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The feasibility of direct laser cooling of SiH, GeH, SnH, and PbH is investigated

and assessed based upon first principles. The internally contracted multi-reference

configuration interaction method with the Davidson correction is applied. Very good

agreement is obtained between our computed spectroscopic constants and the available

experimental data. We find that the locations of crossing point between the B26− and

A21 states have the tendency of moving downwards from CH to SnH relative to the

bottom of the corresponding A21 potential, which precludes the laser cooling of GeH,

SnH, and PbH. By including the spin-orbit coupling effects and on the basis of the

A215/2 →X253/2 transition, we propose a feasible laser cooling scheme for SiH using

three lasers with wavelengths varying from 400 to 500 nm, which features a very large

vibrational branching ratio (0.9954) and a very short radiative lifetime (575 ns). Moreover,

similar studies are extended to carbon monosulfide (CS) with a feasible laser cooling

scheme proposed. The importance of electronic state crossing in molecular laser cooling

is underscored, and our work suggests useful caveats to the choice of promising

candidates for producing ultracold molecules.

Keywords: laser cooling, ab initio, spin-orbit coupling, electronic state crossing, group IVA hydrides

1. INTRODUCTION

Laser cooling of diatomicmolecule is an issue of great interest owing to their promising applications
in many fields such as quantum computing and precision measurement (Carr et al., 2009; Hudson
et al., 2011; Yan et al., 2013; Baron et al., 2014). Direct laser cooling of SrF molecules to µK level
was firstly achieved with only three laser beams (Shuman et al., 2010). In addition, transverse
and longitudinal laser cooling experiment was applied to YO (Hummon et al., 2013) and CaF
(Zhelyazkova et al., 2014), respectively. So far only a fewmolecules including SrF, CaF, and YO have
been cooled to the ultracold temperature experimentally, and there is an urgent need to search for
more suitable molecular candidates for laser cooling. Recently, a number of theoretical efforts have
been made in searching for promising molecular laser cooling candidates (Wells and Lane, 2011a;
Fu et al., 2016a; Cao et al., 2019; González-Sánchez et al., 2019; Xu et al., 2019). It is generally
accepted (Di Rosa, 2004; Fu et al., 2016b) that, a suitable laser-cooling candidate must meet the
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following three criteria: highly diagonal Franck-Condon factors
(FCFs), a short lifetime, and no intermediate electronic-state
interference. Here we reveal that the crossing between two
electronic states may damage the cooling scheme, and may
be regarded as the fourth criterion that should be checked
beforehand in choosing laser-cooling candidates. We will
demonstrate this point by investigating the laser cooling of group
IVA hydrides.

There have been a lot of studies on SiH and GeH (Kleman
and Werhagen, 1953a; Ram et al., 1998), while SnH and PbH
have not been sufficiently studied (Alekseyev et al., 1996; Zhao
et al., 2017). SiH radical has been attracting great interest over
many years, since it plays a significant role in many industrial
processes such as plasma vapor deposition (Ram et al., 1998).
In 1930, the emission spectrum of SiH was observed using an
arc source, and a strong transition near 410 nm was assigned
to as the A21→X25 transition (Jackson, 1930). In 1969, the
lifetime of the A21 state was measured as 700±100 ns with
phase-shift technique (Smith, 1969). Later, the high-resolution
spectrograms of 325 nm bands for SiH were measured with
rotational analysis (Bollmark et al., 1971). In 1979, the accurate
spectroscopic parameters and molecular constants of SiH were
summarized and reported in the literature (Huber and Herzberg,
1979). In 1980, the emission spectroscopy of SiH in a silane glow-
discharge was measured with a moderate spectrometer (Perrin
and Delafosse, 1980). In 1989, the spectrum of SiH radical was
observed over the laser wavelength between 426 and 430 nm
by resonance-enhanced multiphoton ionization spectroscopy,
and new state was tentatively assigned as 25 state with further
computer simulation (Johnson and Hudgens, 1989). Parallel to
extensive studies on SiH, the spectra of GeH are well-studied in
experiment, especially for the low-lying electronic states. In 1953,
the spectra of A46−→X25 and A21→X25 band for GeH were
first observed (Kleman and Werhagen, 1953a,b). Subsequently,
the spectroscopic constants of the A21 state of GeH were
deduced with rotational analysis (Klynning and Lindgren, 1966).
In 1989, the radiative lifetime of the A21 state of GeH was
measured as 93±10 ns with laser-induced fluorescence technique
(Bauer et al., 1989). In 1938, the emission spectrum of PbH
was firstly detected using arc-excitation in hydrogen atmosphere
(Watson, 1938). In 2008, the near-infrared emission spectra of
X253/2→

251/2 transitions of PbH were observed using high-
resolution Fourier-transform spectrometry (Setzer et al., 2008).

Theoretically, in 1967 the first ab initio calculations on the
SiH radical were performed with the Hartree-Fock method
(Cade and Huo, 1967), in which the potential energy curve
(PEC) of the ground-state was obtained. In 1983, the PECs of
SiH were evaluated with the multi-reference double-excitation
configuration interaction calculations (Lewerenz et al., 1983). In
recent years, there are many calculations about spectroscopic
constants of SiH (Ram et al., 1998; Kalemos et al., 2002; Shi
et al., 2008, 2013; Zhang et al., 2018). In 2013, the PECs of
eleven � states generated from seven 3-S states of SiH radical
were calculated by the internally contracted multi-reference
configuration interaction method with the Davidson correction
(icMRCI+Q) (Shi et al., 2013). In 2001, the X25 and a46−

states of GeH were investigated with the MRCI approach and the

spectroscopic parameters for the two states were reported (Bruna
and Grein, 2001). In 2015, the lifetimes of A21 and a46− states
of GeH were obtained (Li et al., 2015). Some ab initio calculations
on SnH and PbH were also reported (Alekseyev et al., 1996; Zhao
et al., 2017).

The A21→X25 transition of CH was pointed out to be
dominated by diagonal bands, making it a potential cooling
candidate (Wells and Lane, 2011b). SiH is considered to be
suitable for laser cooling by Zhang et al. (2018), although they
ignored the SOC effects in their laser cooling schemes. In
addition, they did not consider the effect of electronic state
crossing. According to previous investigations (Fu et al., 2017;
Xia et al., 2017), the SOC effects are important for laser cooling
molecules and will be taken into account in this work. There have
not been theoretical studies reported on laser cooling of GeH,
SnH, and PbH. In this work, by means of highly accurate ab
initio and dynamical calculations, we investigate the laser cooling
of group IVA hydrides and the importance of electronic state
crossing in molecular laser cooling is underscored. Additionally,
based on the fourth criterion mentioned above, laser cooling of
CS is investigated.

The paper is organized as follows. The theoretical methods
and computational details are briefly described in section 2. The
results and discussion are shown in section 3. The conclusions
are given in section 4.

2. METHODS AND COMPUTATIONAL
DETAILS

In this paper, all the ab initio calculations of SiH, GeH, SnH,
and PbH are performed using the MOLPRO 2012.1 program
package (Werner et al., 2012). For each 3-S state, the energies
are computed using the complete active space self-consistent
field (CASSCF) (Werner and Knowles, 1985) approach followed
by the icMRCI+Q (Langhoff and Davidson, 1974). The lowest
electronic configuration of Si is (core)3s23p2 corresponding to
the atomic states 3P and 1D. In combination with the 1 s
function of a H atom, the lowest electronic configuration of
SiH in X25 is invariably (core)4σ 25σ 26σ 02π1 and the next is
(core)4σ 25σ 16σ 02π2 leading to the multiplets 46−, 21, 26−,
and 26+, which could be considered as involving a pσ→pπ
transition within the Si atom. In asymptote region, the 5σ
molecular orbital origins from the 1s on hydrogen, while the 6σ
and 2π correspond to the 3p on silicon.

The choice of active space is very important in the CASSCF
and MRCI+Q calculations (Liu et al., 2009; Yu and Bian, 2011,
2012). The active space of SiH used here consists of ten orbitals
corresponding to Si 2p3s3p4pπ and H 1s, and is referred to
as (11e, 10o), which is carefully chosen to include proper
orbitals, and large enough for the present calculations. Our test
calculations indicate that the full valence space is inadequate,
and thus additional five orbitals are added into the active space.
The inner shell orbitals are included to account for the core-
valence correlation effects and the outer virtual orbitals are added
to give a better description on the dissociation behavior and
Rydberg character, especially for excited electronic states (Shen
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et al., 2017). In fact, a completely satisfactory set could neither
be found by increasing the active orbital space nor by including
more states (Simah et al., 1999). The best compromise we could
achieve is to distribute the eleven electrons in 10 active orbitals.
As for the basis set, we use the aug-cc-pV5Z basis sets for Si and
H atom. In the SOC calculations, the SO eigenstates are obtained
by diagonalizing Ĥel + ĤSO in the basis of eigenfunctions of Ĥel.
In addition, the Ĥel and ĤSO are obtained from the icMRCI+Q
calculations and icMRCI+Q waves functions, respectively. The
active space for GeH in the present work is (9e, 9o), which
consists of the Ge 3dπ4s4p5pπ and H 1s orbitals. The accuracy
and computational performance are compromised, thus the
active space of GeH includes the 3dπ orbitals, valence orbitals and
5pπ orbitals. The aug-cc-pV5Z-DK basis sets are used for GeH.
Here, the active space for SnH consists of the Sn 4d5s5p and H
1s orbitals and is referred as (15e, 10o). The aug-cc-pVQZ basis
sets are used for H and aug-cc-pwCVQZ-PP with ECP28MDF
effective core potentials for Sn. Similarly, the active space for PbH
is (15e, 10o), which consists of the Pb 5d6s6p and H 1s orbitals.
We use the aug-cc-pVQZ basis sets for H and aug-cc-pwCVQZ-
PP with ECP60MDF for Pb. In addition, the active space used
for the study of CS is (10e, 8o) corresponding to the C 2s2p and
S 3s3p, and we use the aug-cc-pV5Z basis sets for both C and
S atoms.

The Einstein spontaneous emission coefficient Aν′ν is
calculated by the following expression (Herzberg, 1950),

Aν′ν =
16π3

3ǫ0h̄

S(J′, J)

2J′ + 1
v3|9ν′ ,J′ |M(r)|9ν,J |

2 (1)

where Aν′ν is in units of s−1, ε0 is the vacuum permittivity in
units of F· cm−1,M(r) is the transition dipole function in Debye
unit, ν is emission frequency in units of cm−1, 9ν′,J′ and 9ν,J

are normalized radial wave functions, h̄ is the Planck constant
and S(J′, J) is the Hönl-London rotational intensity factor. The
radiative lifetime for a given vibrational level ν′ can be obtained
by the following equation,

τν′ν = 1/
∑

ν

Aν′ν (2)

The spectroscopic parameters of group IVA hydrides, including
the equilibrium bond length (Re), the harmonic vibrational
constant (ωe), the rotational constant (Be), and adiabatic relative
electronic energy referred to the ground state (Te) are obtained
using the Le Royν′s LEVEL program (Le Roy, 2007).

3. RESULTS AND DISCUSSION

3.1. PECs of the 3-S States and
Spectroscopic Constants
For the group IVA hydrides, the main configuration of
the ground state (X25) is (core)4σ 25σ 26σ 02π1. The second
lowest state here is the A21, whose main configuration
is (core)4σ 25σ 16σ 02π2. The PECs of SiH, GeH, SnH, and
PbH computed using the icMRCI+Q method are shown in
Figures 1–4, respectively. The weights of ionic configuration

FIGURE 1 | Potential energy curves of SiH for the five 3-S states at the

icMRCI+Q level.

FIGURE 2 | Potential energy curves of GeH for the three 3-S states at the

icMRCI+Q level.

in the X25 and A21 states decrease gradually with increasing
internuclear distances. As seen in Figure 1, the five states of
SiH correlate to the three dissociation limits. The X25 and
A21 states are the two energetically lowest lying electronic
state and correlate to the neutral atomic Si(3P)+H(2S) limit
and Si(1D)+H(2S) limit, respectively. From Figures 2–4, we can
see that the X25 and A21 states of GeH, SnH, and PbH
correlate to the neutral atomic Ge/Sn/Pb(3P)+H(2S) limit and
Ge/Sn/Pb(1D)+H(2S) limit, respectively. The PEC of the B26−

crosses with that of A21 will be discussed in details in section
3.2. The PECs of the B26− and X25 correlate to the same neutral
atomic Si(3P)+H(2S) limit.

Since the spectroscopic constants of the X25 and A21 states
have been measured in experiment for SiH, GeH, SnH, and PbH,
comparing with experimental data could provide an indicator
of the reliability of our calculations. We present our calculated
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FIGURE 3 | Potential energy curves of SnH for the three 3-S states at the

icMRCI+Q level.

FIGURE 4 | Potential energy curves of PbH for the three 3-S states at the

icMRCI+Q level.

spectroscopic constants of SiH, GeH, and SnH in Tables 1, 2 and
Table S1, together with previous theoretical and experimental
values for comparison. The calculated Re and ωe of the X25

of SiH are 1.5200 Å and 2047.71 cm−1, respectively, which
are in good agreement with the corresponding experiment data
(1.5201 Å and 2041.80 cm−1) (Huber and Herzberg, 1979). The
contributions from non-valence orbitals to correlation energy
are relatively small for the ground state, however, they become
very important for the excited states and lead to noticeable
differences. In particular, the experimental Te is 24300.4 cm−1

(Huber and Herzberg, 1979) and our calculated one with a better
active space is 24299.20 cm−1, whereas that obtained by Zhang
et al. (2018) is 25080.92 cm−1, which deviates from experimental
value by about 780 cm−1. When additional virtual orbitals are
taken into account by Kalemos et al. (2002), the deviation is

TABLE 1 | Spectroscopic constants of the A21 and X25 states for SiH.

State Method Te Re ωe νa Tν Be µe

(cm−1) (Å) (cm−1) (cm−1) (cm−1) (Debye)

X25 This work 1.5200 2047.71 0 1018.07 7.5083 0.1451

1 2996.15

2 4904.97

Expt.b 1.5201 2041.80 7.4996

Expt.c 1.5197 2042.52 7.5039

Calc.d 1.5223 2043.15

Calc.e 1.5223 2046.91 7.4779

Calc.f 1.5154 2043.47 7.7258

A21 This work 24299.20 1.5238 1859.72 0 25277.40 7.5164 0.134

1 26988.69

2 28485.89

Expt.b 24300.4 1.5234 1858.90 7.4664

Expt.g 24255.51 1.5198 7.5027

Calc.h 24923.56 1.546 1797 7.253 0.118

Calc.d 24129.60 1.5240 1853.15

Calc.f 24323.28 1.5148 1857.63 7.5021

aThe vibrational levels are represented by ν.
bHuber and Herzberg (1979).
cBetrencourt et al. (1986).
dKalemos et al. (2002).
eShi et al. (2008).
fShi et al. (2013).
gRam et al. (1998).
hLewerenz et al. (1983).

reduced to around 200 cm−1. The spectroscopic constants of
GeH obtained from the active space (9e, 9o) are shown inTable 2.
The calculated Re and ωe of the X25 of GeH are 1.5885 Å and
1902.32 cm−1, respectively, which are in very good agreement
with the corresponding experiment data (1.5872 Å and 1900.38
cm−1) (Towle and Brown, 1993). The A21 state of GeH, the
experimental Te is 25454 cm−1 (Huber and Herzberg, 1979),
whereas our calculated Te is 25386.63 cm−1, which is much
improvement compared with previous computational value
25774 cm−1 (Li et al., 2015).

The permanent dipole moments (PDMs) and absolute
values transition dipole moments (TDMs) for the A21→X25

transition of SiH at the icMRCI+Q level are represented in
Figure 5. The TDMs for the A21→X25 transition of SiH are
0.6231 D at Re and decrease with the increasing bond length.
The calculated TDMs for the A21→X25 transition of GeH are
given in Figure S1. The Einstein A coefficients and vibrational
branching ratio of the A21→X25 transition of GeH are listed
in Table S2. The calculated radiative lifetime for the A21(ν′ =
0) state of SiH is 613 ns, which is in very good agreement with
the experimental value (534 ± 23 ns) (Bauer et al., 1984). The
FCFs fν′ν of the A21→X25 transition for GeH are calculated
and plotted in Figure S2. In this work, the f00 (0.995) of SiH
is in excellent agreement with the value (0.994) derived from
experiment (Smith and Liszt, 1971). The computational value
of f00 for GeH (0.940) is in very good agreement with the
experimental value 0.928 (Erman et al., 1983).
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TABLE 2 | Spectroscopic constants of the A21 and X25 states for GeH.

State Method Te Re ωe νa Tν Be µe

(cm−1) (Å) (cm−1) (cm−1) (cm−1) (Debye)

X25 This work 1.5885 1902.32 0 943.46 6.7107 0.1076

1 2777.80

2 4546.19

Expt.b 1.5872 1900.38 6.73

Expt.c 1.5880 1833.77 6.7259

Calc.d 0.097

Calc.e 1.5823 1914.93 6.7688

A21 This work 25386.63 1.6100 1308.62 0 26159.92 6.5408 0.257

1 27380.21

2 28307.39

Expt.c 25454 1.611 1185.15 6.535

Calc.d 26663 1.66 1302

Calc.e 25774 1.617 1306.36 6.5343 0.356

aThe vibrational levels are represented by ν.
bTowle and Brown (1993).
cHuber and Herzberg (1979).
dChapman et al. (1988).
eLi et al. (2015).

FIGURE 5 | The permanent dipole moments (PDMs) and transition dipole

moments (TDMs) for the X25 and A21 states of SiH at the icMRCI+Q level.

3.2. The Comparison of the Feasibility of
Laser Cooling for Group IVA Hydrides
There are some similar properties of group IVA hydrides. The
inner closed-shell orbitals are occupied with 2, 10, 28, 46, and
78 electrons for CH, SiH, GeH, SnH, and PbH, respectively.
The equilibrium bond length Re increases regularly from CH
to PbH, while the harmonic constant ωe decreases in the order
of CH>SiH>GeH>SnH>PbH (Huber and Herzberg, 1979;
Alekseyev et al., 1996; Zhao et al., 2017). The comparison of the
feasibility of laser cooling for group IVA hydrides is summarized

here. An amplified view of crossing regions of PECs for SiH, GeH,
SnH, and PbH is shown in Figure 6, we see that the dissociation
energies of the A21 states of SiH, GeH, SnH, and PbH are
7735.89, 4465.21, 2849.26, and 798.36 cm−1, respectively. This
trend is consistent when the second-row CH is included and the
corresponding dissociation energy is 16641.68 cm−1 (Wells and
Lane, 2011b). The depths of the A21 state decrease from CH
to PbH, and it supports only one vibrational level for PbH. In
equilibrium region, two electrons anti-parallelly are distributed
on one (np↑↓x /np↑↓y ) and two (np↑x np

↓
y ) sp3 hybridized orbitals

for the B26− and A21 states, respectively. The hybridized
orbital effect vanishes as the internuclear distance increases to
the asymptotic region. Where, np↑↓x /np↑↓y goes to X(3P) and

np↑x np
↓
y goes to X(1D). Therefore, there is a crossing point

between the B26− and A21 states of group IVA hydrides.
The electronic state crossing between the B26− and A21

states can lead to nonradiative transition (Wu et al., 2019),
and may cause predissociation. This kind of electronic state
crossing in a diatomic molecule will become potential energy
surface intersections in the polyatomic cases involving multiple
electronic states (Liu et al., 2003; Zhao et al., 2006). We find
that the locations of crossing point between the B26− and A21

states have the tendency of moving downwards from CH to SnH
relative to the bottom of the corresponding A21 state potential.
The locations of crossing point between the B26− and A21

states of GeH and SnH are 591 and 255 cm−1 lower than the
corresponding vibrational level ν′ = 0 in the A21, while that of
third-row SiH is 670 cm−1 higher than the vibrational level ν′ =
0 in the A21. This trend is consistent when the second-row CH
is included since the corresponding crossing point is 3,000 cm−1

higher (Wells and Lane, 2011b).
The location of crossing point between the B26− and A21

states of SiH is higher than the vibrational level ν′ = 0 in the A21,
indicating that laser cooling of SiH in the A21→X25 transition
may not be affected by electronic state crossing. However, our
results imply that the crossing between the B26− and A21 states
of GeH will lead to predissociation of all vibrational levels of the
A21 state, which is backed up by experiments of Erman et al.
(1983) using high frequency deflection technique. They reported
that, 80–90% of the GeHmolecules excited to the A21 state decay
via predissociation to their ground state atomic constituents, and
fewer than 20% of the molecules follow the regular decay route
to the ground state. Furthermore, the A21 states of SnH and
PbH have a similar problem to that of GeH, although there has
been no relevant experimental measurements reported. It is clear
that GeH and SnH can not be used for laser cooling due to the
electronic state crossing. In addition, the small Franck-Condon
factor f00 (0.08) of PbH also suggests that it is not suitable for
laser cooling.

It seems that both CH and SiH are very good laser cooling
candidates, and we make a comparison in the following. The f00
of SiH (0.995) is close to that of CH (0.9957) (Wells and Lane,
2011b). The radiative lifetimes of the A21 state of SiH and CH
are 575 and 536 ns (Wells and Lane, 2011b), respectively. The
TDoppler and Trecoil of SiH (6.65 and 3.89 µK) are also similar
to that of CH (7.13 and 7.91 µK) (Wells and Lane, 2011b). The
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FIGURE 6 | An amplified view of crossing regions of potential energy curves for SiH (A), GeH (B), SnH (C), and PbH (D).

calculated pump and repump wavelengths for SiH and CH are all
in the visible region. The electronic state crossing between the
B26− and A21 states of CH is higher than that of SiH, with
both crossing points located above the corresponding vibrational
ν′ = 0 levels in the A21 state. Generally speaking, a larger
atomic mass difference for the diatomic candidate is desirable
by experimentalists, and in this respect, SiH is better than CH.
Furthermore, we will propose a scheme using two spin-orbit
states for SiH in the next section, which is more feasible than
the one using two 3-S states for CH. The A21→X25 transition
of CH was used to establish a laser cooling scheme, and the
SOC effects were not included (Wells and Lane, 2011a). With the
inclusion of the SOC effects into the icMRCI wave functions in
our calculations, accurate� states are determined. The calculated
spectroscopic constants of SiH are in very good accordance with
experimental measurements. The prospect for the production of
ultracold SiH molecules by means of direct laser cooling method
is discussed below.

3.3. Laser Cooling Scheme for SiH
When the SOC effects are taken into account, seven � states,
involving four states with � = 1/2, two states with � = 3/2 and
one state with � = 5/2, are generated from the five 3-S states

of SiH. The PECs of the � states are depicted in Figure 7. The
SOC splitting of the X25 and A21 states of SiH is shown in
Table 3. As seen, the energy separation of the X251/2 and X253/2

is 140.18 cm−1 in this work, which is in excellent agreement
with the experimental value (142.83 cm−1) (Huber andHerzberg,
1979). For the A213/2 and A215/2 states, the energy separation
is 3.01 cm−1.

We find that, the A215/2→X253/2 transition is
suitable for laser cooling in three possible transitions,
A213/2→X251/2, A213/2→X253/2, and A215/2→X253/2. In
the A215/2→X253/2 transition, SiH molecules will jump from
the X253/2(ν = 0) to the A215/2(ν′ = 0), then the A215/2(ν′ =
0) state will decay to the X253/2 rather than X251/2 according to
the selection rules. The A215/2→X253/2 transition can ensure
a closed-loop cooling cycle, while the other two transitions can
not. The three-laser cooling scheme proposed in the following
using the A215/2→X253/2 transition is more feasible than the
one proposed by Zhang et al. (2018) without including the SOC
effects. More importantly, they did not consider the effect of
electronic state crossing, and proposed a laser cooling cycle for
SiH involving the ν′ = 1 vibrational level of the A21 state, which
would predissociation before the radiative transition and can not
be used to establish laser cooling cycles.
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FIGURE 7 | Potential energy curves of SiH for the seven � states at the

icMRCI+Q level.

TABLE 3 | The spin-orbit coupling (SOC) splitting for SiH.

State Method SOC splitting(cm−1)

X1/2, (1)3/2 This work 140.18

Expt.a 142.83

Calc.b 141.12

Calc.c 118.5

Calc.d 141.0343

(2)3/2, (1)5/2 This work 3.01

Expt.a 3.58

Calc.b 5.19

Calc.c 0.1

Calc.d 2.7135

aHuber and Herzberg (1979).
bShi et al. (2013).
cLi et al. (2008).
dZhang et al. (2018).

The TDMs of SiH for the A215/2→X253/2 transition at the
icMRCI+Q level are represented in Figure 8. The TDMs of SiH
is 0.6157 D at Re. The FCFs values of the A215/2→X253/2

transition for SiH are computed and shown in Figure 9. As
seen, the △ν = 0 transitions are significantly larger than those
for the off-diagonal terms. The present value of f00 (0.9949)
is so large that the spontaneous decays to ν = 1,2 vibrational
levels in the X253/2 are significantly restrained. Additionally, the
relative strengths of the photon loss pathways are more directly
related to the vibrational branching ratios than the FCFs in the
laser cooling cycle (Lane, 2015). Furthermore, we calculate the
Einstein A coefficients Aν′ν and vibrational branching ratios Rν′ν

of the A215/2→X253/2 transition for SiH. The Aν′ν and Rν′ν of
the A215/2→X253/2 transition are listed in Table 4. As seen in
Table 4, a very large A00 (1.73× 106 s−1) and very low scattering
probabilities into off-diagonal bands (R01 = 3.61 ×10−3, R02 =

FIGURE 8 | The permanent dipole moments (PDMs) and transition dipole

moments (TDMs) for the X253/2 and A215/2 states of SiH at the

icMRCI+Q level.

FIGURE 9 | Franck-Condon factors of the A215/2(ν
′≤3)→X253/2(ν≤3)

transition for SiH, calculated at the icMRCI+Q level.

9.83× 10−4, R03 = 9.20× 10−8) of SiH contribute to a desirable
condition for rapid and efficient laser cooling. It should be noted
that R00 (0.9954) is slightly larger than f00 (0.9949), indicating
that the probability of spontaneous decay to the X253/2(ν = 0)
increases when the variations in transition wavelength are taken
into account.

The vibrational branching ratios Rν′ν is determined by the
following expression:

Rν′ν = Aν′ν/
∑

ν

Aν′ν (3)
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TABLE 4 | Calculated Einstein A coefficients Aν′ν and vibrational branching ratio Rν′ν of the A215/2 (ν ′)→X253/2(ν) transition for SiH.

ν′
= 0 ν′

= 1 ν′
= 2 ν′

= 3

Aν′ν Rν′ν Aν′ν Rν′ν Aν′ν Rν′ν Aν′ν Rν′ν

ν = 0 1.73 × 106 0.9954 5.83 × 104 4.13 × 10−3 3.50 2.83 × 10−6 5.49 × 102 5.61 × 10−4

ν = 1 6.28 × 103 3.61 × 10−3 1.40 × 106 0.9954 2.06 × 105 0.166 8.76 × 103 8.95 × 10−3

ν = 2 1.71 × 103 9.83 × 10−4 3.55 × 102 2.52 × 10−5 1.00 × 106 0.807 3.99 × 105 0.41

ν = 3 0.16 9.20 × 10−8 6.43 × 103 4.56 × 10−4 1.59 × 104 1.28×10−2 4.83 × 105 0.49

Moreover, the Doppler temperature (TDoppler) is the achievable
minimum temperature of translational cooling with the Doppler
method, it is obtained by the following expression:

TDoppler = h/(4kBπτ ), (4)

where kB and h are Boltzmann′s constant and Planck′s constant,
respectively (You et al., 2016). The radiative lifetime (τ ) for
the A215/2(ν′ = 0) of SiH is 575 ns and TDoppler is 6.65 µK.
Additionally, the recoil temperature (Trecoil) is calculated by the
following expression:

Trecoil = h2/(mkBλ
2), (5)

and the obtained Trecoil for the A215/2(ν′ = 0)→X253/2(ν = 0)
transition of SiH is 3.89 µK.

The proposed scheme to facilitate the laser cooling of SiH
is shown in Figure 10. The large R00 (0.9954) of SiH indicates
that the A215/2(ν′ = 0)→X253/2(ν = 0) transition has the
largest probabilities. A desirable laser cooling cycle needs to
solve the vibrational branching loss. Therefore, the off-diagonal
vibrational branching ratios Rν′ν of SiH are calculated, and
the probabilities of decay from the A215/2(ν′ = 0) to the
X253/2(ν = 1, 2) are firstly obtained (R01 = 3.61×10−3 and
R02 = 9.83×10−4). Besides, the probabilities of the unwanted
decay channels are also computed by using R03++R02×R13+ . The
negligible value of 1.0×10−5 means that the present scheme will
allow for at least 1.0 ×105 photon absorption/emission cycles,
which are sufficient enough to decelerate SiH in a cryogenic
beam, in principle (Shuman et al., 2010). The laser cooling
scheme takes the transition A215/2(ν′ = 0)←X253/2(ν = 0) as
the main pump, A215/2(ν′ = 0)←X253/2(ν = 1) and A215/2(ν′

= 0)←X253/2(ν = 2) as the first and second vibrational repump,
respectively. Accurate Te is crucial for estimating the pump and
repumpwavelengths in laser cooling cycles, and our calculated Te

values, which are very close to experimental ones, give confidence
in the subsequent study on laser cooling, especially, for SiH. The
calculated value of wavelength λ01 should be larger than λ00,
however, the wavelengths λ01 obtained by Zhang et al. (2018),
is 376.88 nm, which is smaller than that of their main pump.
In our laser-driven cycling, the calculated pump and repump
wavelengths of λ00, λ01, and λ02 are 412.6, 449.7, and 491.8 nm,
respectively. The required wavelengths are all in the range of

FIGURE 10 | Proposed three-laser cooling scheme for SiH using the

A215/2→X253/2 transitions. Solid arrows indicate laser-driven transitions at

certain wavelengths λν′ν . Dashed arrows indicate spontaneous decays from

the A215/2(ν
′ = 0) state with the calculated Rν′ν .

400–500 nm and can be produced with the frequency doubled
semiconductor laser, which has been used for the laser cooling
experiment of the strontium atom (Wang et al., 2009). The SiH
molecules will stay in the laser cooling cycle until the decay to
ν≥3 (X253/2).

3.4. Laser Cooling Scheme for CS
We further find that CS is a promising candidate based on
the criteria mentioned above. The PECs of CS, obtained at
the icMRCI+Q level, is shown in Figure 11. Our calculated
Re and ωe of the X16+ of CS are 1.5380 Å and 1288.63
cm−1, respectively, which are in very good accordance with
the corresponding experimental values (1.5349 Å and 1285.1
cm−1) (Huber and Herzberg, 1979). As for the A21 state of
CS, our calculated Te 39175.96 cm−1 is in agreement with the
experimental value 38,904 cm−1 (Huber and Herzberg, 1979).
The calculated vibrational branching ratio R00 is 0.885, which is
highly diagonal.

As shown in Figure 11, the PEC of A15 crosses with those
of two other electronic states, however, from an amplified view
of the crossing regions we see that, the two crossing points are
higher than the ν′ = 0 vibrational level of the A15 state. So this
kind of crossing would not affect laser cooling cycles using the
A15(ν′ = 0)→X16+(ν<3) transition. A suitable laser cooling
scheme using the A15→X16+ transition of CS is proposed and
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FIGURE 11 | Potential energy curves of CS for the four 3-S states at the icMRCI+Q level (A) and an amplified view of crossing regions of potential energy curves (B).

FIGURE 12 | Proposed three-laser cooling scheme for CS using the

A15→X16+ transitions. Solid arrows indicate laser-driven transitions at

certain wavelengths λν′ν . Dashed arrows indicate spontaneous decays from

the A15(ν ′ = 0) state with the calculated Rν′ν .

shown in Figure 12. The scheme takes the transition A15(ν′ =
0)→X16+(ν = 0) as the main pump, A15(ν′ = 0)→X16+(ν
= 1) and A15(ν′ = 0)→X16+(ν = 2) as the first and second
vibrational repump, respectively. The radiative lifetime of the
A15 state is 70 ns, whereas the TDoppler and Trecoil of the
A15→X16+ transition are 54.61 and 6.64 µK, respectively. The
large R00, short radiative lifetime and ultracold temperatures
suggest CS as a promising candidate for rapid and efficient
laser cooling.

4. CONCLUSIONS

The fourth criterion for molecular laser cooling is proposed
in this work, that is, there is no electronic-state crossing,
or the crossing point is high enough in energy. Its
importance is demonstrated by investigating the laser
cooling feasibility of group IVA hydrides and carbon
monosulfide.

Ab initio and dynamical calculations are performed, and the
calculated spectroscopic constants are in very good agreement
with the available experimental data. We find that the locations
of crossing point between the B26− and A21 states have the
tendency of moving downwards from CH to SnH relative to the
bottom of the corresponding A21 potential, and this would lead
to failure of cooling GeH and SnH. The potential wells of the
A21 state of group IVA hydrides become shallower and shallower
from CH to PbH, with the Franck-Condon factor decreasing,
which results in a very small Franck-Condon factor for PbH. It is
clear that PbH is not a suitable candidate for laser cooling either.
We further propose a practical and efficient laser-cooling scheme
for SiH using the A215/2→X253/2 transition. The calculated
excitation energy is 24299.20 cm−1, which is in perfect agreement
with the experimental data (24300.4 cm−1). This allows us
accurately estimate the pump and repump wavelengths in laser
cooling cycles, which is shown to vary from 400 to 500 nm and
are easily accessible in experiment. The Doppler temperature and
recoil temperature of SiH for the A215/2→X253/2 transition
are 6.65 and 3.89 µK, respectively. The computed radiative
lifetime is 575 ns, and the vibrational branching ratio is highly
diagonally distributed with the R00 being 0.9954. Furthermore,
we performed additional calculations, and find that, the carbon
monosulfide (CS) is a promising candidate which meets the four
criteria, and we further propose a suitable laser cooling scheme.
We hope that this work will be helpful in searching for promising
candidates for producing ultracold molecules.
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