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Gold has long held the fascination of mankind. For millennia it has found use in art,

cosmetic metallurgy and architecture; this element is seen as the ultimate statement

of prosperity and beauty. This myriad of uses is made possible by the characteristic

inertness of bulk gold; allowing it to appear long lasting and above the tarnishing

experienced by other metals, in part providing its status as the most noble metal.
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Gold has long held the fascination of mankind. For millennia, it has found use in art, cosmetics,
metallurgy, and architecture; this element is seen as the ultimate statement of prosperity and beauty.
This multiplicity of uses is made possible by the characteristic inertness of bulk gold, which allows
it to appear long-lasting and immune to the tarnishing experienced by other metals, in part leading
to its status as the most noble of metals. Though its inertness makes bulk gold catalysis impossible,
this property disappears when gold is broken down to the nanoscale, in which form it has been
found to be incredibly reactive. Although the dependence of the catalytic ability of a material
on size is well-known, such an extraordinary increase in activity due to particle size is highly
impressive and intriguing, and several different explanations have been provided to explain this
characteristic of gold. The explanations are myriad and range from quantum size effects (Valden
et al., 1998a,b), to charge transfer with the support (Sanchez et al., 1999; Ricci et al., 2006), to
oxygen spill-over (Hammer, 2006; Liu et al., 2006), and even to the oxidation state of Au (González-
Arellano et al., 2006; Hutchings et al., 2006). However, it is largely believed that a combination of
these factors is responsible for the impressive performance of gold, with particle size being at the
root (Hvolbæk et al., 2007).

This trend in size and activity for gold particles was discovered in seminal works by Hutchings
(1985) and Haruta et al. (1987) on small, well-dispersed gold nanoparticles, which were found to be
highly effective catalysts for both the CO oxidation reaction and the hydrochlorination of acetylene.
The high activity in the former reaction is especially surprising, since gold displays endothermic
chemisorption energies for oxygen according to a DFT study on first principles, implying an
inability toward binding oxygen (Hvolbæk et al., 2007).

Despite this apparent aversion for oxygen, through the exploitation of small (<5 nm)
nanoparticles, gold has found itself applied toward oxidation reactions for quite some time,
with significant year-on-year increases in the number of related publications (Figure 1). Gold
catalysts have found use in various reactions, from CO, hydrocarbon, alcohol, and volatile
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FIGURE 1 | Publication metrics for the period 1985–2018 concerning “Gold

catalysts” and “oxidation reactions” as guide strings. Source: Web of

Science 29/05/2019.

organic compound (VOCs) oxidation to water gas shift (WGS),
hydrogenation of unsaturated compounds and nitroarenes, and
hydrochlorination reactions. Furthermore, gold is not confined
to an academic setting, finding applications in industrial catalysis
as well: the Au-doped Pd catalyst used in the production of
vinyl acetate was designed over 50 years ago and is still the
industrial standard (Gao and Goodman, 2012), and a AuNiOx

core-shell catalyst is known to be used in the production of
methyl methacrylate (Suzuki et al., 2013). In fact, it has been
determined that the two most limiting factors for industrial
gold catalyst usage are (1) catalytic durability under industrial
conditions and (2) finding practical methods of synthesis and
are not, in fact, purely the cost of gold (Corti et al., 2005). The
development process of new catalysts is faced by two serious
hurdles: firstly, the new material must offer an advance over
existing processes, perhaps using cheaper raw materials (as with
vinyl acetate synthesis, where its use replaced acetylene with
ethylene), as well as offering breakthrough economics (Teles,
2008; Ciriminna et al., 2016). A recent example of this ideology
can be seen in the 2015 announcement by Johnson Matthey that
they will begin using their new gold catalyst in the production
of vinyl chloride monomer (VCM), which goes on to become
PVC. This catalyst will replace the existing HgCl2 material used
in current VCM/PVC plants, the use of which currently accounts
for 50% of the world’s mercury usage (Ciriminna et al., 2016).

This special issue aims to discuss some recent advances in the
growing number of reactions where gold has found meaningful
and developed application over existing materials (Figure 2).
Although the applications that fall within the purview of this
special issue are many and wide-ranging, herein, we will discuss
the recent advancesmade within these processes. In addition, this
perspective also provides some hints on reduction reactions to
showcase the versatility of gold catalysis for both oxidative and
reductive processes.

FIGURE 2 | Graphical synopsis of this work.

GAS-PHASE APPLICATIONS: EXAMPLES
BASED ON CO OXIDATION AND WGS

The use of nanogold within gas-phase oxidation reactions
is not novel. In fact, some of the initial work concerning
the use of nanogold was reported by Haruta et al. (1987),
when they reported its use on a number of transition metal
oxides to catalyze both H2 and CO oxidation. Over the last
decade, this has evolved into the use of nanogold supported
on materials with high reducibility (e.g., TiO2 and CeO2) or
doped (e.g., Cu, C, Pd) with numerous other materials to produce
top-tier catalysts.

Gold has been found to be more successful in small-scale
applications than are conventional materials. The work by
Haruta et al. not only found nanogold to be highly effective
but demonstrated that the performance of the catalyst was
actually increased by the presence of moisture, which became
evident in the work of Andreeva et al., which pioneered a
highly effective use of an Au/Fe2O3 catalyst for low-temperature
WGS reaction (Andreeva et al., 1996). These works, and
those like them at the time, produced the foundation upon
which current research on nanogold catalysts for gas-phase
reactions is based.

A popular method of developing catalytic materials is the
investigation of novel support media, as there is a link between
catalytic performance and active phase-support interaction. This
is no different for gold catalysts; a 2010 study by Widmann et al.
investigated four supports for gold catalysts in the CO oxidation
reaction. The study supported the findings of Schubert et al.
(2001) in that the interaction with the support and its reducibility
played a crucial role in the activity of the catalysts, with “active”
or reducible supports leading to more active gold catalysts and
“inert” or non-reducible supports producing inactive materials.
The activity of the examined materials was concluded to be, in
descending order, TiO2 > ZrO2 > ZnO > Al2O3. This continues
to add credence to the hypothesis that reducible supports offer
a crucial synergy with nanogold and participate in the catalytic
process, most likely through oxygen adsorption and activation at
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oxygen vacancies on the support material that are either close to
the Au particles or form at interface sites (Widmann et al., 2010).

This latter finding perhaps contributed to a theory of an
activity hierarchy of gold species, as supported catalysts often
display a variety of structures, such as dispersed atoms, clusters,
and nanoparticles. If this is the case, the reported activity of gold
catalysts should be relative to the presence of the different species
of gold within the sample. This was confirmed in a joint study
by Hutchings and Haruta that compared the different activities
of a gold catalyst produced in two different ways. Furthermore,
when considering the mechanism of CO oxidation, this hierarchy
of activity explains why small gold clusters and nanoparticles are
active for CO oxidation while bulk or larger particles are not
(Hutchings, 2018).

There has been a considerable amount of work done
concerning numerous support materials for gold catalysts toward
CO oxidation applications, namely, CeO2, Fe2O3, NiO, and
Co3O4, with further studies toting the benefits of mixed metal
oxide supports over mono-metal oxides, i.e., CeO2-Fe2O3,
TiO2-ZrO2, and V2O5-TiO2. In addition to CO oxidation
reactions, these catalysts have also shown promising results
toward the oxidation of volatile organic compounds and the
WGS reaction, which are explored in more detail elsewhere
(Barakat et al., 2013). The enhanced activity when using these
mixed metal oxides could be the result of modified acid-
base and redox properties that occur with the incorporation
of other metal oxides. Furthermore, this mixing of metallic
oxides could also afford altered surface electronic properties
to positively affect the absorption and reactivity of reactant
molecules (Idakiev et al., 2003).

Originally, the WGS reaction found its industrial use in
the production of ammonia (Haber-Bosh process) following
its first documentation in 1780. Recently, however, there
has been renewed interest in the WGS reaction, which is
itself a form of CO oxidation. This attention stems from its
potential for producing hydrogen while reducing CO levels
in reformate streams, mainly in proton exchange membrane
fuel cells (PEMFCs). The standard materials used for this
reaction are either iron-chromium oxides, for high-temperature
usage, or copper-based, for low-temperature application. The
problem with existing Cu catalysts is that they are only
suitable for relatively small space velocities, making them
unsuitable for portable applications. Meanwhile, iron catalysts
suffer from agglomeration at high temperatures and the
development of metallic iron from the “active” magnetite phase
(Bouarab et al., 2014). Consequently, precious metal catalysts
represent significant improvements over the transition metal
systems, especially as they demonstrate superior conversion at
higher space velocities.

When considering gold catalysts for this process, they are
often divided into two sections depending on their support
media: reducible and non-reducible.

Conventionally, it is accepted that the use of a reducible
support is required to activate water molecules, which is usually
considered the rate-determining step for gold catalysis (Carter
and Hutchings, 2018). The most recent studies concerning
this type of support make use of CeO2 (Abdel-Mageed et al.,

2017), CeZrO4 (Carter et al., 2017; Stere et al., 2017), CeO2-
Al2O3 (Reina et al., 2013, 2015), transition metal-doped CeO2

(Tabakova et al., 2013), and Cu-ZnO-Al2O3 (Santos et al., 2017,
2018). Morphology is also beginning to be considered, with a
recent work concerning the application of Au@TiO2 yolk-shell
catalysts toward oxidation reactions. This material was reported
to demonstrate high CO oxidation at cryogenic temperatures,
which was noted to be part of a trend of increasing activity with
decreasing temperature (Zaera, 2018).

A noteworthy study describes the use of non-thermal
plasma to activate the water molecule in the gas phase
over an Au/CeZrO4 catalyst. This adaptation demonstrated
high activity at low temperatures, which was attributed
to the decoupling of the thermodynamics of the WGS
reaction from its kinetics. The latter was achieved by
applying a dielectric-barrier discharge activation to the
catalyst material, allowing the reaction to proceed at
lower temperatures (Stere et al., 2017).

Non-reducible supports, like Al2O3, SiO2, or C, contrary to
reducible supports, are unable to activate water molecules or
participate in the reaction at all. This makes them generally
less active than catalysts containing CeO2 or Fe2O3 (Sandoval
et al., 2007; Gil et al., 2011; Shekhar et al., 2012). Catalysts
of this design therefore allow for more innovative solutions to
enhance the performance of these materials. For example, the
use of Na or K ions as promoters catalyzed the water-gas shift
at low temperatures to the same (or similar) intrinsic activities
as other nano-gold catalysts, regardless of support reducibility
(Yang et al., 2014). Similarly, Mo2C has been demonstrated to
be a highly effective support for low-temperature water-gas shift
with gold catalysts, with 4- to 8-fold increases of activity over the
conventional Cu/ZnO/Al2O3 catalyst being reported (Patt et al.,
2000; Liu and Rodriguez, 2006; Ma et al., 2017). A notable study
in this area concerns the use of Au/MoC catalysts that reported
very high levels of activity for low-temperature WGS reaction at
473K (3.19 molCOmol−1

Aus
−1) (Yao et al., 2017).

LIQUID-PHASE APPLICATIONS: SOME
INSIGHTS INTO OXIDATIVE AND
REDUCTIVE PROCESSES

In addition to these gaseous processes, the application of
gold catalysts toward liquid-phase reactions, for instance
the oxidation of alcohols and aldehydes, reduction of nitro
compounds, and the application of gold nanoparticles toward
biological applications, are also well-known. This topic has
received significant contributions from Prati et al. concerning
the production of Au/C using metallic sols and protecting agents
like Polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA)
to maintain the nanoscale of the gold particles (Prati and Rossi,
1997, 1998; Prati and Martra, 1999; Porta et al., 2000) for
the oxidation of alcohols (diols). These works noted not only
the dominating success of the Au/C catalyst over Pd or Pt
equivalents in terms of activity and poisoning resistance but also
the notable effectiveness for the production of nanogold particles
that using metallic sols and protecting agents affords. Numerous

Frontiers in Chemistry | www.frontiersin.org 3 October 2019 | Volume 7 | Article 691

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Price et al. Gold Based Heterogeneous Catalysts

additional works concerning nanogold and alcohol oxidation
reactions and the reaction pathway have been contributed by
Friend et al. (Cremer et al., 2014; Personick et al., 2015, 2017;
Siler et al., 2016; Wang et al., 2016; Xu et al., 2018). These
provide significant insights into the activity of gold for oxidation
reactions [i.e., np(Ag)Au catalysts for the partial oxidation of
methanol] (Wang et al., 2016).

As the techniques for the oxidation of alcohol shifted from
the use of permanganates and chromates due to environmental
concerns, the field began looking for more atom-efficient forms
of oxidation reactions that made use of molecular oxygen
rather than activated oxygen. The oxidation of alcohols is
very challenging under these criteria. However, nanogold was
demonstrated to be highly effective for this conversion, with
initial works describing the oxidation of 1,2-propanediol into
lactic acid via a selective primary alcohol partial oxidation
under basic conditions (Porta et al., 2000). This was developed
based on a study from Christensen et al. (2006) that has
furthered research in this field by using supported gold
nanocrystals and milder basic conditions. Commonly reported
gold catalysts for this application have been supported on
numerous different materials. A recent review (Hui et al., 2019)
extensively investigates this topic, highlighting the commonality
of support media: C, CeO2, TiO2, SiO2, and Al2O3, as well
as more complex LDH, MOF, and MgCuCr2O4 materials. Of
these, the CeO2- and MgCuCr2O4-supported catalysts were
described to be the most effective materials investigated, leading
to promising results for alcohol oxidation/reduction processes,
owing perhaps to the reducibility or oxygen storage capacity of
these materials.

Further to alcohol conversion, gold catalysts are showing
promise for converting aldehydes to carboxylic acids using
similar gold catalyst systems. Some recent work does detail
the effective application of Au catalysts toward oxidizing 2-
hexenal (Alshammari, 2016). The study detailed several different
support media, for instance, CeO2, TiO2, and Al2O3, while
also introducing some less reported supports: MnO2, SiC, and
MgO. The study found these materials to be highly effective for
this reaction.

Another reaction that gold catalysts have been found
to have significant application toward is the reduction of
nitroarenes. This reaction is the most commonly applied form
of environmental remediation that removes nitro-compounds,
while also being key in the production of amino aromatics.
Gold nanoparticles are considered economically viable for
this reaction, as the catalytic activity is controllable through
the size of the nanoparticles so that high activity can be
achieved under relatively mild conditions. A great number of
works have discussed the applicability of gold toward these
reactions over a variety of novel support media (Corma and
Serna, 2006; Corma et al., 2006, 2007a,b, 2009; González-
Arellano et al., 2008; Serna and Corma, 2015). In fact,
Corma et al. have extensively studied the application of gold
catalysts toward targeted hydrogenation, finding them not
only superior to existing catalysts in the reduction of other
functional groups (González-Arellano et al., 2005; Comas-Vives
et al., 2006) but also capable of targeted reduction of amine

groups in nitroarenes, even in a heavily substituted molecule
(Corma and Serna, 2006; Corma et al., 2007a,b).

When consulting the literature (Qin et al., 2019), the same
support materials consistently appear. TiO2, SiO2, MgO, and
Al2O3 are mentioned, with a number of very recent works
focusing on porous carbons and carbon allotropes (Guo et al.,
2016; Fu et al., 2017, 2018). Interestingly, however, varied
morphologies are being reported (Lee et al., 2008; Huang
et al., 2009; Zheng et al., 2013; Chen et al., 2014); yolk-shell
variants of Au/SiO2 have been reported for the reduction of
nitro-phenol, displaying the high performance expected of Au
catalysts, detailing a significant increase in TOF (6.6–36 s−1)
with a reduction in Au core size (104–43 nm) (Lee et al., 2008).
Furthermore, these materials displayed a 40% increase in TOF
values compared to bare gold nanoparticles of the same size
under the same conditions.

One of the greatest draws of gold is the mystery that it still
preserves. No matter which reaction (oxidation or reduction),
gold is full of potential, willing to serve and still presenting
challenges after 30 years of intensive use. For example, (i)
the particular relationship of gold with reductive supports and
the limited selection of support materials that are synergistic,
(ii) its genuine size/structure/activity-dependence, making the
understanding of its behavior hard to predict, and (iii) its
behavior change in the presence of othermetals or under different
reaction conditions.

What is important for the near future? It is necessary to:

• Explore the new horizons opened by the intensive
introduction of gold metal into biorefinery reactions.

• Explore its full potential in the reverse WGS reaction,
decoupling the thermodynamics and kinetics and using the
excellent synergy that exists between copper and gold.

• Find a support material able to stabilize nanogold in the
liquid-phase reactions where its true potential still remains
under-explored.

• Spark new ideas and assist in their economical implementation
in industrial processes.

It is easy to fall in love with this metal, and it is easy to
spend a lifetime trying to understand how a shiny piece of
metal could be the best electrocatalyst for oxygen reduction,
the best heterogeneous catalyst for CO oxidation, and the best
homogeneous catalyst for the production of some key added-
value chemicals.

Allow gold to enter your life, and you will never regret it.
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