; Burt et al.,
2014; Ceylan and Ugur, 2015; Kifer et al., 2016; Lee et al.,
2017; Miladi et al., 2017; Raei et al., 2017; Mohamed et al.,
2018). Here we demonstrated that 2-allyl (1b and 2b) and 4-
allyl derivatives (1c and 2c) of thymol (1a) and carvacrol (2a)
showed an increase in potency in comparison to the parent
compounds against planktonic cells in both growth inhibition
and killing assays. In biofilm assays the opposite trend was
always observed: the non-allylated, parent compounds exhibited
a higher potency than the allyl derivatives. Similarly, the non-
allylated guaiacol (3c) was less potent against planktonic bacteria
but more potent than eugenol (3a) or ortho-eugenol (3b) against
biofilm bacteria. These observations underscore that structure-
activity relationships determined for planktonic bacteria can
be completely different than those for biofilms formed by the
same species.

The fact that structure-activity relationships diverge between
planktonic and biofilm assaysmay indicate that these compounds
experience different limitations to their efficacy against
planktonic and biofilm forms of the bacteria. It can be for
example, that the penetrations of the agents into the biofilm
is rate-limiting. Alternatively it could be that the permeability

of the compounds into the cytoplasm of the cell becomes rate-
limiting in the biofilm mode of growth. A third possibility is that
the expression of molecular targets differs between planktonic
and biofilm cells. If these mechanisms were better understood,
it might be possible to rationally design superior anti-biofilm
antimicrobial agents.

The 2-n-propyl derivatives (1e and 2e) consistently were
least potent compared to parent compounds and corresponding
allyl derivatives. Here an allyl group will increase potency in
comparison with a propyl group against both planktonic cells
and biofilms. Both thymol (1a) and carvacrol (2a) have two
alkyl groups, which are weakly electron donating. Eugenol (3a)
in comparison has a methoxy group which is strongly electron
donating as well as an allyl group; studies showed that eugenol
(3a) was less potent than thymol (1a) and carvacrol (2a) in
assays evaluating potency toward killing biofilms and inhibiting
planktonic cell growth. Although was more efficacious toward
killing planktonic cells, this is likely due to the presence of an
allyl group.

Thymol (1a) and carvacrol (2a) are constitution isomers and
had identical MICs against both S. epidermidis and P. aeruginosa
(Table 1). The same was observed with their 2-allyl derivatives
(1b and 2b), as well as both 4-allyl derivatives (1c and 2c)
(Table 1). The 2-allyl derivative of thymol (1b) though, was less
efficient in killing, as shown in Table 2, where the mean log
reduction of thymol is 5.1 at 7.8mM but the mean log reduction
for carvacrol is 5.1 at 1.7mM, although carvacrol (2a) was less
potent than thymol (1a) (Table 2).

In biofilm eradication assays, carvacrol (2a) was more potent
than thymol (1a) against both bacteria (Table 3). 4-allylcarvacrol
(2c) was also more potent than 4-allylthymol (1c), although
the 2-allyl derivatives exhibited the same BEC. Over all, there
was very little difference in changing the allyl group from the
2 to the 4 position. The decreased potency of thymol against
biofilms may result from the isopropyl group in the 2 position
(Figure 1), creating more steric hindrance around the phenol,
this would suggest that steric hindrance around the phenol has
more of an affect with assays involving biofilms. Steric hindrance
may play two different roles here; inhibiting permeation through
the biofilm extracellular matrix, and obstruction of the alcohol
group. These also may contribute to the observed decrease in
potency with 2-allyl and 4-allyl derivatives against biofilms when
compared to their parent compounds. The addition of an allyl
group does slightly increase polarity, which may also inhibit the
compounds ability to permeate through the biofilm matrix.

In the case of eugenol (1b), the 2-allyl derivative, “ortho-
eugenol” (3b) was more potent in inhibiting planktonic cells of
S. epidermidis although they shared the same BEC against S.
epidermidis. 3b also had lower BEC with P. aeruginosa with both
planktonic cells and biofilms. This observation was in accordance
with the trend found in thymol (1a) and carvacrol (2a) in which
allyl derivatives were less affective against biofilms.

In this study, mammalian cells were not evaluated. Although
oral LD50 (median lethal dose) for carvacrol and thymol has been
calculated in rats to be 810 mg/kg body weight and 980 mg/
kg body weight, respectively (Jenner et al., 1964). Cytotoxicity
of carvacrol and thymol was also evaluated against intestinal
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cells (Caco-2), finding no cytotoxic effects of thymol although
carvacrol was found to cause cell death (Llana-Ruiz-Cabello et al.,
2014). In a study byMachado et al. (2011) concluded that eugenol
did not exhibit cytotoxicity in vitro toward mammalian cells at
the IC50 determined for growth inhibition for G. lamblia.

Various structure activity relationships of antimicrobial
compounds, including natural products and plant metabolites,
and their potency toward planktonic cells and biofilms have been
evaluated (Huigens et al., 2007; Richards et al., 2008, 2009; Catto
et al., 2015; Garrison et al., 2015; Peeters et al., 2016; Yang et al.,
2016; Choi et al., 2017; Gill et al., 2017). Richards et al. (2008)
synthesized and assayed a 50-compound library of oroidin-based
natural products for their anti-biofilm activity against two strains
of P. aeruginosa, classifying several compounds as inhibitors of
biofilm formation.

Structural factors such as stereochemistry, alkyl chain length,
and substitution patterns have also been examined in the
context of biofilms (Huigens et al., 2007; Choi et al., 2017; Gill
et al., 2017). No uniform correlation of biofilm potency with
planktonic potency is evident. Some studies show equipotent
activity of compounds against planktonic cells and biofilms
(Spoering and Lewis, 2001; Garrison et al., 2015), while other
reports provide support that biofilms are more resistant to
antimicrobials than planktonic cells (Costerton et al., 1999;
Anderl et al., 2000; Donlan, 2001; Parsek and Singh, 2003)
and still others have found that compounds exhibiting an
increase in activity against planktonic cells also show increased
potency against biofilms (Gill et al., 2017). The present study
demonstrates that essential oil derivatives exhibiting greater
activity against planktonic cells were often less effective when
tested against biofilms.

CONCLUSION

The presence of an allyl group in either the 2 or 4 position
relative to the hydroxy phenol increases the potency of the small,
phenolic essential oils thymol (1a) and carvacrol (2a) when

evaluated against planktonic cells of both the Gram-positive S.
epidermidis and the Gram-negative P. aeruginosa. In contrast,
when the same compounds were evaluated against biofilms, the
parent compounds were more potent. Similarly, eugenol (3a)
which has an allyl group in the 4 position, was more potent than
guaiacol (3c) against S. epidermidis in planktonic cell inhibition
assays although less effective in killing planktonic cells and
biofilms. The 2-methallyl derivatives (1d, 2d, and 3g) evaluated
against planktonic cells were in all cases less potent than allyl;
and when compared to propyl derivatives, were less potent the
majority of the time. This study illustrates the importance of
using biofilm assays to determine structure-activity relationships
of antimicrobials when the end target is a biofilm.
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