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In this work, grapheme oxide (GO) nano-sheets were synthesized and dispersed in the
aqueous phase for the interfacial polymerization (IP) process to develop a new type of
thin-film composite (TFC) membranes for forward osmosis (FO) applications. The effects
of the GO concentrations on the membrane surfaces and cross-sectional morphologies
and FO desalination performances of the as-prepared TFC membranes were investigated
systematically. Compared with the control membrane, the optimal GO-incorporated TFC
membrane displayed higher water flux, less specific reverse solute flux (SRSF) and lower
structure parameter. Moreover, the optimized membrane showed 75.0 times higher
chlorine resistance than the control membrane. In general, these new type of membranes
could be an effective strategy to fabricate high-performance FO membranes with good
desalination performance and chlorine resistance.

Keywords: forward osmosis, GO nano-sheets, thin-film composite membrane, desalination performance,
chlorine resistance

INTRODUCTION

Desalination refers to the process of removing salts or minerals dissolved in seawater or brackish
water to obtain water for human and animal consumption, irrigation and industrial process,
which is a significant technology can effectively alleviate the lack of fresh water for the whole
global (Marcovecchio et al., 2005). Common desalination methods include thermal methods
represented by multi-stage flashing and multi-effect evaporation and membrane-based techniques
represented by electro-dialysis, nano-filtration (NF) and reverse osmosis (RO) (Darwish and
ElDessouky, 1996; Khawaji et al., 2008). Among them, RO technology is currently the most popular
technology and more than 50% of the world’s 15,000 desalination plants are RO-technology-based
(Greenlee et al., 2009).

Despite the wide application of RO, this technology has some disadvantages such high energy
consumption, low water recovery and severe brine pollution. Forward osmosis (FO) technology has
been widely concerned by researchers and industrial circles recently. This technology utilizes the
difference of osmotic pressure (or chemical potential) between a low-concentration feed solution
(FS) and a high-concentration draw solution (DS) to drive water molecules across a semi-permeable
membranes (Zhao et al., 2012). Compared with RO, the FO technology has shown advantages,
such as low energy input of operation (Mazlan et al., 2016), efficient rejection of contaminants
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(She et al,, 2013; Kong et al., 2014), and less propensity of
membrane fouling (Emadzadeh et al., 2014a; Salehi et al,
2017). More recently, polyamide thin film composite (PA-
TFC) membranes have been widely studied due to their high
mechanical strength, satisfactory salt rejection and hydrolytic
stability (Sukitpaneenit and Chung, 2012; Han et al., 2016).

Although PA-TFC membranes possess many advantages, its
resistance to disinfectants with chlorine needs to be further
improved for FO’s wide practical applications. This is because
the pervasive biological fouling is the major cause decreases
membrane performance (Mi and Elimelech, 2010; Xue et al.,
2016). Thus, disinfectants with chlorine for controlling bio-
fouling or cleaning agents are needed in water treatment
process, which can result in changes of the polyamide chains
by the N-chlorination, Orton rearrangement, and directing
chlorination reactions (Verbeke et al., 2017), consequently cause
the sharp decline in membrane salt rejection. Apart from
this, conventional PA-TFC membranes also face the problem
of low water fluxes ascribed to their relatively hydrophobic
and thick surfaces (Emadzadeh et al, 2013; Ma et al,
2017). The water molecules need to pass through the PA
layer, thus its thick thickness and hydrophobicity make water
transfer lower due to the increased membrane mass transfer
resistance. It has been proved that the thinner and more
hydrophilic PA layer improves the membrane water permeability
of the PA-TFC membrane (Han et al, 2012; Wang et al,
2016). Based on the above two issues, PA-TFC membranes
with improved chlorine resistance and thin active layer are
highly demanded.

Many efforts have been devoted to improve these
performances of FO PA-TFC membranes. Recently, various
nano-materials have been widely studied to be incorporated into
the PA layer to enhance the TFC membranes performances and
showed great performance improvements, such as nano-silver,
nano-titanium dioxide, nano-silica and hydroxide nanoparticle,
etc. (Emadzadeh et al., 2014b; Niksefat et al., 2014; Liu and
Hu, 2016; Lu et al., 2016, 2018). Among them, grapheme oxide
(GO), a promising two-dimensional carbon nano-material,
has attracted great attention in the material research field. Its
excellent physical properties coupled with flexibility in chemical
functionalization ascribed to the abundant oxygen-containing
functional groups, make GO an excellent candidate for various
applications (Hu and Mi, 2013). Mariana Ionita et al. added
GO in the preparation of ultrafiltration polysulfone (PSf)
membrane to increase the water flux of the membrane. At the
same time, the thermal stabilities and mechanical properties of
these GO-incorporated PSf membranes were also significantly
improved, but the required GO concentration was as high as
1.0 wt% (Ionita et al., 2015). Ho Kyong Shon’s group studied
similar PSf-GO based substrate for interfacial polymerization
to form the PA layer of TFC FO membranes. Results revealed
that at a relatively low amount of GO addition (0.25 wt%), the
as-prepared membranes showed not only significantly improved
water permeability but also effective PA layer formation (Park
et al,, 2015). In addition, Hee-Ro Chae et al. added only 76 ppm
GO to the aqueous phase of the interfacial polymerization (IP)
process to prepare RO membranes, these membranes possessed

improved water flux, salt rejection as well as anti-fouling
properties (Ali et al., 2016).

Inspired by these outstanding work, in this paper, we first
applied low-concentration GO nano-sheets in IP process for FO
membranes fabrication. Mainly based on the following three
reasons: Firstly, due to the two-dimensional capillary effect
of GO nano-sheets, the water flux of the GO-incorporated
FO membrane can be improved while remaining the salt
rejection performance (Ali et al., 2016); Secondly, the abundant
hydrophilic functional groups in the GO nano-sheets would
increase the membrane water flux and thus desalination
performance; Finally, the PA active layer would be protected
by GO nano-sheets thus improved its chlorine resistance.
The FO membranes were synthesized by adding different
concentrations of GO nano-sheets into the aqueous phase of
IP process. A series of characterizations were conducted to
understand the influence of GO nano-sheets on the active layer
morphology and hydrophilicity. FO membrane experiments
were performed to evaluate the desalination performance and
chlorine resistance as well as determine the most suitable GO
nano-sheets incorporation concentration.

EXPERIMENTAL

Materials

PSf with 22,000 Da average molecular weight (Sigma-Aldrich,
USA), polyvinylpyrrolidone (PVP) (K 30, Sigma-Aldrich, USA),
1-methyl-2-pyrrolidinone (NMP) (99.5%, Sigma-Aldrich, USA)
and N-N-Dimethylformamide (DMF) (99.8%, Sigma-Aldrich,
USA) were used for PSf ultrafiltration substrates preparation.
m-Phenylenediamine (MPD) flakes (99%, Aldrich, China) and
1,3,5-Benzenetricarbonyl chloride (TMC) (98%, Sigma-Aldrich,
USA) dispersed in hexane (98%, Aldrich, China) were used for
the IP process. Graphite (Sigma-Aldrich, USA), sodium nitrate
(NaNO3) (Beijing Chemical Factory, China), hydrogen peroxide
(H20,) (Beijing Chemical Factory, China), sulfuric acid (H,SO4)
(Beijing Chemical Factory, China), and potassium permanganate
(KMnOy) (Sigma-Aldrich, USA) were used for GO nano-sheets
preparation. For membranes chlorine resistance tests, sodium
hypochlorite (NaClO) (Chemical Supply Pty Ltd, China) was
used. Sodium chloride (NaCl) (ACS reagent, Beijing Chemical
Factory, China) was dissolved in deionized water (DI) produced
with a Milli-Q system (Millipore, USA) for FO tests.

Methods

Graphene oxide (GO) was synthesized from graphite powders by
the classical Hummer’s method (Hummers and Offeman, 1958;
Hirata et al., 2004; Park and Ruoff, 2009). 1.0 g graphite and
0.5g NaNOj3 were added into an Erlenmeyer flask with 23.0 ml
concentrated H,SO4 solution, and then stirred under an ice
bath. After that, 3.0 g KMnOy4 was added slowly for 2.0h, then
transferred the mixture into a 35.0°C water bath and continued
to stir for 0.5h. Then 46.0 ml DI water was slowly added, and
the reaction was continued for 0.5h as the temperature raised
to 98.0°C. Finally, 140.0mL DI water and 10.0mL of H,0,
solution were added to the obtained solution to terminate the
reaction. The mixture was filtered and then washed thrice with
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FIGURE 1 | The preparation procedures of GO-incorporated TFC membranes.
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DI water to obtain the final product. Then, the as-prepared GO
nano-sheets were washed three times with DI and methanol,
respectively, to remove the unreacted chemical residuals. Finally,
the obtained powders were freeze-dried for 48.0 h to obtain the
GO nano-sheets.

Crystal structure of the synthesized GO nano-sheets was
tested via a Miniflex 600 diffractometer (Rigaku, Japan) powder
X-ray diffractometer (PXRD) in the 26 range of 2-50° at room
temperature. Morphologies of the GO nano-sheets were taken
with a field-emission scanning electron microscope (Merlin
ZEISS GEMINI2) operating at 5 kV and 13 pA. Attenuated
total reflection Fourier transform infrared (ATR-FTIR, Thermo
Scientific Nicolet 6700) was used to characterize the GO nano-
sheets. The XPS (VG Scientific, UK) measurements were also
carried out for GO nano-sheets characterization using Mg Ka
radiation (hv = 1,253.6eV). The C 1s spectra were recorded
with the pass energy Ep = 20eV whereas the wide scans
with Ep =100 eV.

The Preparation of Polysufone (PSf)

Substrate

Flat-sheet PSf substrates were prepared by using a mixed PSf-
PVP casting dope. 16.5g PSf, 0.5g PVP, 21.0g NMP and
62.0g DMF were magnetically stirred for at least 24.0h and
then left degassing for 8.0h to prepare the casting dope. A
thin layer (100 & 10pum) of the obtained dope was cast on
a clean glass plate via a casting machine (Wu Han Zuoneng
Instruments Ltd., China). The whole composite was exposed
in the air for 10.0s followed by immersing into a DI water
bath to initiate phase inversion process. Once the substrate was
peeled off from the glass plate, it was removed from the water
bath, thoroughly rinsed with DI water for three times and then
transferred to a 4°C DI water bath for storage till later use
(Qin et al., 2013; Shen et al., 2015; Yu et al., 2019).

The Preparation and Characterization of
Control and GO-Incorporated TFC
Membrane

The synthesis procedure of the TFC-control membrane without

GO was below (Wang et al., 2018a). The PSf substrate was
first immersed in an aqueous solution containing 3.4 wt% MPD

TABLE 1 | Reagents for TFC series membranes preparation.

Membranes MPD (wt%) GO (wt%) MPD/GO TMC
in aqueous in aqueous solutions in organic
phase phase viscosity phase (wt%)
(cp)
TFC-control 34 0 60.00 0.15
GO-1 3.4 0.0025 60.67 0.15
GO-2 34 0.0050 60.67 0.15
GO-3 3.4 0.0100 61.33 0.15
GO-4 34 0.0150 62.00 0.15
GO-5 34 0.0200 62.67 0.15

monomers for 2.0 min. Excess MPD solution was removed by
a rubber roller. After that, the substrate was immersed into a
0.15 wt% TMC solution for 1.0 min to form the PA layer. The
fabrication of GO-incorporated membranes was similar to that of
TFC-control membrane, except that GO nano-sheets were added
in the aqueous solution before IP process, as shown in Figure 1
and Table 1. GO with various concentrations from 0.0025 to 0.02
wt% was dissolved in aqueous solution by ultra-sonication under
an ice bath for 30.0min. The GO/MPD-saturated substrates
were immediately placed to react with the TMC/n-hexane
solution for the formation PA layers. The synthesized GO-
incorporated membranes were denoted by GO-1, GO-2, GO-
3, GO-4, and GO-5, corresponding to a GO loading of 0.0025,
0.0050, 0.0100, 0.0150, and 0.0200 wt%, respectively. The as-
prepared membranes were also rinsed with DI water thoroughly
for three times and then stored in DI water at 4°C for
later tests.

The morphologies of the TFC membranes surfaces and
cross-sections (fractured in liquid nitrogen) were observed by
FESEM (Merlin ZEISS GEMINI2). Fifteen random tests were
conducted based on three different batch membranes in cross-
sectional images for PA layer thickness tests. Water contact
angles were measured using a contact angle system (Dataphysics
OCA 20). For each membrane, ten measurements were
performed for each of three independently prepared membranes.
ATR-FTIR spectroscopy instrument (Thermo Scientific Nicolet
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6700) was used to confirm the change of the PA layer
functional groups.

Evaluation of TFC Membrane Desalination

Performance

All the as-prepared membranes were tested in a lab-scale test
system, which has been described in our previous work (Wang
et al., 2018a,b). The co-current cross-flow velocity was 4.9 cm/s
for both the feed and draw solutions. The temperatures of the
feed and draw solutions were maintained at 20 = 0.5°C. 1.0
and 2.0 M NaCl solutions were used as the DSs and a balance
(ML4002, METTLER TOLEDO) was connected to a computer to
record weight changes of the permeated water at 30.0 s intervals.
10.0 mmol L~! NaCl solution were used as the feed solution (FS)
and a conductivity meter was used to calculate the reverse solute
flux of the membrane at 60.0 s intervals. Membranes were tested
under two different modes: (1) active layer facing draw solution
(AL-DS) mode; and (2) active layer facing feed solution (AL-FS)
mode. Every test was conducted for 1.0 h in triplicate. The water
permeation flux (Jw) (L e m~2h~!, LMH), reverse solute flux (Js)
(g e m~2h~!), and specific reverse solute flux (SRSF) (g e L™1)
were calculated by the same methods detailed in our previous
work (Wang et al., 2018a,b).

Evaluation of Membrane and Chlorine

Resistance

The chlorine resistance of the tested membranes was evaluated
by exposing their top surfaces to a 1,000 ppm NaClO solution
over different periods. The NaClO solutions were kept in dark
and replaced every 2.0 h during the test to maintain a constant
concentration. To access the as-prepared membranes chloride
resistance quantitatively, a doubled increase value of SRSF
was selected as an upper limit, indicating the PA layers were
degraded dramatically by the active chlorine to be unacceptable
in FO processes (Lu et al., 2017; Wang et al., 2018c). Before
the membrane FO performance tests, these membranes were
removed from NaClO solutions and then washed 3 times with
DI water to avoid the residual chlorine oxidation during tests.

Determination of FO Membrane Transport

and Structural Parameters

The transport and structural parameters of these as-prepared
membranes, the water permeability coefficient (A), salt
permeability coefficient (B), and structural parameter (S) were
tested by a method developed by Elimelech’s Group (Tiraferri
et al., 2013). The method includes a four-stage test, every stage
using a DS with different concentration. The water permeation
flux (Jw) and reverse solute flux (Js) were measured through
non-linear regression based on Equations (1) and (2), in every
FO test stage. The presented data were the average values based
on triplicated measurements.

TTp exp (—%) — TF

1+ % [1 —exp (—]‘”ﬁs)]

Jw = A

Cp exp (—%) — Cr
1+ % [1 —exp (—%)]

where D is the bulk diffusion coefficient of the draw solute.

Js = B 2)

RESULTS AND DISCUSSIONS

GO Nano-Sheets Characteristics

The ATR-FTIR spectra for GO nano-sheets were presented
Figures 2a,b. The presence of C-O bonds (1,050 cm™!) in
epoxy groups, C=C bonds (1,620 cm™!) in unoxidized carbon
crystal lattice, and C=0 bonds (1,720 cm~!) in carboxyl groups,
can be observed in the synthesized GO nano-sheets, similar to
Jiangs work (Jiang et al., 2014). Meanwhile, an intense band
between 3,100 and 3,600 cm™! indicated that GO nano-sheets
with many free hydroxyl groups can bridge hydrogen bonds and
enhance intermolecular forces between GO nano-sheets and PA
polymer chains. Moreover, the analysis of the chemical valence
of elements can be used to estimate the oxidation degree of
GO nano-sheets (Stankovich et al., 2007; Stoller et al., 2008;
Zhou et al,, 2010). The high-resolution XPS C 1s spectra of the
GO were shown in Figure 2¢, the peaks of 284.0, 286.2, and
288.3 eV can be attributed to C-C, C-H, C-0, and C=0 groups,
respectively. According to these peak areas, it is estimated that
about 60% of C didn’t undergo oxidation reaction, 33.84% of
oxidized C contained C-O and 3.44% of oxidized C contained
COOH. Moreover, the XRD pattern and SEM image of the GO
nano-sheets were shown in Figures 2d,e, which are consistent
with Leszek Stobinski et al.’s results (Stobinski et al., 2014).
Finally, after the graphene oxidation, new oxygen-containing
groups were formed on the surface, such as C=0, C-OH, C-
O-C, etc., thus the aqueous GO solution (see Figure 2f) showed
a typical light yellow color, which is similar to the reported
characteristics in the literature (Masuda et al., 2002; Novoselov
etal., 2004; Allen et al., 2009). Based on, the GO nano-sheets were
successfully synthesized.

Membrane Characterization

Membrane Morphology

The surface and cross-section morphologies of the TFC-control
and GO-incorporated series TFC membranes were investigated,
as shown in Figure 3. All the membranes surfaces possessed
“ridge and valley” or “flower” characteristics, which is the
typical morphology of the PA membrane. Additional thin
layers were observed on top PSf substrates via the cross-
sectional SEM images, which confirms the successful reaction
of interfacial polymerizations. Obviously, the incorporation of
GO nano-sheets into the active PA layer can significantly affect
the membrane surface as well as cross-sectional morphology.
Compared to the pristine membrane, all the GO-incorporated
membranes displayed denser and relatively smoother surfaces.
Meanwhile, the PA layer thickness of the control TFC
membrane was much higher than those of GO-incorporated
TFC membranes. For example, GO-3 membrane had PA layer
thickness of 169.55 nm, which is only about 1/2 of the control-
TFC membrane. However, when the concentration of GO in
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the aqueous phase increased to 0.0200 wt%, defects would be
observed on the membrane surface as well as membrane cross
section. At the same time, the PA layer thickness increased
slightly compared to the control membrane, which might
compromise membrane FO selectivity.

The remarkable changes of PA layers in GO-incorporated
membranes may be contributed by the following reasons, as
shown in Figure 4. Generally, TMC monomers are less soluble
in the water phase, thus IP reaction happens in the organic
phase. MPD monomers need to diffuse from the water phase
to the organic phase to react with the TMC monomers (Luo
et al, 2014). The substrate was saturated by the MPD/GO
aqueous solution vertically, GO nano-sheets tend to position

along the membrane surface horizontally due to the Langmuir-
Blodgett film deposition (Chae et al, 2015). The horizontal
incorporation of GO nano-sheets would interfere the diffusion
of MPD monomers, resulted in smoother active PA layers. In the
meanwhile, hydrogen bonds presented in the hydroxyl groups of
GO can contribute to a more compact chain structure. Moreover,
these nano-sheets incorporation decreased the amount of MPD
monomers and increased the viscosity of the aqueous solution
(see Table 1), thus limited the reaction between MPD and TMC
monomers and formed thinner active layers. However, when the
loading in the aqueous phase increased to 0.0200 wt%, which
caused the serve agglomerations of the GO nano-sheets, thus
formed a defective interface enables MPD to further diffuse
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through the pristine PA layer, resulting in a slightly thicker
PA layer.

Membrane Hydropholicity

The GO nano-sheets with hydroxyl functional groups in
the aqueous phase are expected to improve the membrane
surface hydrophilicity, as shown in Figure5. The water
contact angle of the PSf substrate was relatively high at 75.3°,
but after the GO incorporation, the water contact angles
of all the GO-incorporated membranes were improved,
indicating the successful incorporation of GO nano-sheets in

the PA layers. Moreover, the increase in the peak intensity of
hydroxyl groups at about 3,100-3,600 cm™! was also found
in all the GO-incorporated TFC membranes, as shown in
Figure 6, which are attributed to O-H groups stretching
vibration in GO nano-sheets, leading to more hydrophilic
PA membrane surfaces (Stobinski et al., 2014). However,
for the GO-4 and GO-5 membranes with high GO nano-
sheets concentrations, the water contact angles only decreased
from 56.1 to 54.9°, which indicates too high concentrations
of GO showed slight influence on the membrane surface
hydrophilicity. The GO-incorporated membranes had higher
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hydrophilicity than the control sample might be related to the
surface morphology and hydrophilic bulk of the membranes.
Compared to the control membrane with a dense surface
(see SEM image), the GO-incorporated membranes with a
loose surface yielded a better wetting behavior likely due to
the capillary effect. Apart from this, the GO-incorporated
membranes had increased free volumes compared with
the control membranes, which may be responsible for the
improvement in the membrane wettability. Moreover, the
GO-incorporated membranes with more O-H groups, leading
to more hydrophilic PA membrane surfaces. As such, the
GO-incorporated membranes had higher hydrophilicity than the
control membrane.
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FIGURE 6 | ATR-FTIR spectra of the as-prepared membranes.

Membrane Desalination Performance

Figure 7 shows the water fluxes of the FO membranes
incorporated by different concentrations of GO nano-sheets in
the AL-FS mode and the AL-DS mode with 1.0 and 2.0 M NaCl
as draw solutions, respectively. It could be observed that the
water fluxes of both AL-FS mode and AL-DS showed similar
tendencies: with increasing concentrations of GO nano-sheets,
the water fluxes initially went up and reached the optimal value
typically being at 0.0100 wt%. Namely, the maximum water flux
of GO-incorporated membrane was obtained when 0.0100 wt%
of GO nano-sheets was added into the aqueous phase, with
the water flux increasing 56.97% (from 7.32 to 11.49 L/m2h)
in the AL-FS mode and 42.48% (from 10.17 to 14.49 L/m?h)
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in the AL-DS mode when using 2.0 M NaCl solution as the
draw solution. This may be due to the improvement of the
hydrophilic properties of GO-incorporated membranes. The
higher the hydrophilic properties of the membranes, the easier
for the water molecules to pass through the membranes (He et al.,
2015; Xia et al., 2015; Shi et al., 2018). In addition, the decrease of
the thickness of active PA layer of GO-incorporated membrane
will also lead to an increase in FO water flux. However, when
the GO nano-sheets concentration was too high, the membrane
water flux began to decrease, which might be ascribed to the slight
increase in the thickness of the active layer.

Figure 8 shows the SRSFes of the FO membranes
incorporated by different concentrations of GO nano-sheets
in the AL-FS mode and the AL-DS mode with 1.0 and 2.0 M
NaCl as draw solutions, respectively. The higher SRSF indicates
relatively more solutes passing from the draw side to the feed
side. Compared with the TFC-control membrane, the trend of
SRSFes of the GO-incorporated membrane reduced and then
increased along with increasing concentrations of GO nano-
sheets. This is because the charge effect and two-dimensional

capillary effect of GO nano-sheets, the water molecules pass
easily in the PA layer in the meanwhile reject effectively salt
ions. Therefore, moderate incorporation of GO nano-sheets
can effectively improve the FO membrane selectivity. However,
excessive loading of GO nano-sheets would lead to a defective
surface of the membrane, resulted in the dramatically increase of
GO-5 membrane SRSF. In addition, comparing the selectivity of
the membrane with 1.0 and 2.0 M NaCl as draw solution, it can
be seen that the selectivity of the membrane with 2.0 M NaCl was
slightly higher than that of the former. This may be due to the
increase of osmotic pressure resulting in a denser active layer.

Membrane Separation and Transport

Parameters

Table 2 studies the water permeability coefficient A, salt
permeability coeflicient B, and structural coefficient S value
of GO-3 (the optimal membrane) and control membrane,
respectively. The A value of control membrane was 0.206
LMHbar~!, while this value of GO-3 increased significantly
to 0.278 LMHbar~! when GO was introduced in aqueous
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phase. This trend agrees well with the results of FO
desalination performance tests. The improvement of water
permeability should be ascribed to the enhancement of
GO-3 membrane hydrophilicity. Compared with the water
permeability coeflicient, the salt permeability coeflicient of GO-3
decreased sharply to 0.009 LMH, which may be attributed to the
interception of salt ions by GO nano-sheets. The trend of B value
also agreed well with the behavior of SRSF. As for the membrane
structure parameter, GO-3 membrane displayed 452 um, only
57.7% of the control membrane, this may be caused by the
PA layer thickness decrease (Zhang et al,, 2013). In addition,
A/B ratio is an important parameter to evaluate FO membrane
selectivity, and higher A/B ratio indicates higher selectivity. The
A/B ratio of GO-3 membrane showed 67.1% higher than that
of the TFC-control membrane, which confirmed again the high
desalination performance of the GO-3 membrane.

Membrane Chlorine Resistance

Membrane chlorine-resistance tests were conducted for both
TFC-Control and GO-3 membranes as shown in Figure 9. For
GO-3 membrane, a slow and mild increase of FO water flux as

TABLE 2 | Summary of the transport properties of the TFC—-Control and GO-3
membrane.

Names A B-LMH S(um) A/B R2(J,) R2{Js) CV (%)
(LMHBar-") (Bar™)

TFC- 0.206 0.116 784 1.776 0973 0.965 1.58

Control

GO-3 0.278 0.009 452 2967 0.960 0.960 0.65

well as SRSF was observed during the chlorine-resistance test,
which lasted up to as high as 30,000 ppm e h, before the SRSF
value was doubled. The increased chlorine resistance of the GO-
3 membrane might be attributed to hydrogen bonding between
GO nano-sheets and PA layer blocking the replacement of amidic
hydrogen with active chlorine. Moreover, the incorporated GO
nano-sheets could keep the underlying PA chains from active
chlorine attack. Therefore, a gradual increase of water flux due
to the slow degradation of the PA layer was observed. At the
same time, the surging rise of reverse solute flux was avoided
because of the relatively compact and dense PA layer structure. As
for the control membrane, the water flux increased initially but
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FIGURE 9 | (A) The influence of chlorine immersion on the FO performance of GO-3 membrane and (B) The influence of chlorine immersion on the FO performance
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eventually dropped to 70.9% of the original flux in 1,000 ppm e h,
while the SRSF greatly increased from 0.67 to 4.97 g/L. The amide
bonds of the raw PA layers are vulnerable to free chlorine and can
be easily destroyed by the N-chlorination, Orton rearrangement,
and direct ring chlorination reactions, leading to the PA layer free
volume increase as well the polymer matrix flexibility. Thus, at
the beginning of the degradation of PA layer, the water molecules
can easily transfer the PA layer, however, because of the fast
degradation of the PA layer, then, a sharp increase of SRSF was
observed, which caused a RO-like concentration polarization on
top of the active layer thus decreasing both membrane water
permeability and selectivity. Apparently, the GO-3 exhibited a
much slower PA layer destruction when exposed to free chlorine,
thus possessed good chlorine resistance characteristics (75.0
times enhancement).

CONCLUSIONS

In this paper, a new type of TFC membranes was developed
via using MPD/GO mixture as the aqueous phase for IP
process. The GO nano-sheets were characterized by the FTIR,
XRD, XPS, and SEM to confirm their successful syntheses.
The GO-incorporated TFC membranes exhibited improved
surface hydrophilicity and smoothness, as well as thin PA
layer thickness, because of the affected diffusion rate of MPD
monomers and increased aqueous phase solutions viscosity
with the incorporation of GO nano-sheets. Compared with
the control membrane, the desalination performance of the
optimal membrane was significantly improved whereas only
0.0100 wt% GO nano-sheets was applied in this method.
When 2.0M NaCl was used as the draw solution, the water
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