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Covalent triazine framework CTF-1 and polysulfone (PSF) are used to form mixed-matrix

membranes (MMMs) with 8, 16, and 24 wt% of the porous filler material CTF-1. Studies

on permeability and selectivity are carried out concerning the gases O2, N2, CO2, and

CH4. CO2 permeability of the synthesized MMMs increases by 5.4 Barrer in comparison

to the pure PSF membrane. The selectivity remains unchanged for O2/N2 and CO2/CH4

but was found to be increased for CO2/N2. Further, comparisons to theoretical models

for permeability prediction yield a permeability for CTF-1 which is about six times higher

than the permeability of PSF. The inverse of the sum of the free fractional volumes (FFV)

of the polymer and the filler correlate linearly to the logarithm of the permeabilities of

the gases which conversely indicates that the porosity of the filler contributes to the gas

transport through the membrane.

Keywords: covalent triazine framework (CTF), polysulfone (PSF), mixed-matrix membrane (MMM), gas selectivity,

free fractional volume

INTRODUCTION

During the last decadesmembrane-based separation technology has experienced amajor expansion
in the gas separation industry due to advantages like low operating costs, ease of operation,
minimum energy requirement, and environmental friendliness. Currently membrane-based
technology is used in the chemical and petrochemical industry, for natural gas purification,
hydrogen separation, nitrogen recovery, and olefin/paraffin separation (Koros and Fleming, 1993;
Strathmann, 2001; Baker, 2002; Zhang et al., 2008). Polymeric membranes have been studied
widely for their low costs, high processability, and good intrinsic transport properties. However,
pure polymer membranes face a reciprocal trade-off relationship between permeability and
selectivity (Shimekit et al., 2011). Inorganic membranes, in spite of having outstanding separation
properties, good thermal, mechanical and chemical stability, suffer from high production costs,
lack of processability, difficulties in large-scale production, and brittleness (Dong et al., 2013). As
an alternative to polymer and inorganic membranes, mixed matrix membranes (MMMs) have
attracted major attention due to their low costs, high permeabilities, and possibly selectivities
above the Robeson upper-bound limit (Dong et al., 2013). A typical MMM contains a bulk
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continuous polymer phase and a dispersed inorganic
particle phase. Polymers that are generally used to fabricate
MMMs include polysulfone, polyarylates, polycarbonates,
poly(arylethers), poly(arylketones), and polyimides (Tanh Jeazet
et al., 2012). Porous materials that are generally incorporated
to fabricate MMMs are carbon molecular sieves, zeolites,
mesoporous materials, activated carbons, carbon nanotubes, and
metal organic frameworks (MOFs) (Buonomenna et al., 2012;
Tanh Jeazet et al., 2012; Bastani et al., 2013; Dong et al., 2013). In
recent years porous organic polymers (POPs) or covalent organic
frameworks (COFs) have also been explored to fabricate such
membranes (Dechnik et al., 2017).

A subcategory of POPs/COFs are nitrogen-rich covalent
triazine frameworks (CTFs). CTFs were first developed by Kuhn
et al. by a polymerization reaction of aromatic di- or trinitrile
building blocks under ionothermal conditions at 400–700◦C
using an excess of ZnCl2. The latter acts as a Lewis acid catalyst
and solvent (porogen) for the polymerization reaction (Kuhn
et al., 2008). Up to now, only few examples of CTF membranes
were reported. Tang et al. reported an in situ fabricated neat
CTF-membrane made from 4,4′-biphenyldicarbonitrile, which
exhibits a high water permeability of 75600 Barrer and a
water/ethanol selectivity of 101 for the dehydration of an 85
wt% ethanol aqueous solution at 45◦C (Tang et al., 2015).
Ying et al. developed a strategy for a graphene-oxide assisted
restacking method to fabricate an ultrathin CTF-1 membrane,
which showed a H2/CO2 selectivity of 22.3 (Ying et al., 2016).

High surface area, low density, excellent thermal and chemical
stability with a large number of nitrogen functionalities make
CTFs potential candidates for gas storage and separation (Bhunia
et al., 2013; Dey et al., 2017). These facts suggested us to fabricate
MMMs by using CTF-1 as a filler. The glassy polymer PSF
was chosen as a matrix due to its good mechanical properties
including a good film-formation behavior (Dechnik et al., 2016).
The prepared MMMs (8, 16, and 24 wt% of CTF-1) were tested
for O2/N2, CO2/N2, and CO2/CH4 separation.

MATERIALS AND METHODS

Materials
All chemicals were purchased from commercial suppliers (Sigma-
Aldrich, Acros Organics, and Alfa Aesar chemical company).
Polysulfone (PSF) Ultrason S 6010Natural was provided by BASF
AG, Ludwigshafen, Germany. The gases O2, N2, CO2, and CH4

were supplied by Air Liquide (Germany) and used as received
(purity 99.99%).

Methods
Elemental analysis (CHN) was carried out on a PerkinElmer
2400 series 2 elemental analyzer. Thermal gravimetric analysis
(TGA) was performed on a Netzsch TG 209 F3 Tarsus thermal
gravimetric analyzer with a ramp rate of 5◦C/min. A Bruker
FT-IR Tensor 37 Spectrometer was used to obtain infrared (IR)
spectra in the 4,000–550 cm−1 region with a 2 cm−1 resolution.
Measurements were carried out on KBr disks. Powder X-ray
diffraction (PXRD) was performed on a Bruker D2 Phaser
diffractometer using Cu Kα1/α2 radiation with λ = 1.5418 Å

at 30 kV. 2θ angles in the range of 5–80◦ over a time of 2 h
(0.01◦/sec) were covered. Scanning electron microscopy (SEM)
images were created by using a secondary electron (SE) detector
equipped ESEM Quanta 400 FEG SEM. Sorption isotherms
were obtained from a Micromeritics ASAP 2020 automatic
gas sorption analyzer equipped with an oil-free vacuum pump
(ultimate vacuum <10−8 mbar). Selectivity factors based on
ideal adsorbed solution theory (IAST) were calculated using the
software 3Psim version 1.1.0.7. Skeletal density was determined
with a Helium pycnometer, Micromeritics AccuPyc 1330.

For determination of the permeability of the membranes,
firstly the thickness of the membranes was measured on 10
different points using a micrometer screw. The gas permeation
experiments were performed as described by Tanh Jeazet et al.
(2016). The membrane with an area of 11.3 cm2 was placed into
a permeation cell. First the permeate side was evacuated followed
by evacuation of the feed side. The valve on the feed side was
kept closed while pressurizing to approximately 3 bar for 2 h with
a single gas. The line between vacuum pump and permeate side
was closed followed by the adjustment of the feed pressure. The
pressure on the permeate side was increased as the gas permeated
from the feed side through the membrane to the permeate side.
The linear rise of the pressure, recorded with an x-y printer, was
used to calculate the permeability P in Barrer units.

Permeability is defined as the gas flow rate multiplied by the
thickness of the material, divided by the area and by the pressure
difference across the material:

Permeability (P) =
flow rate× thickness

area× pressure difference
(1)

P(1Barrer) = 10−10 ×
cm3 (STP) × cm

cm2 × s× cmHg
(2)

In the CGS system permeability can also be expressed as follows:

P =
g × cm

sec× cm2 × (dyne× cm−2)
(3)

The relationship between the different units is given as:

1

[

g × cm

sec×cm2×(dyne×cm−2)

]

=

(

2.9882× 1018
)

M

[

10−10 ×
cm3 (STP) × cm

sec× cm3 × cm Hg

]

(4)

The ideal gas selectivity was calculated from the single gas
permeabilities by using the following equation:

α
ideal

(

O2
N2

) =
PO2

PN2

(5)

Synthesis of CTF-1
CTF-1 has been synthesized according to the following procedure
(Kuhn et al., 2008): a mixture of terephthalonitrile (1.28 g, 10
mmol) and anhydrous ZnCl2 (6.8 g, 50 mmol) was placed into
a Pyrex ampoule under inert conditions. The ampoule was
evacuated, sealed, and heated for 48 h at 400◦C followed by
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FIGURE 1 | SEM images of pure PSF membrane [(A): top side view; (B): cross section view].

FIGURE 2 | Top surface SEM images of 8 wt% (A), 16 wt% (B) and 24 wt% (C) of CTF-1@PSF composite MMMs.

cooling to room temperature. The black product was stirred
with water for 72 h. Afterwards the product was isolated by
filtration and again stirred with 200mL of 2 mol/L aqueous
HCl for 24 h. The resulting black powder was further washed
with water, tetrahydrofuran (THF), acetone and dried under
vacuum (yield 90 %).

Preparation of MMMs
The MMMs were prepared with 0, 8, 16, and 24 wt% of CTF-
1. The filler loadings were calculated according to the following
equation (6) where the filler mass must be divided by the total
mass of the composite:

Filler loading (wt%) =
mfiller

mpolymer + mfiller
× 100 % (6)

The PSF polymer (300mg) was dissolved in chloroform (CHCl3)
and CTF-1 was added to the polymer solution. The obtained
dispersion was stirred for 1 week. Afterwards, the casting solution
was treated for 30min in an ultrasonic bath and was stirred
for 30min again. This cycle was repeated three times. Before
casting, the dispersion was kept under stirring for 30 more
minutes. The dispersion was cast into metal rings placed on a
flat glass surface. A paper tissue covered funnel which was placed

over the membrane after casting to prevent the contamination
from dust particles as well as to control the evaporation rate.
After solvent evaporation, the membrane was removed from the
metal ring and was dried in a vacuum oven at 120◦C overnight.
The evaporation of CHCl3 from the membrane dispersion
forms smooth defect/crack free films upon evaporation. The
preparation of MMMs with weight percentages higher than
24 was not possible due to instability and brittleness of the
resulting membranes.

RESULTS AND DISCUSSION

Characterization of MMMs
The synthesized membranes were characterized by scanning
electron microscopy (SEM) with the images depicted in
Figures 1–3. Figure 1 shows the top side and cross-section of a
pure PSF flat membrane cast from CHCl3.

The CTF-1 composite MMMs had black appearance and were
more brittle than the pure PSFmembrane. Figures 2, 3 depict top
surface (air side) and cross section images of 8, 16, and 24 wt%
of CTF-1 composite MMMs, respectively. Figure 2 shows some,
but rather few, of the CTF-1 particles at the top surfaces of the
membranes. In case of sedimentation the specifically less dense
CTF-1 particles should collect at the upper surface of the CH2Cl2
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FIGURE 3 | Cross-section SEM images of 8 wt% (A), 16 wt% (B) and 24 wt% (C) of CTF-1@PSF MMM.

TABLE 1 | Gas permeabilities (O2, N2, CO2, CH4) and ideal selectivity factors (O2/N2, CO2/CH4, CO2/N2) for the pure PSF and CTF-1@PSF composite membranes.

CTF-1 load

(wt%)

P

O2 (Barrer)

P

N2 (Barrer)

P

CO2 (Barrer)

P

CH4 (Barrer)

S

O2/N2

S

CO2/N2

S

CO2/CH4

0 1.6 ± 0.0 0.3 ± 0.0 7.3 ± 0.2 0.3 ± 0.0 5 ± 1 23 ± 3 21 ± 3

8 2.1 ± 0.1 0.4 ± 0.0 9.2 ± 0.6 0.4 ± 0.0 5 ± 1 23 ± 3 21 ± 3

16 2.2 ± 0.1 0.4 ± 0.0 10.7 ± 0.6 0.5 ± 0.0 5 ± 1 24 ± 3 21 ± 3

24 2.6 ± 0.2 0.5 ± 0.0 12.7 ± 0.8 0.6 ± 0.0 5 ± 1 26 ± 3 22 ± 3

From exemplary case studies where we had the same membrane prepared several times and measured each of these membranes also several times we can generally deduce an error

of 6% for permeability and 12% for selectivity through error propagation (6% + 6% for each gas permeability).

dispersion, which is obviously not the case. The SEM images of
the membrane cross-sections (Figure 3) also indicate uniform
dispersion of the CTF-1 material in the polymer matrix and no
sedimentation of the CTF-1 particles was visible. The difference
of the CTF-1 loading resulted in variation in the thickness of the
composite membranes (Table S4). The surface images showed
the incorporation of the CTF-1 particles into the polymer matrix
which indicate the strong interfacial contact between PSF and
CTF-1 material. The visible CTF-1 content is increased with
its loading.

Gas Permeability and Selectivity
In order to examine the gas separation performance of the pure
PSF membrane and CTF-1@PSF MMMs, single-gas (O2, N2,
CO2, and CH4) permeation was carried out at 25◦C and 3 bar.
The gas permeabilities (O2, N2, CO2, CH4) and ideal selectivity
factors (O2/N2, CO2/CH4, CO2/N2) for the pure PSF and CTF-
1@PSF composite membranes are provided in Table 1. For dense
polymer membranes, gas separation is usually explained by
a solution–diffusion mechanism (Pandey and Chauhan, 2001;
Tanh Jeazet et al., 2012), which states the permeability of gas
molecules through membrane as a product of diffusivity (D) and
solubility (S) (Chung et al., 2007):

P = D× S (7)

Diffusivity is the mobility of individual gas molecules passing
through the voids between the polymeric chains of a membrane
whereas gas solubility is controlled by the affinity of gasmolecules
toward the polymer. Addition of fillers to the polymeric
membrane may affect both diffusivity and solubility which is

related to physical properties of the fillers like particle size
and particle agglomerations, and the polymer/particle interface
morphologies, although the trend may not always be the same
(Shan et al., 2016).

The permeability for the gases increases in proportion to the
amount of CTF-1 present in the MMMs (Figure 4). The highest
permeability for all the gases was found for the 24 wt% CTF-
1@PSF membrane. The O2 permeability is increased by 63 %
(from 1.6 to 2.6 Barrer), N2 permeability by 67 % (from 0.3
to 0.5 Barrer), CO2 permeability by 74 % (from 7.3 to 12.7
Barrer), and CH4 permeability is increased by 100 % (from
0.3 to 0.6 Barrer).

Figure 5 shows the graphical representation of the ideal
selectivity values. There is no significant improvement observed
for O2/N2 and CO2/CH4 selectivity. On the other hand, CO2/N2

selectivity was found to be increased from 23 to 26. Selective
CO2 over N2 adsorption of pure CTF-1 (Figure S7; Section
Ideal Adsorbed Solution Theory (IAST) Calculation in the
Supplementary Material) was confirmed by application of IAST
(Myers and Prausnitz, 1965). The ideal selectivity factor for a
binary CO2/N2 gas mixture at 1 bar pressure at 293K is 46 and
therefore explains the increase of selectivity with higher filler
content in the MMMs. The higher CO2 permeability as well
as CO2/N2 separation factors measured for the MMMs can be
rationalized by the selective adsorption of CO2 in the nitrogen
rich CTF-1 through dipole–quadrupole interactions (Li et al.,
2014). When porous fillers (i.e., CTF-1) are added, the solubility
may increase which is due to the higher affinity of CO2 toward
CTF-1, as well as selective diffusivity may increase as the free
volume of MMMs increases. The presence of the microporous
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FIGURE 4 | Gas permeability of 0, 8, 16, and 24 wt% of CTF-1@PSF

composite MMMs for O2, N2, CO2, and CH4.

CTF with pore diameters mainly distributed at 5, 6, and 12
Å could also exert some preferential sieving of CO2 (kinetic
diameter of 0.33 nm) over N2 (0.364 nm) or CH4 (0.38 nm) (Li
et al., 2004; Cecopieri-Gómez et al., 2007).

Generally, POPs or COFs (albeit not CTFs) were already
used as filler materials in different MMMs for example with the
polymers polybenzimidazole (PBI), Matrimid, or polyvinylamine
(PVAm). Kang et al. incorporated two 2D COFs NUS-2 and
NUS-3 as a filler in a polymer matrix (Ultem and PBI) and the
membrane with 20 wt% of NUS-2 loading in PBI exhibited a
H2/CO2 selectivity of 31.4 on single gas tests at high pressure
which surpassed the 2008 Robeson upper bound limit (Kang
et al., 2016). Shan et al. reported a MMM, using Matrimid and
an azine linked COF i.e., ACOF-1, where the MMMwith 16 wt%
of ACOF-1 showed a CO2 permeability two times higher than
the pure Matrimid membrane (Shan et al., 2016). A more than 3-
fold elevation in CO2 permeability compared to the pure PVAm
membrane was reported with an imine-based COF (COF-LZU1)
as filler (Cao et al., 2016). Fu et al. synthesized a COF/MOF
(COF-300/ZIF-8) composite membrane which gives a H2/CO2

selectivity of 13.5 in comparison to the respective COF-300
(6.0) and ZIF-8 (9.1) membranes (Fu et al., 2016). Biswal et al.
introduced two hybrid membranes such as TpPa-1@PBI-BuI and
TpBD@PBI-BuI (BuI = 5-t-butylisophthalic acid). Almost seven
times higher permeabilities for the gases H2, N2, CO2, and CH4

could be achieved compared to the pure polymer membranes
(Biswal et al., 2016). These aforementioned types of POPs have,
however, low chemical and thermal stability, which limits the use
for MMM based gas separation. Porous CTFs on the other hand,
feature high thermal and chemical stability and often show a high
CO2 uptake capacity and good selectivity toward CO2/N2 (Zhao
et al., 2013; Hug et al., 2015).

So far, no CTF-based mixed-matrix membranes have been
studied for gas permeation, to the best of our knowledge. A
direct comparison can be made to a pure CTFmembrane, named
TFM-1 derived from 4,4′-biphenyldicarbonitrile (DCBP). The

FIGURE 5 | Gas selectivity of 0, 8, 16, and 24 wt% of CTF-1@PSF composite

MMMs for O2, N2, CO2, and CH4.

single gas CO2/N2 selectivity value of 26 for the 24 wt% CTF-
1 membrane is comparable to CO2/N2 selectivity of this pure
TFM-1 membrane (29 ± 2) (Zhu et al., 2012). Further, we can
compare our CTF-1@PSF MMMs only to related porous organic
polymer MMMs. From an N-rich Schiff based porous organic
framework (SNW-1) which was constructed from melamine and
di-aldehydes the derived best PSF-MMMs yielded higher CO2

andN2 gas permeabilities than CTF-1@PSF but a similar CO2/N2

selectivity of 29 in single gas measurements (Gao et al., 2014).
The CO2 permeability of 12.7 Barrer and the selectivity of 26
in the 24 wt% CTF-1@PSF MMM is similar or even slightly
better to the performance of the azobenzene-based nanoporous
polymer, called Azo-COP-2, in a PSF matrix with 14.8 Barrer and
a CO2/N2 selectivity of 23 (Li et al., 2019).

We have also performed mixed gas separation measurements
for 400mg PSF membranes (Table S5) for 8 and 16 wt% CTF-
1@PSF MMMs. The selectivities of 8 wt% and 16 wt% of CTF-1
loadingMMMs for an equimolar (50/50) gas mixture of CO2 and
CH4 were found to be 40 and 42 which is higher than the single
gas selectivity. Compared to single gas permeation tests, mixed
gas permeation tests give higher selectivity due to the competitive
adsorption and diffusion of the binary gas components in the
membrane. Due to the smaller molecular size and high affinity
of the CO2 molecule to the basic triazine unit of CTF-1, CO2

favorably adsorbed to the CTF-1 loaded MMMs, which reduces
the diffusion of CH4 in the membranes due to pore blocking by
adsorbed CO2 (Kang et al., 2016).

Maxwell Model
A way to predict the permeability of MMMs is the application
of the Maxell model. In its original form it can be used for low
filler contents (ϕd up to 0.2), to exclude interactions among the
filler particles (Bouma et al., 1997; Kanehashi et al., 2015). The
Maxwell equation can be expressed by Equation (8):

Peff = Pc ×
Pd + 2Pc − 2φd × (Pc − Pd)

Pd + 2Pc + φd × (Pc − Pd)
(8)
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Pd is given as the filler permeability and Pc is the permeability
of the pure polymer membrane. ϕd is the volume fraction of the
filler phase according to Equation (9).

φd =
wd / ρd
wc
ρc

+
wd
ρd

(9)

A “reduced permeation polarizability” β can be defined as given
in Equation (10) (Basu et al., 2010),

β =
Pd − Pc

Pd + 2Pc
(10)

and consequently Equation (8) can be simplified to
Equation (11):

Peff = Pc ×
1 + 2β × φd

1− β×φd

(11)

The value of β describes the difference in permeability between
the continuous or polymer phase (with Pc) and the dispersed
or filler phase (with Pd). There are three limiting cases which
can be considered: The filler is much more permeable than the
polymer, that is Pd >> Pc and β ≈ 1; both filler and polymer are
equally permeable, that is Pd = Pc and β = 0 and the filler is non-
permeable or Pd << Pc and β ≈ −0.5 (Basu et al., 2010). In case
of CTF-1 being regarded as a highly-permeable filler material (Pd
>>Pc), the following equation (12) is used:

Peff

Pc
=

1 + 2φd

1− φd

(12)

The plot Peff /Pcvs. ϕd is presented in Figure 6. The comparison
with the theoretical Maxwell plot shows an agreement only in the
range of very low filler contents. With a higher volume fraction of

FIGURE 6 | Peff /Pc vs. ϕd . Measured permeabilities for the pure polymer and

the polymer with 8, 16, and 24 wt% of the filler in comparison to the Maxwell

model with different relations between Peff and Pc (dashed lines).

the filler, the theoretical Maxwell model predicts a higher increase
in permeability. The Maxwell model describes an ideal case,
which is also based on the assumption of an ideal distribution of
the filler particles and the spherical shape of the filler particles
(Bouma et al., 1997). The deviation from the model could be
explained by the non-spherical shape of the CTF-1 particles.
Another reason could be the penetration of PSF polymer chains
into the pores of CTF-1 and thus a loss off free volume of the
filler (Li et al., 2005).

If the pores in CTF-1 would be fully blocked and the filler
thereby becomes nearly non-permeable we have the limiting case
of Pd <<Pc and β ≈ – 0.5 with equation (13), with the plot of
Peff /Pcvs. ϕd also included in Figure 6:

Peff

Pc
=

1− φd

1+ 0.5φd

(13)

From Figure 6 it is evident that the measured permeability lies
between the limiting case with Pd >> Pc and the case where both
filler and polymer are equally permeable, that is Pd = Pc with
Peff /Pc = 1. In order to therefore approximate the experimental
permeability, we can assume Pd = 6Pc with β = 0.625 to give
Equation (14):

Peff

Pc
=

1+ 1.25φd

1− 0.625φd

(14)

The plot of Equation (14) is depicted in Figure 6 and the
experimental values show good agreement with the model.

An overview of other models for the case Pd >> Pc, including
Bruggeman (1935), Higuchi (Higuchi and Higuchi, 1960; Shen
and Lua, 2013), and Böttcher-Landauer (Hashin and Shtrikman,
1962) for Peff /Pc vs. filler fraction is given in Figure S9 (Section
Other Permeability Models for 300mg Membranes in the
Supplementary Material). It is evident that the other models
overestimate the permeability even more strongly than the
Maxwell model for Pd >> Pc .

FIGURE 7 | Logarithmic plot of the experimental O2, N2, CO2, and CH4

permeabilities vs. the inverse (total) FFV of the pure polymer and the polymer

with 8, 16, and 24 wt% of the filler.
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Fractional Free Volume (FFV)
The FFV of the filler was calculated by multiplication of the
density (ρd in g/cm3) and the pore volume (cm3/g) (Thran
et al., 1999). He-pycnometry combined with BET-sorption
measurement was used to determine the density (ρd) of CTF-1
(ρd = 0.89 g/cm3, dispersed phase) and the pore volume of 0.42
cm3/g was given by BET-sorption analysis. The density of PSF
(ρc = 1.23 g/cm3, continuous phase) as well as the FFVpolymer
(0.156) is used according to the literature (Thran et al., 1999;
Anaya et al., 2014). In order to calculate the (total) FFV of the
MMMboth the FFV of the polymer and of the filler aremultiplied
by their respective volume fractions, ϕc and ϕd, and summed up
according to Equation (15). The volume fraction of the polymer
ϕc was determined in analogy to Equation (9).

(total)FFV = FFVpolymer × φc + FFVfiller × φd (15)

Figure 7 presents the logarithm of the measured gas
permeabilities (lg P) for O2, N2, CO2, and CH4 as a function of
the inverse FFV for pure PSF, 8, 16, and 24 wt% of CTF-1. The
FFV for 8 wt% of the filler is 0.18, loadings of 16 and 24 wt%
show values of 0.20 and 0.22. Independent from gas all plots
show a linear correlation.

CONCLUSION

In summary, we have successfully synthesized for the first time
mixed matrix membranes containing thermally and chemically
stable CTF-1 and PSF. Overall six MMMs have been casted in
this study by using PSF with 8, 16, and 24 wt% CTF-1. The SEM
images of the membrane cross-sections show uniform dispersion
of the CTF-1 material in the polymer matrix, whereas the surface
images of the MMMs indicate the strong interfacial contact
between PSF and CTF-1 material. The fabricated membranes
exhibit higher CO2 permeabilities (12.7 Barrer for 24 wt% of
CTF-1 loading) than the pure PSF membrane (7.3 Barrer).
For other gases there are no significant improvements in the
permeability. The MMMs show higher CO2/N2 selectivity (26
for 24 wt% of CTF-1 loading) compared to pure PSF membrane
(23), the selectivity increases with increasing of CTF loading. The
results for higher filler contents differ from the Maxwell model

for porous fillers, but a constant increase of permeability can be
observed for the gases CO2 and CH4 and a modified Maxwell
model was successfully applied. The increased gas permeability
follows linearly the inverse of the total free fractional volume,
which indicates that both free fractional volume of the polymer
and the filler contribute to the permeability.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

SD synthesized membranes and wrote half of the manuscript. SB
wrote half of manuscript and applied permeability models, FFV,
and drew the graphics. SS carried out mixed gas measurements.
AN participated in calculations for Maxwell model and FFV.
AB provided CTF-1 and related analytical information. JC was
involved in mixed gas measurements and interpretation. CJ
proofread and refined the manuscript.

FUNDING

Open access publication fees were covered by Heinrich-
Heine-University.

ACKNOWLEDGMENTS

Financial support from the Spanish MINECO and FEDER
(MAT2016-77290-R), the Aragón Government (T43-17R), and
the ESF was gratefully acknowledged by JC. The work of CJ was
supported by the Federal German Ministry of Education and
Research (BMBF) under grant Optimat 03SF0492C.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fchem.
2019.00693/full#supplementary-material

REFERENCES

Anaya, S., Serrano, B., Herrero, B., Cervera, A., and Baselga, J. (2014). γ-
alumina modification with long chain carboxylic acid surface nanocrystals
for biocompatible polysulfone nanocomposites. ACS Appl. Mater. Interfaces 6,
14460–14468. doi: 10.1021/am503744z

Baker, R. W. (2002). Future directions of membrane gas separation technology.
Ind. Eng. Chem. Res. 41, 1393–1411. doi: 10.1021/ie0108088

Bastani, D., Esmaeili, N., and Asadollahi, M. (2013). Polymeric mixed matrix
membranes containing zeolites as a filler for gas separation applications: a
review. J. Ind. Eng. Chem. 19, 375–393. doi: 10.1016/j.jiec.2012.09.019

Basu, S., Cano-Odena, A., and Vankelecom, I. F. J. (2010). Asymmetric
Matrimid R©/[Cu3(BTC)2] mixed-matrix membranes for gas separations. J.

Membr. Sci. 362, 478–487. doi: 10.1016/j.memsci.2010.07.005

Bhunia, A., Vasylyeva, V., and Janiak, C. (2013). From a supramolecular tetranitrile
to a porous covalent triazine-based framework with high gas uptake capacities.
Chem. Commun. 49, 3961–3963. doi: 10.1039/c3cc41382a

Biswal, B. P., Chaudhari, H. D., Banerjee, R., and Kharul, U. K. (2016).
Chemically stable covalent organic framework (COF)-polybenzimidazole
hybrid membranes: enhanced gas separation through pore modulation. Chem.

Eur. J. 22, 4695–4699. doi: 10.1002/chem.201504836
Bouma, R. H. B., Checchetti, A., Chidichimo, G., and Drioli, E. (1997). Permeation

through a heterogeneous membrane: the effect of the dispersed phase. J.
Membr. Sci. 128, 141–149. doi: 10.1016/S0376-7388(96)00303-1

Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer Konstanten
von heterogenen Substanzen. 1. Dielektrizitätskonstanten und Leitfähigkeiten
der Mischkörper aus isotropen Substanzen. Ann. Phys. 24, 636–679.
doi: 10.1002/andp.19354160705

Frontiers in Chemistry | www.frontiersin.org 7 October 2019 | Volume 7 | Article 693

https://www.frontiersin.org/articles/10.3389/fchem.2019.00693/full#supplementary-material
https://doi.org/10.1021/am503744z
https://doi.org/10.1021/ie0108088
https://doi.org/10.1016/j.jiec.2012.09.019
https://doi.org/10.1016/j.memsci.2010.07.005
https://doi.org/10.1039/c3cc41382a
https://doi.org/10.1002/chem.201504836
https://doi.org/10.1016/S0376-7388(96)00303-1
https://doi.org/10.1002/andp.19354160705
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Dey et al. CTF-1@Polysulfone Mixed Matrix Membranes

Buonomenna, M. G., Yave, W., and Golemme, G. (2012). Some approaches
for high performance polymer based membranes for gas separation: block
copolymers, carbon molecular sieves and mixed matrix membranes, RSC Adv.

2, 10745–10773. doi: 10.1039/c2ra20748f
Cao, X., Qiao, Z., Wang, Z., Zhao, S., Li, P., Wang, J., et al. (2016). Enhanced

performance of mixed matrix membrane by incorporating a highly compatible
covalent organic framework into poly(vinylamine) for hydrogen purification.
Int. J. Hydrogen Energy 41, 9167–9174. doi: 10.1016/j.ijhydene.2016.01.137

Cecopieri-Gómez, M. L., Palacios-Alquisira, J., and Domínguez, J. M. (2007).
On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2

binary mixtures using polyimide membranes. J. Membr. Sci. 293, 53–65.
doi: 10.1016/j.memsci.2007.01.034

Chung, T.-S., Jiang, L. Y., Li, Y., and Kulprathipanja, S. (2007). Mixed
matrix membranes (MMMs) comprising organic polymers with dispersed
inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507.
doi: 10.1016/j.progpolymsci.2007.01.008

Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., and Sumby, C. J.
(2017). Mixed-matrix membranes. Angew. Chem. Int. Ed. 56, 9292–9310.
doi: 10.1002/anie.201701109

Dechnik, J., Muhlbach, F., Dietrich, D., Wehner, T., Gutmann, M., Luhmann, T.,
et al. (2016). Luminescent metal–organic frameworkmixed-matrix membranes
from lanthanide metal–organic frameworks in polysulfone and matrimid. Eur.
J. Inorg. Chem. 4408–4415. doi: 10.1002/ejic.201600235

Dey, S., Bhunia, A., Boldog, I., and Janiak, C. (2017). A mixed-linker
approach towards improving covalent triazine-based frameworks for
CO2 capture and separation. Micropor. Mesopor. Mater. 241, 303–315.
doi: 10.1016/j.micromeso.2016.11.033

Dong, G., Li, H., and Chen, V. (2013). Challenges and opportunities for mixed-
matrix membranes for gas separation. J. Mater. Chem. A 1, 4610–4630.
doi: 10.1039/c3ta00927k

Fu, J., Das, S., Xing, G., Ben, T., Valtchev, V., and Qiu, S. (2016). Fabrication
of COF-MOF composite membranes and their highly selective separation of
H2/CO2. J. Am. Chem. Soc. 138, 7673–7680. doi: 10.1021/jacs.6b03348

Gao, X., Zou, X., Ma, H., Meng, S., and Zhu, G. (2014). Highly selective and
permeable porous organic framework membrane for CO2 capture. Adv. Mater.

26, 3644–3648. doi: 10.1002/adma.201400020
Hashin, Z., and Shtrikman, A. (1962). Variational approach to the theory of

the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33,
3125–3131. doi: 10.1063/1.1728579

Higuchi, W. I., and Higuchi, T. (1960). Theoretical analysis of diffusional
movement through heterogeneous barriers. J. Am. Pharm. Assoc. Sci. 49,
598–606. doi: 10.1002/jps.3030490910

Hug, S., Stegbauer, L., Oh, H., Hirscher, M., and Lotsch, B. V. (2015).
Nitrogen-rich covalent triazine frameworks as high-performance platforms
for selective carbon capture and storage. Chem. Mater. 27, 8001–8010.
doi: 10.1021/acs.chemmater.5b03330

Kanehashi, S., Chen, G. Q., Scholes, C. A., Ozcelik, B., Hua, C., Ciddor,
L., et al. (2015). Enhancing gas permeability in mixed matrix membranes
through tuning the nanoparticle properties. J. Membr. Sci. 482, 49–55.
doi: 10.1016/j.memsci.2015.01.046

Kang, Z., Peng, Y., Qian, Y., Yuan, D., Addicoat, M. A., Heine, T., et al. (2016).
Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic
frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28, 1277–1285.
doi: 10.1021/acs.chemmater.5b02902

Koros, W. J., and Fleming, G. K. (1993). Membrane-based gas separation. J.
Membr. Sci. 83, 1–80. doi: 10.1016/0376-7388(93)80013-N

Kuhn, P., Antonietti, M., and Thomas, A. (2008). Porous, covalent triazine-based
frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47,
3450–3453. doi: 10.1002/anie.200705710

Li, S., Falconer, J. L., and Noble, R. D. (2004). SAPO-34 membranes for CO2/CH4

separation, J. Membr. Sci. 241, 121–135. doi: 10.1016/j.memsci.2004.04.027
Li, S., Prasetya, N., and Ladewig, B. P. (2019). Investigation of Azo-COP-2 as a

photoresponsive low-energy CO2 adsorbent and porous filler in mixed matrix
membranes for CO2/N2 separation. Ind. Eng. Chem. Res. 58, 9959–9969.
doi: 10.1021/acs.iecr.9b00762

Li, Y., Chung, T.-S., Cao, C., and Kulprathipanja, S. (2005). The effects of polymer
chain rigidification, zeolite pore size and pore blockage on polyethersulfone
(PES)-zeolite A mixed matrix membranes. J. Membr. Sci. 260, 45–55.
doi: 10.1016/j.memsci.2005.03.019

Li, Z., Feng, X., Zou, Y., Zhang, Y., Xia, H., Liu, X., et al. (2014). A 2D azine-linked
covalent organic framework for gas storage applications. Chem. Commun. 50,
13825–13828. doi: 10.1039/C4CC05665E

Myers, A. L., and Prausnitz, J. M. (1965). Thermodynamics of mixed-gas
adsorption. AICHE J. 11, 121–127. doi: 10.1002/aic.690110125

Pandey, P., and Chauhan, R. S. (2001). Membranes for gas separation. Prog. Polym.

Sci. 26, 853–893. doi: 10.1016/S0079-6700(01)00009-0
Shan, M., Seoane, B., Rozhko, E., Dikhtiarenko, A., Clet, G., Kapteijn, F.,

et al. (2016). Azine-linked covalent organic framework (COF)-based mixed-
matrix membranes for CO2/CH4 separation. Chem. Eur. J. 22, 14467–14470.
doi: 10.1002/chem.201602999

Shen, Y., and Lua, A. I. (2013). Theoretical and experimental studies on the
gas transport properties of mixed matrix membranes based on polyvinylidene
fluoride. AICHE J. 59, 4715–4726. doi: 10.1002/aic.14186

Shimekit, B., Mukhtar, H., and Murugesan, T. (2011). Prediction of the relative
permeability of gases in mixed matrix membranes. J. Membr. Sci. 373, 152–159.
doi: 10.1016/j.memsci.2011.02.038

Strathmann, H. (2001). Membrane separation processes: current relevance
and future opportunities. AICHE J. 47, 1077–1087. doi: 10.1002/aic.690
470514

Tang, Y. P., Wang, H., and Chung, T. S. (2015). Towards high water permeability
in triazine-framework-based microporous membranes for dehydration of
ethanol. ChemSusChem 8, 138–147. doi: 10.1002/cssc.201402816

Tanh Jeazet, H. B., Sorribas, S., Román-Marín, J. M., Zornoza, B., Téllez, C., and
Coronas, J. (2016). Increased selectivity in CO2/CH4 separation with mixed-
matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8.
Eur. J. Inorg. Chem. 27, 4363–4367. doi: 10.1002/ejic.201600190

Tanh Jeazet, H. B., Staudt, C., and Janiak, C. (2012). Metal–organic frameworks in
mixed-matrix membranes for gas separation. Dalton Trans. 41, 14003–14027.
doi: 10.1039/c2dt31550e

Thran, S., Kroll, G., and Faubel, F. (1999). Correlation between fractional free
volume and diffusivity of gas molecules in glassy polymers. J. Polym. Sci.

B 37, 3344–3358. doi: 10.1002/(SICI)1099-0488(19991201)37:23<3344::AID-
POLB10>3.0.CO;2-A

Ying, Y., Liu, D., Ma, J., Tong, M., Zhang, W., Huang, H., et al. (2016).
A GO-assisted method for the preparation of ultrathin covalent organic
framework membranes for gas separation. J. Mater. Chem. A 4, 13444–13449.
doi: 10.1039/C6TA04579K

Zhang, Y., Musselman, I. H., Ferraris, J. P., and Balkus, J.r., K.J. (2008).
Gas permeability properties of Matrimid membranes containing the
metal-organic framework Cu–BPY–HFS. J. Membr. Sci. 313, 170–181.
doi: 10.1016/j.memsci.2008.01.005

Zhao, Y. F., Yao, K. X., Teng, B. Y., Zhang, T., and Han, Y. (2013). A perfluorinated
covalent triazine-based framework for highly selective and water–tolerant CO2

capture. Energy Environ. Sci. 6, 3684–3692. doi: 10.1039/c3ee42548g
Zhu, X., Tian, C., Mahurin, S. M., Chai, S.-H., Wang, C., Brown, S., et al.

(2012). A Superacid-catalyzed synthesis of porous membranes based on
triazine frameworks for CO2 separation. J. Am. Chem. Soc. 134, 10478–10484.
doi: 10.1021/ja304879c

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Dey, Bügel, Sorribas, Nuhnen, Bhunia, Coronas and Janiak.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Chemistry | www.frontiersin.org 8 October 2019 | Volume 7 | Article 693

https://doi.org/10.1039/c2ra20748f
https://doi.org/10.1016/j.ijhydene.2016.01.137
https://doi.org/10.1016/j.memsci.2007.01.034
https://doi.org/10.1016/j.progpolymsci.2007.01.008
https://doi.org/10.1002/anie.201701109
https://doi.org/10.1002/ejic.201600235
https://doi.org/10.1016/j.micromeso.2016.11.033
https://doi.org/10.1039/c3ta00927k
https://doi.org/10.1021/jacs.6b03348
https://doi.org/10.1002/adma.201400020
https://doi.org/10.1063/1.1728579
https://doi.org/10.1002/jps.3030490910
https://doi.org/10.1021/acs.chemmater.5b03330
https://doi.org/10.1016/j.memsci.2015.01.046
https://doi.org/10.1021/acs.chemmater.5b02902
https://doi.org/10.1016/0376-7388(93)80013-N
https://doi.org/10.1002/anie.200705710
https://doi.org/10.1016/j.memsci.2004.04.027
https://doi.org/10.1021/acs.iecr.9b00762
https://doi.org/10.1016/j.memsci.2005.03.019
https://doi.org/10.1039/C4CC05665E
https://doi.org/10.1002/aic.690110125
https://doi.org/10.1016/S0079-6700(01)00009-0
https://doi.org/10.1002/chem.201602999
https://doi.org/10.1002/aic.14186
https://doi.org/10.1016/j.memsci.2011.02.038
https://doi.org/10.1002/aic.690470514
https://doi.org/10.1002/cssc.201402816
https://doi.org/10.1002/ejic.201600190
https://doi.org/10.1039/c2dt31550e
https://doi.org/10.1002/(SICI)1099-0488(19991201)37:23<3344::AID-POLB10>3.0.CO;2-A
https://doi.org/10.1039/C6TA04579K
https://doi.org/10.1016/j.memsci.2008.01.005
https://doi.org/10.1039/c3ee42548g
https://doi.org/10.1021/ja304879c
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Synthesis and Characterization of Covalent Triazine Framework CTF-1@Polysulfone Mixed Matrix Membranes and Their Gas Separation Studies
	Introduction
	Materials and Methods
	Materials
	Methods
	Synthesis of CTF-1
	Preparation of MMMs

	Results and Discussion
	Characterization of MMMs
	Gas Permeability and Selectivity
	Maxwell Model
	Fractional Free Volume (FFV)

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


