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The Ubiquitin CODE constitutes a unique post-translational modification language relying

on the covalent attachment of Ubiquitin (Ub) to substrates, with Ub serving as the

minimum entity to generate a message that is translated into different cellular pathways.

The creation of this message is brought about by the dedicated action of writers,

erasers, and readers of the Ubiquitin CODE. This CODE is greatly expanded through

the generation of polyUb chains of different architectures on substrates thus regulating

their fate. Through additional post-translational modification by Ub-like proteins (UbL),

hybrid Ub/UbL chains, which either alter the originally encrypted message or encode

a completely new one, are formed. Hybrid Ub/UbL chains are generated under both

stress or physiological conditions and seem to confer improved specificity and affinity

toward their cognate receptors. In such a manner, their formation must play a specific,

yet still undefined role in cellular signaling and thus understanding the UbCODE message

is crucial. Here, we discuss the evidence for the existence of hybrid Ub/UbL chains in

addition to the current understanding of its biology. The modification of Ub by another

UbL complicates the deciphering of the spatial and temporal order of events warranting

the development of a hybrid chain toolbox. We discuss this unmet need and expand

upon the creation of tailored tools adapted from our previously established toolkit for the

Ubiquitin Proteasome System to specifically target these hybrid Ub/UbL chains.

Keywords: ubiquitin-like modifiers, hybrid chains, SUMO and ubiquitin signaling, NEDD8, ISG15, proteotoxic

conditions, stress conditions, toolbox

INTRODUCTION

Ubiquitin (Ub) is a 76 amino acid, highly conserved protein among eukaryotes post-translationally
modifying proteins thereby dictating almost every fundamental cellular process. Malfunction of
its action drives diverse pathologies such as cancer and neurological disorders like Parkinson’s,
Alzheimer’s, and Huntington’s disease (McNaught et al., 2001; Du and Mei, 2013; Ciechanover
and Kwon, 2015). It exerts its action through the covalent attachment of its C-terminus to the
target substrates by an orchestrated enzymatic cascade composed by three different enzyme families
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named E1, E2, E3 (writers of the code) (Figure 1A). This
conjugation process, commonly referred to as ubiquitination, is
initiated once the E1 activating enzyme catalyzes adenylation
of the C-terminus of Ub at the expense of ATP thereby
forming a high-energy E1-Ub thioester. Afterwards, the activated
Ub is transferred by trans-thioesterification to the cysteine of
the E2 conjugating enzyme which allows E3 ligase mediated
Ub conjugation the substrate lysine residue through a stable
peptide bond. Ub transfer to the substrate can be carried out
by three different mechanisms depending on the nature of
participating E3 ligase [RING, HECT, and RING-in-between-
RING (RBR)] (Zheng and Shabek, 2017). Activated Ub can be
transferred onto the catalytic cysteine of the HECT E3s via a
transthioesterification reaction followed by conjugation to the
lysine residue of the substrate. Alternatively, transfer of the
E2-Ub thioester to the substrate lysine is accomplished by the
contribution of a scaffolding RING E3 enzyme accommodating
both the E2-Ub complex and the substrate. RBR E3s catalyze Ub
conjugation by a concerted RING/HECT hybrid mechanism in

FIGURE 1 | Complexity of the ubiquitin CODE (A) General overview ubiquitination process. (B) Ubiquitin chain types.

which the RING1 domain recruits the E2-Ub complex, followed
by thioester transfer of Ub to a cysteine in the RING2 domain
(Spratt et al., 2014).

Different ubiquitination patterns can be observed depending
on the constitution of the lysine residues of the substrate, giving
rise to mono-ubiquitination or multi mono-ubiquitination,
respectively. Additionally, this enzymatic process can be
repeated by utilizing the ε-amine functionality of any of the
seven internal lysine residues or the N-terminal amine of Ub.
Thus, self-conjugation of Ub to any of these residues permits the
formation of eight different homogenous polymeric Ub chains
(M1, K6/11/27/29/33/48/63). Due to the different disposition
adopted by each of these Ub linkages, a wide variety of cellular
signaling (Akutsu et al., 2016) events can be modulated all
exerting different biological outcomes. For instance, Lys-48 and
Lys-63 linked poly-Ub, the best characterized polymeric chains
are mainly involved in proteasome mediated protein degradation
and cell signaling respectively, whereas the cellular responses
of the remaining linkages, known as atypical chains, remains
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undefined (Kulathu and Komander, 2012). Furthermore,
complexity can be augmented through permutation of linkages,
either through modification of different internal lysines
(branched chains) or by repetition of different linkages within
the chain (heterologous/mixed chains) thereby endowing the
UbCODE with an extraordinary versatility and specificity
(Nakasone et al., 2013; Stolz and Dikic, 2018; Haakonsen and
Rape, 2019) (Figure 1B).

To counterbalance ubiquitination and further sculpting
the physiological effects or rescuing proteins destined for
proteasomal degradation, dedicated proteases known as
deubiquitinases (DUBs) not only remove mono-Ub from their
substrates, but also alter Ub chain topology (editors of the code)
(Leznicki and Kulathu, 2017). Alternatively, modulating the
formation and processing of Ub chains can be achieved through
their interaction with Ubiquitin Binding Domains (UBDs).
These UBDs are endowed with a specific affinity toward Ub or
Ub chains permitting the modulation of both chain elongation
as well as governing the interaction of the Ub chains with the
substrates (Dikic et al., 2009).

While Ubiquitin represents the minimum entity to express
a code, the Ubiquitin CODE as coined by Komander and
Rape, it is a highly complex, yet still elusive signaling system
reliant on the interplay of its “writers,” “editors,” and “readers”
(Komander and Rape, 2012). Nonetheless, intricacy arises when
Ub, is further “PTMylated” by the classical modifications such
as acetylation (Ohtake et al., 2015), phosphorylation (Herhaus
and Dikic, 2015), or ribosylation (Vivelo et al., 2019), or
even by some Ubiquitin-like proteins (UbL). Structurally and
biochemically similar to Ub, UbLs are covalently attached to
the lysine residues of their substrates through the sequential
action of dedicated activating, conjugating, and ligating enzymes.
Conjugation of UbLs to Ub and vice versa, results in hybrid
chains, expanding the utility of the Ubiquitin CODE to enable
an extensive crosstalk among the different UbL pathways and the
UPS (Schmidt and Dikic, 2006; Schimmel et al., 2008; Geoffroy
and Hay, 2009; Hjerpe et al., 2012a) (Figure 1B). However,
the assembly, topology, architecture, as well as the encoded
information of these Ub/UbLs hybrid chains remains cryptic
warranting the development of suitable reagents to decipher this
intricate CODE.

Given the breadth of this review, we will focus on evidence
supporting the existence of these Hybrid Chains with ubiquitin-
like modifiers mainly composed of Ub and the UbL proteins
NEDD8, SUMO, and ISG15 as well as the future potential for
this emerging field. Additionally, we will touch upon the crosstalk
between the Ubiquitin and the Ubiquitin-like enzyme cascades
that cooperate to form hybrid Ub/UbL chains.

UBIQUITIN-LIKE PROTEINS AND HYBRID
CHAIN FORMATION

Small Ubiquitin-Related Modifier (SUMO)
SUMOylation, which is involved in a large plethora of
fundamental cellular processes, is catalyzed through the interplay
of specific enzymes and counteracted by the action of SUMO

specific isopeptidases (Pichler et al., 2017). The SUMO family
is composed by three different members known as SUMO-1, -2,
and -3, which, subsequent to the exposure of their C-terminal di-
glycine signature, are conjugated onto specific lysines embedded
within a SUMO consensus motif (ψ-Lys-X-Glu, withψ encoding
a hydrophobic residue of their substrates) (Geiss-Friedlander and
Melchior, 2007). While the most predominant isoforms SUMO-
2 and SUMO-3 are virtually identical and mainly form K11-
linked polymeric chains (Matic et al., 2008; Hendriks et al., 2014),
SUMO-1 bears only a 50% sequence similarity and does not form
polymeric chains give the absence of the necessary conserved
lysine residue within the consensus motif (Saitoh and Hinchey,
2000). However, it has been shown that SUMO-1 can be linked
to the end of a poly-SUMO-2/-3 chain, effectively terminating
chain growth (Matic et al., 2008). Formation of SUMO-2/-3
chains is elicited upon cellular stressors such as heat shock
(Saitoh and Hinchey, 2000) and their recognition is mediated
by SUMO interactive motifs (SIMs)- specific regions interacting
with SUMO and SUMO polymers (Song et al., 2004).

Hybrid SUMO-Ub Chains
In addition to modification with SUMO itself, several proteomic
studies have identified that Ubiquitination at various lysines
in SUMO-1–3 can occur (Danielsen et al., 2011; Wagner
et al., 2012; Hendriks et al., 2014; Hendriks and Vertegaal,
2016). Interestingly, while SUMO-1 cannot be SUMOylated, it
is Ubiquitinated at six lysine residues most likely inducing a
different response than Ubiquitinated SUMO-2/3 (Hendriks and
Vertegaal, 2016). Thus, given the sheer number of Ubiquitination
sites in SUMO a plethora of hybrid chains combinations
are possible.

Intriguingly, proteomics revealed not only the vast number
of modification possibilities on the different SUMO isoforms,
but also allowed to identify whether the modification occurs
on SUMO or on the Ubiquitin lysines (Hendriks et al., 2014,
2017), further increasing the complexity (Figure 2A). The hybrid
chains predominantly occur upon specific stressors (Hendriks
et al., 2014) (Figure 2A) and despite the advances in detection
and elucidation of the branched architecture of SUMO-Ub
hybrid chains, comprehending their cellular function is still in
its infancy. Discerning their physiological roles is of utmost
importance since the architecture of hybrid SUMO-Ub chains
expands the potential for distinct signaling events by SUMO
and Ub.

SUMO-Ub Chain Signaling
Hybrid chains can be recognized by a variety of receptors
containing tandem SUMO-interacting motifs (SIMs) and UBDs.
Moreover, to counterbalance or alter the effect of SUMOylation,
subsequent ubiquitination of poly-SUMOylated proteins,
catalyzed by SUMO-targeted Ubiquitin ligases (STUbls) can
ensue. Upon recognition of the poly-SUMO signal through
virtue of their SIMs, STUbls install a specific Ub-linkage onto
the lysine of the SUMO-modification (Sriramachandran and
Dohmen, 2014). Although, SUMO-Ub chains were primarily
identified on proteins impending proteasomal degradation
(Lallemand-Breitenbach et al., 2008; Tatham et al., 2008; Erker
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FIGURE 2 | Mechanism for the formation of hybrid chains. (A) StubLs containing tandem of SIMS recognize polySUMO2/3 chains and poly-ubiquitinate in a linkage

specific manner the PolySUMO chains targeting them for enhanced proteasomal degradation (Aillet et al., 2012) or initiates signaling for DDR events through the

RAP80/BRCA1 complex (Guzzo et al., 2012). The insert highlights ubiquitinitated SUMO1-3 (Hendriks and Vertegaal, 2016) and SUMOylated Ubiquitin identified by

(Continued)
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FIGURE 2 | proteomics so far (Hendriks et al., 2014). (B) Canonical and atypical pathways (Leidecker et al., 2012) and dual activity of HUWE1 under stress conditions

which lead to formation of hybrid chains which protect the UPS by via the formation of aggregates that are no longer processed by the proteasome (Maghames et al.,

2018). The insert displays identified Ub-Nedd8 linkages (Leidecker et al., 2012). (C) Although the mechanism for the formation of ISG15 hybrid chains is still

outstanding, data supporting the existence of Ub-ISG15 is available. First, K29 gets ISGylated, followed by K48 as the second ISG15 site (Fan et al., 2015).

et al., 2013; McIntosh et al., 2018), roles in maintaining genome
stability (Guzzo et al., 2012; Nie and Boddy, 2016) have been
assigned more recently through the K63 poly-ubiquitination of
poly-SUMO chains (Figure 2A). Here RNF4, a STUbl, mediates
poly-ubiquitination of SUMOylated proteins, thereby evoking
the recruitment of RAP80 and its subsequent interaction with
BRCA1 complex, to promote genomic stability (Guzzo et al.,
2012). Another example involves Arkadia which ubiquitinates
SUMOylated xeroderma pigmentosum C (XPC), a pivotal player
in nucleotide excision repair, driving XPC to UV-damaged DNA
sites (Poulsen et al., 2013).

DUBs such as USP11 can trim or reverse ubiquitination on
hybrid SUMO-Ub chains to modulate the associated cellular
responses (Hendriks et al., 2015). Thus, the amalgamation
of ubiquitination and SUMOylation resembles an efficacious
strategy to confer both specificity and increased affinity to the
target proteins (Aillet et al., 2012; Guzzo et al., 2012).

Neural Precursor Cell Expressed,
Developmentally Downregulated 8 (NEDD8)
Akin to SUMOylation, Neddylation is accomplished by its own
specific enzymes and is counterbalanced by a few dedicated
proteases (Enchev et al., 2015). Given the similarities between
Ubiquitin and Nedd8, it is unsurprising that both have the
propensity to form hybrid chains. However, the formation
of Ubiquitin-Nedd8 hybrid chains occurs predominantly in
response to proteotoxic stress, perhaps as a mechanism to
dampen cellular signaling in this context or to protect the
UPS from proteotoxicity (Maghames et al., 2018; Santonico,
2019). Neddylation and the Nedd8 enzyme cascade have been
demonstrated to be crucial to the development of neurological
disorders (Dil Kuazi et al., 2003; Mori et al., 2005; Chen et al.,
2012; Lu et al., 2013). Thus, given the protective role of Ubiquitin-
Nedd8 hybrid chains against proteotoxic stress, these complex
posttranslational modifications may play a pivotal role in the
pathogenesis and progression of neurodegenerative diseases
(Ross and Poirier, 2004; Gestwicki and Garza, 2012; Dantuma
and Bott, 2014; Valastyan and Lindquist, 2014; Sweeney et al.,
2017).

In an attempt to elucidate the architecture of the hybrid
chains several hybrid linkages were determined by SILAC-
based proteomics upon proteasomal inhibition (Leidecker et al.,
2012) (Figure 2B). Neddylation occurs via the interplay of
enzymes relying on its own specificity and is referred to as
the “Canonical” pathway. However, under stress conditions
such as proteasome inhibition, oxidative stress, or heat
shock Neddylation is mediated “atypically” by the Ubiquitin
activating enzyme UBE1 instead (Hjerpe et al., 2012a,b;
Leidecker et al., 2012). This tight synchronization of the
Ubiquitin and Nedd8 systems to fine-tune the cellular response

during proteotoxic stress has been observed not only for
UBE1, but also for also for the E3 ligase HUWE1, a
crucial component of the Protein Quality Control (PQC)
pathway (Xirodimas et al., 2008; Sung et al., 2016a,b),
which targets ribosomal proteins (RPs) and protects the UPS
from stress-induced toxicity by ribosomal protein aggregation
(Maghames et al., 2018) (Figure 2B). Importantly, during
the persistence of stress, the unconjugated Ub pool is
rapidly depleted triggering Neddylation through the Ubiquitin
pathway and targeting several substrates typically ubiquitinated
(Leidecker et al., 2012) (Figure 2B). Akin to the sophisticated
regulatory system provided by DUBs, research underscores
that Nedd8-Ub hybrid chains seem to be modulated in
a similar fashion by DUBs subsequent to cellular stress
(Leidecker et al., 2012; Singh et al., 2012, 2014).

Interferon (IFN)-Stimulated Gene 15 (ISG15)
Firstly identified upon IFN treatment on Ehrlich ascites tumor
cells (Farrell et al., 1979), ISG15 had initially not been identified
as an Ubiquitin-like protein, until cross-reactivity toward Ub
antibodies suggested the existence of UbL proteins (Haas et al.,
1987). Unlike all other UbLs, ISG15 is composed of two Ub like
domains tethered by a “hinge” polypeptide sequence. Analogous
to Ub, ISG15 can be conjugated onto the target substrates
through the orchestrated interplay of its E1, E2, and E3 enzymes
through its exposed C-terminal glycine (Perng and Lenschow,
2018). Given its increased activation upon interferon stimulation,
conjugation of ISG15 to protein substrates plays a crucial role in
the antiviral response and thereby constituting a key contributor
to innate immunity (Harty et al., 2009; Durfee et al., 2010; Perng
and Lenschow, 2018).

In contrast to Ub, SUMO and NEDD8 (Jones et al.,
2008), ISG15 has not been reported to generate polymeric
chains and does not seem to have specific ISG15-interacting
motifs. Although some studies have suggested an antagonistic
relationship of Ub and ISG15 in certain contexts such as during
tumorigenesis (Liu et al., 2003; Desai et al., 2006; Kim et al.,
2006; Malakhova and Zhang, 2008; Wood et al., 2011), evidence
of a crosstalk between ISG15 and Ub conjugation pathways
still remains perplexing. Unexpectedly, a proteomic study
revealed that ISG15 was conjugated to Ub (Giannakopoulos
et al., 2005), and further investigation by Zhang et al.
corroborated the formation of hybrid ISG15-Ub chains (Fan
et al., 2015) (Figure 2C).

Little is known about the biological function of these hybrid
Ub-ISG15 chains, but it has been established that they do
not act as proteasomal degradation signals. Thus, ISG15 could
potentially function as a chain termination moiety to rescue
ubiquitylated proteins from degradation. However, given the
fact that ISG15 is predominantly conjugated to Ub via K29, a
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plausible role of these hybrid chains could be modulation of
K29-Ub mediated biological signaling (Kulathu and Komander,
2012). Moreover, this type of hybrid chains could trigger new
signaling pathways exerting different biological outcomes, but
the assignment of their biological role is a daunting task since
no ISG15 interactive motifs have been identified and readers
containing both UIM and ISG15 interacting motifs cannot
be predicted.

PERSPECTIVES

Considering the impact of ubiquitination on regulating a vast
array of fundamental biological processes, with dysregulation
of the dedicated enzymes giving rise to pathologies such
as cancer and neurodegenerative diseases, understanding its
function merited the development and innovation of respective
tools. Advances in synthetic strategies for generating ubiquitin,
constituted a qualitative leap forward in the development of
a plethora of ubiquitin assay reagents and numerous activity-
based probes (ABPs) enabling study of enzymes involved in the
complex system of ubiquitination (El Oualid et al., 2010; Ekkebus
et al., 2013; Hameed et al., 2017).

The modification of Ub by another UbL complicates the
deciphering of the spatial and temporal order of events, as
well as the underlying biological role of this modification,
underscoring the urgent need for new next generation ABPs
and assay reagents. The lack of a robust methodology to
chemically access some UbL proteins has hampered the study
on the biological role that hybrid chains display as well as the
identification of their readers, writers, erasers, and interpreters.
Generating such complex hybrid chains is a challenging feat as
the E2/E3 enzymes generating these linkages in vitro remain
unknown. So far, only (semi)-synthetic strategies for obtaining
ubiquitinated Rub1, the yeast NEDD8 homolog (Singh et al.,
2014) and SUMO-2-K63diUb hybrid chains (Bondalapati et al.,
2017) have been reported. Only in the last decade, efforts to devise
synthetic strategies for UbL proteins such as Nedd8 (Mulder
et al., 2014), SUMO (Dobrota et al., 2012; Wucherpfennig
et al., 2014; Mulder et al., 2018) and Ufm1 (Ogunkoya
et al., 2012; Witting et al., 2018) have been undertaken. More
recently, ISG15 synthesis has been accomplished as a modular
synthesis of both domains and its subsequent ligation (Xin
et al., 2019). These developments in the chemical synthesis
of UbL proteins in combination with the advancements made
in polyUb probes (Mulder et al., 2014; Flierman et al., 2016;
Paudel et al., 2019) open a new avenue to UbL and hybrid
Ub/UbL reagents allowing research on their respective enzymatic
cascades, but also enabling in depth studies on their crosstalk
with ubiquitin.

Mass spectrometry (MS) has become an invaluable tool in
the quest for understanding cell signaling and in particular to
study the UPS (Heap et al., 2017). This type of proteomics
relies on the isolation and enrichment of the target proteins
through affinity-based approaches (Mattern et al., 2019) such
as affimers, antibodies targeting the di-Glycine signature,
anti/mini/nanobodies, endogenous tags, biotin, and molecular

entities based in the repetition of UBDs and SIMs capturing poly-
Ub and SUMO chains, respectively (TUBES and SUBES) (Hjerpe
et al., 2009; Da Silva-Ferrada et al., 2013) with a high affinity.
However, many of these approaches cannot be undertaken in
the study toward hybrid Ub-UbL biology since they are not
endowed with specific affinity toward these linkages or due to the
shared homology under Ub and UbL proteins as exemplified by
the shared GG remnant after enzymatic digestion. To overcome
these pitfalls, an UbiSite antibody approach (Akimov et al.,
2018) which relies on LysC digestion has recently been described
to allow differentiation among Ub and UbL proteins. The
translation of the existing affinity technologies toward hybrid
chains and UbL proteins would facilitate the understanding of
the crosstalk among the different Ub-UbL proteins. For example,
an elegant combination of SIMs and UBDs, a mixed TUBE/SUBE
approach, could potentially enrich for substrates endowed with
hybrid chains generated by STUbLs. Unsurprisingly due to the
high similarity of Nedd8 and Ub, all known binding domains
with affinity for Nedd8 display cross-reactivity with Ub. Recently,
the first specific binding domain for Nedd8 was reported
(Castagnoli et al., 2019) and thus a similar approach as the
TUBES/SUBES could potentially be designed, “NEBES.”

Furthermore, a proteomic approach called Ubi-clipping
(Swatek et al., 2019) has shown the great percentage (10–
20%) of which branched chains are present in polymeric forms
of Ub. This method relies on an engineered version of an
ISG15-specificenzyme that partially removes Ub from substrates
and leave the characteristic diglycine signature on Ub while
simultaneously allowing the identification of different branched
architectures. The translation of such technology into the hybrid
chains field would shed light on the different architectures that
such chains exhibit. In addition to this innovation, the generation
of specific antibodies toward the linkage of hybrid chains, in a
similar fashion as the first Ub branched K11/K48 antibody (Yau
et al., 2017) could be a feasible approach toward the generation a
Hybrid Chain Tool Box.

Despite the recent advances made in developing innovative
reagents on the Ubiquitin-field, there are still many conundrums
to be resolved regarding the writers, editors and readers of
this part of the Ub CODE. The origin of the identified
Ub-SUMO linkages in which Ub is SUMOylated is still
unclear, the possibility of a parallel mechanism such as the
STUbL in which SUMO ligases target polyUb-chains and
SUMOylate (UbTSLs) them might explain their existence. The
enzymes catalyzing the formation of Ub-ISG15 hybrid chains
are still unknown and efforts to identify them should be
undertaken. Moreover, the formation of these hybrid chains
confers an extra layer of complexity to the CODE that could
be translated into terms of specificity and increased affinity
that the “readers” display for them. Such readers must be
endowed with “hybrid” recognition domains which could be
screened by bioinformatic analysis as exemplified in the discovery
of RAP80 (Nie and Boddy, 2016). It has been shown that
hybrid chains are processed by the proteasome more efficiently
compared with poly-Ub or poly-SUMO chains. This pronounced
affinity could be derived from the improved recognition of
either a proteasome subunit or of a shuttle protein containing
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the aforementioned “hybrid” recognition domains. For the
Ub-Nedd8 and Ub-ISG15 hybrid chains, the field is less
explored and hybrid chain recognition domains still need to
be identified.

The fact that Ub and UbL proteins can generate this array
of chains, conferring new architectures and topology to the
chains and thereby triggering different signaling events, increases
complexity of the already intricate Ubiquitin CODE. The current
knowledge regarding hybrid-chain formation is based upon
chain formation between Ub and UbL proteins. However, a
recent report revealed that a small fraction of NEDD8 becomes
modified by K0-SUMO (Hendriks et al., 2017). Although
SUMOylation of NEDD8 is likely to be a very rare event, it
does extend the knowledge regarding hybrid chain cross-talk and
opens a new perspective to the intrinsic code (Hendriks et al.,
2014). The creation of tailored tools specific toward these hybrid

chains by adapting the methodology already applied for the study
of the Ubiquitin Proteasome System will augment our knowledge
about hybrid chains.
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