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The presence of metal centers with often highly conserved coordination environments

is crucial for roughly half of all proteins, having structural, regulatory, or enzymatic

function. To understand and mimic the function of metallo-enzymes, bioinorganic

chemists pursue the challenge of synthesizing model compounds with well-defined,

often heteroleptic metal sites. Recently, we reported the design of tailored homoleptic

coordination environments for various transition metal cations based on unimolecular

DNA G-quadruplex structures, templating the regioselective positioning of imidazole

ligandosides LI. Here, we expand this modular system to more complex, heteroleptic

coordination environments by combining LI with a new benzoate ligandoside LB

within the same oligonucleotide. The modifications still allow the correct folding

of parallel tetramolecular and antiparallel unimolecular G-quadruplexes. Interestingly,

the incorporation of LB results in strong destabilization expressed in lower thermal

denaturation temperatures Tm. While no transition metal cations could be bound by

G-quadruplexes containing only LB, heteroleptic derivatives containing both LI and LB

were found to complex CuII, NiII, and ZnII. Especially in case of CuII we found strong

stabilizations of up to 1Tm = +34◦C. The here shown system represents an important

step toward the design of more complex coordination environments inside DNA

scaffolds, promising to culminate in the preparation of functional metallo-DNAzymes.

Keywords: bioinorganic chemistry, coordination chemistry, DNA, G-quadruplex, DNAzymes

INTRODUCTION

Proteins are involved in a vast number of processes ranging from structural and regulatory
functions to enzymatic reactions. Roughly half of all proteins depend on metal cations helping
to maintain a desired folding or serving as catalytic centers or redox cofactors (Raven et al., 1999;
Lu et al., 2009; Rubino and Franz, 2012). Which function the respective metal ion adopts is strongly
dependent on its properties, including accessible spin states, oxidation potential, Lewis-acidity, and
bioavailability (Holm et al., 1996; Waldron et al., 2009). These properties are further fine-tuned
by a well-defined first and second coordination sphere. The former is directly involved in metal
coordination and usually consists of mixtures of different donor functionalities. Typically involved
in coordination are the amino acids histidine, glutamic/aspartic acid, methionine, cysteine, or
the backbone amide groups (Holm et al., 1996; Degtyarenko, 2000; Shook and Borovik, 2010;
Valdez et al., 2014). In contrast, the second coordination sphere is not directly involved in metal
binding but regulates catalytic processes, proton or electron shuttling, substrate transport, and
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effects selectivity (Colquhoun et al., 1986; Degtyarenko, 2000;
Waldron et al., 2009; Shook and Borovik, 2010; Zhao et al., 2013;
Valdez et al., 2014; Cornish et al., 2016).

The design of artificial metallo-enzymemimics with improved
or novel properties is attracting increasing interest, but remains
challenging. In the area of preparative bioinorganic chemistry,
focus is set on small, multidentate chelate complexes, often
requiring tedious multistep syntheses and only covering effects
of the first coordination sphere (Samuel et al., 2010; Kanady
et al., 2011; Anderson et al., 2013; Dicke et al., 2018). More
biologically oriented approaches involve the replacement of
natural metal cofactors with metal centers not known in nature.
An example is the replacement of hemin in myoglobin with
an iridium or rhodium porphyrin complex for enantioselective
cyclopropanation reactions (Key et al., 2016; Litman et al., 2018).
Another approach is embedding metal cofactors by covalent or
non-covalent interactions into empty cavities of usually metal-
free proteins. This was successfully applied in a series of examples
enabling catalysis of the asymmetric transfer hydrogenation
of imines (Wu et al., 2019), ring-closing metathesis (Jeschek
et al., 2016), oxime (Drienovská et al., 2018), and hydrazine
(Drienovská et al., 2018; Mayer et al., 2019) formation and
hydration of alkenes (Drienovská et al., 2017). In contrast to the
aforementioned examples, a more bottom up approach is the de
novo design of new metallo-proteins by the precise arrangement
of certain structural motifs to create a metal binding site (Raven
et al., 1999; Lu et al., 2009; Rubino and Franz, 2012). In recent
years, a more efficient alternative was developed based on small
artificial peptoid structures. Due to their simple accessibility by
solid phase synthesis and their capability to form well-ordered
secondary structures, many examples were shown for selective
metal binding and catalytic applications (Baskin and Maayan,
2016; Knight et al., 2017; Baskin et al., 2018; Ghosh et al., 2018).

Another type of biopolymers forming well-ordered secondary
structures are oligonucleotides. In contrast to peptides, RNA
and DNA only consist of four nucleotide building blocks,
thus reducing the possibilities to create diverse coordination
environments for a range of metal cations. To overcome this
limitation, different strategies were developed to covalently
or non-covalently anchor metal-chelating ligands inside DNA.
Roelfes and co-workers pioneered the design of various
oligonucleotides capable of Michael-Additions, Carbene transfer,
syn-hydrations of alkenes or Diels-Alder reactions (Roelfes and
Feringa, 2005; Coquière et al., 2007; Boersma et al., 2010a,b; Rioz-
Martínez et al., 2016). Other groups used modified quadruplexes
for sequence-specific DNA cleavage, light controlled thrombin
catalysis or peroxidase mimicking DNAzymes (Xu et al., 2009;
Ali et al., 2019; Wang et al., 2019). A difficulty of this approach
lies in the largely unknown exact position and coordination
environment of the catalytic centers. This difficulty could be
overcome in the field of metal-mediated base pairing, where
the hydrogen bonding interaction of canonical base pairs is
replaced by metal coordination, leading to highly stabilized DNA
structures (Mandal and Müller, 2017). While first examples
included only the involvement of canonical bases (Katz, 1963),
the field was later expanded by the incorporation of a variety
of artificial nucleobases culminating in the development of

programmable metal wires inside DNA duplexes (Tanaka et al.,
2006; Clever et al., 2007; Mandal et al., 2016; Sandmann et al.,
2019). Later, the concept was expanded from duplex to triplex
DNA (Tanaka et al., 2002) and i-motifs (Abdelhamid et al.,
2018), while we and others started to focus on G-quadruplexes
(Miyoshi et al., 2007; Smith et al., 2012; Engelhard et al., 2013).
The latter ones form from guanine-rich sequences where four G-
residues cyclize to planar G-tetrads via Hoogsteen base pairing.
Multiple G-tetrads form a G-quadruplex via π-π stacking
interactions. Key to their high stability is the incorporation of
a central cation—typically Na+ or K+ (Hänsel-Hertsch et al.,
2017; Neidle, 2017). Our group was the first to report CuII-
mediated tetramolecular G-quadruplexes based on pyridine and
imidazole ligands (Engelhard et al., 2013, 2018b; Punt and
Clever, 2019a), aimed at a range of applications. For example,
dinuclear systems were employed as CuII-based EPR-rulers for
accurate distance measurements (Engelhard et al., 2018a). We
later expanded this concept to unimolecular G-quadruplexes,
equipped with oligonucleotide loops which form cavities above
the G-quadruplex stem in which the metal complexes are
embedded (Engelhard et al., 2017). In a recent study, we further
showed that these G-quadruplexes can act as robust templates
to arrange different numbers of imidazole ligandosides, leading
to fine-tuned affinities for a range of transition metal cations
with respect to their preferred coordination environments
(Punt and Clever, 2019b). While only homoleptic systems were
investigated in that study, we herein expand the modular concept
to heteroleptic systems with different donor functionalities.
We introduce the design of mixed systems with imidazole
and benzoate ligands, inspired by metallo-proteins, where the
combination of imidazoles and carboxylate is often involved
in metal coordination (e.g., in the 2-His-1-carboxylate facial
triad) (Greenblatt et al., 1998; Koehntop et al., 2005). We show
how this combination affects both, G-quadruplex stability and
metal complexation.

RESULTS

In this study we report the incorporation of a new benzoate
ligandoside LB in combination with the known imidazole
ligandoside LI. Both were incorporated in the (S) configuration
as GNA (glycol nucleic acid) building blocks (Zhang et al.,
2005, 2006) by solid phase synthesis into tetramolecular and
unimolecular G-quadruplexes. The phosphoramidite of LI

was synthesized as previously described (Punt and Clever,
2019b). For the new benzoate ligand LB, a literature procedure
was adopted (Engelhard et al., 2017). Accordingly, an initial
nucleophilic attack of deprotonated solketal to methyl 4-
(bromomethyl)benzoate followed by acidic deprotection
reaction led to protected benzoate ligandoside (R)-4. Its
structure and absolute configuration were confirmed by single-
crystal X-ray diffraction (Figure 1). The primary hydroxyl
group was DMT-protected (DMT = dimethoxytrityl) followed
by a phosphorylation reaction yielding phosphoramidite
building block (S)-6. DNA solid phase synthesis was then
performed according to standard literature procedures with
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FIGURE 1 | Synthesis of benzoate ligandoside LB and molecular structure of ligandoside LI (top). (1) NaH, CH3CN; (2) CH3COOH, THF/H2O; (3) DMT-Cl, DIPEA,

DMAP, THF; (4) CEDIP-Cl, DIPEA, CH2Cl2; (5) automated solid-phase DNA synthesis. The single-crystal X-ray structure of the protected ligandoside (R)-4 is shown.

G-quadruplex formation (bottom) of htelLB
2L

I
2 creates a heteroleptic coordination environment for transition metal ions (M = Co, Ni, Cu, Zn). Gray tiles: guanosine;

red: ligandoside LB; blue: ligandoside LI; green circles: adenosine; yellow circles: thymidine. DMT = dimethoxytrityl; DIPEA = N,N-diisopropylethylamine; DMAP =

N,N-dimethylaminopyridin; CEDIP-Cl = 2-cyanoethyl N,N-diisopropylchlorophosphoramidite.

FIGURE 2 | (A) Schematic representation of the tetramolecular G-quadruplex (LBG4)4 with the proposed repulsive effect of negatively charged LB; (B,C) ligand

positions in unimolecular G-quadruplexes with four or six incorporated ligands.

extended coupling times for the ligandosides LI and LB (see
Supplementary Material for details). Coupling efficiencies
for LB and LI were typically >99% per step. After solid phase
synthesis, oligonucleotides were cleaved from the solid support
and deprotected in 0.4M NaOH in methanol/water (4:1) at 55◦C
for 16 h. Standard deprotection with concentrated ammonium
hydroxide was avoided due to the risk of forming amides instead
of carboxylates from the benzoate esters. After reversed-phase
HPLC purification, oligonucleotides were desalted and DMT-
groups removed using C18 SepPak cartridges and aq. TFA
(2%). The oligonucleotides were then lyophilized at stored
at−20◦C.

Since LI had already been established in tetramolecular
and unimolecular G-quadruplexes, we first investigated the

influence of LB in the tetramolecular G-quadruplex (LBG4)4.
Clear formation of a parallel G-quadruplex was observed by
CD spectroscopy with a positive Cotton effect around ∼260 nm
(see Figure S25). Thermal denaturation experiments showed
a melting temperature Tm of 27◦C which was significantly
lower compared to previously reported (LIG4)4 (Tm = 36◦C;
Punt and Clever, 2019b). Since LB and LI are sharing the
same backbone modification, we ascribe this destabilization to
a repulsive effect between the negatively charged benzoates and
phosphates (Figure 2). Next, the interaction of (LBG4)4 with a
series of transition metal cations was investigated. In contrast to
(LIG4)4 which was shown to complex CuII, NiII, CoII, and ZnII,
no signs for metal complexation in (LBG4)4 were observed (see
Figures S3, S4). This may be explained by the harder character
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FIGURE 3 | Melting curves of (A) htelLBLI
3 and (B) htelLB

2L
I
4 in absence or presence of different transition metal cations. (C) Linear dependence of thermal

stabilities of htelLI
4, htelL

BLI
3, htelL

B
2L

I
2, htelL

B
3L

I, and htelLB
4 depending on the number of incorporated LB. (D) CD spectra of htelLB

2L
I
4 in absence or presence

of different transition metal cations.

of the benzoate ligand, competing with hard ligands such as the
contained chloride, cacodylate buffer or phosphate backbones.
However, even for hard and oxophilic transition metal cations,
including GdIII and CeIII, no interactions were found.

Mixing ligands in tetramolecular G-quadruplexes leads
to statistical mixtures, which makes it challenging to
design distinct heteroleptic coordination environments (see
Supplementary Material for details). On the other hand, the
folding of unimolecular G-quadruplexes into discrete topologies
enables programmable ligand arrangements. Consequently,
we moved forward to incorporate LB in unimolecular G-
quadruplexes. At first, LB was incorporated four times in
htelLB

4. Similar to (LBG4)4, incorporation of LB caused strong
destabilization (Tm = 12◦C) compared to htelLI

4 (Tm =

33◦C). Successive replacement of LB with LI was accompanied
with a linear increase in stabilization for each replacement
(htelLB

3L
I Tm = 17◦C, htelLB

2L
I
2 Tm = 23◦C, htelLBLI

3 Tm

= 28◦C), highlighting the additive destabilizing effect of LB

(Figure 3). CD spectroscopy of htelLB
4, htelL

B
3L

I, htelLB
2L

I
2,

and htelLBLI
3 showed clear signatures corresponding to an

antiparallel G-quadruplex topology with a positive Cotton
effect around ∼294 nm in all cases (see Figures S26, S27). This
is consistent with the previous observations for homoleptic
G-quadruplexes containing only LI. Next, the interaction
with different transition metal cations was investigated. As
for (LBG4)4, for htelLB

4, htelL
B
3L

I, and htelLB
2L

I
2, thermal

denaturation experiments showed no signs for interaction with
the examined transition metal cations (CuII, NiII, ZnII, CoII,

VIVO). Pleasingly, this changed for htelLBLI
3 that showed a

weak but distinct stabilization after addition of 1 equiv. of CuII

(1Tm = + 4◦C). Additional equivalents resulted in no further
stabilization consistent with a specific binding of CuII. CD
spectroscopy further confirmed retention of a clear antiparallel
topology (see Figures S6, S7, S11–S16).

After we could show that at least three imidazole ligands are
required to complex CuII, we moved forward to a new series of
sequences with six incorporated ligands (htelLB

4L
I
2, htelL

B
3L

I
3,

htelLB
2L

I
4). Again, the formation of G-quadruplexes with a

clear antiparallel topology was observed by CD spectroscopy
(see Figures S28, S29). Likewise, comparison of the thermal
stabilities showed the destabilizing effect of LB (htelLB

4L
I
2

Tm = 17◦C, htelLB
3L

I
3 Tm = 26◦C, htelLB

2L
I
4 Tm =

26◦C), however, not in the linear fashion as observed for the
series htelLB

4−nL
I
n (n = 0–4). For the examined set of six-

ligand-containing sequences, however, direct Tm comparison
is not appropriate due to the chosen modification pattern
(see Table 1). When investigating the interaction with metal
cations, for htelLB

4L
I
2, a clear stabilization after addition of

CuII (1Tm = + 6◦C) was observed. Considering that for
htelLB

2L
I
2 almost no stabilization was observed (1Tm = +

1◦C), we conclude that in htelLB
4L

I
2 an involvement of one

or two ligandosides LB into metal coordination is very likely.
When further replacing LB with LI as in htelLB

3L
I
3 and

htelLB
2L

I
4, the Cu

II-mediated thermal stabilization successively
increased from 1Tm = + 9◦C (htelLB

3L
I
3) to 1Tm = +

34◦C (htelLB
2L

I
4). This extremely high thermal stabilization
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TABLE 1 | Sequences investigated in this study and respective denaturation temperatures Tm (and 1Tm) in absence and presence of 1 equiv. of CuII, NiII, ZnII, CoII

(assumed to be oxidized to CoIII under the experimental conditions).

Name Sequence 5′ 3′ No metal CoII NiII CuII ZnII

LIG
[a]
n LIGn 36 63 (+27) 73 (+37) 76 (+40) 52 (+16)

LBGn LBGn 27 27 (0) 27 (0) 27 (0) 27 (0)

htelLI
4A

[a] AGG LITT ALIG GTT AGG LITT ALIG G 33 35 (+2) 45 (+12) 56 (+23) 36 (+3)

htelLB
4 AGG LBTT ALBG GTT AGG LBTT ALBG G 12 12 (0) 12 (0) 12 (0) 12 (0)

htelLI
4B AGG LITT TLIG GTT AGG LITT TLIG G 40 40 (0) 46 (+6) 60 (+20) 40 (0)

htelLB
3L

I AGG LITT ALBG GTT AGG LBTT ALBG G 17 17 (0) 17 (0) 17 (0) 17 (0)

htelLB
2L

I
2 AGG LITT ALBG GTT AGG LITT ALBG G 23 23 (0) 23 (+0) 24 (+1) 23 (0)

htelLBLI
3 AGG LITT ALIG GTT AGG LITT ALBG G 28 28 (0) 28 (+0) 32 (+4) 28 (0)

htelLI [a]
6 AGG LITLI TLIG GTT AGG LITLI TLIG G 36 44 (+8) 59 (+23) 54 (+18) 44 (+8)

htelLB
4L

I
2 AGG LBTLI TLBG GTT AGG LBTLI TLBG G 17 17 (0) 18 (+1) 23 (+6) 18 (+1)

htelLB
3L

I
3 AGG LBTLI TLIG GTT AGG LBTLB TLIG G 26 25 (−1) 26 (+0) 35 (+9) 31 (+5)

htelLB
2L

I
4 AGG LITLB TLIG GTT AGG LITLB TLIG G 26 27 (+1) 48 (+22) 60 (+34) 32 (+6)

Marked in bold font are the incorporated ligandosides LB and LI . Conditions: 4µM (tetramolecular) or 1.88µM (unimolecular) ssDNA, 100mMNaCl (tetramolecular) or KCl (unimolecular),

10mM lithium cacodylate buffer (LiCaCo) pH 7.2 and, if present, 1 equiv. transition metal cation (with respect to the folded G-quadruplex). [a] Punt and Clever (2019b).

FIGURE 4 | Native ESI-MS spectra of htelLB
2L

I
4 in complex with CuII (top) and NiII (bottom).

is unprecedented for unimolecular G-quadruplexes and much
higher compared to the reported G-quadruplexes htelLI

6 (1Tm

= + 18◦C) and htelLI
4A (1Tm = + 23◦C) (Punt and Clever,

2019b).
The formation of 1:1 complexes for htelLB

2L
I
4 with CuII and

NiII was further confirmed by native ESI mass spectrometry. To
understand whether a G-quadruplex is folded or unfolded in the

gas phase, the intrinsic property of G-quadruplexes is exploited
that in their folded state they always bind n−1 potassium ions
(where n = number of G-tetrads). For a folded G-quadruplex
with two G-tetrads, a main signal corresponding to the adduct
with one distinct potassium ion would be expected, followed by
a statistical distribution of adducts with further unspecifically
bound potassium cations. On the other hand, for an unfolded
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G-quadruplex, the main signal would correspond to the mass
of the DNA strand without potassium ions. The mass spectrum
shows a main signal corresponding to [htelLB

2L
I
4+Cu+K-

7H]4− (Figure 4), thus strongly indicating a foldedG-quadruplex
coordinating to a CuII or NiII ion in the gas phase (D’Atri et al.,
2015; Lecours et al., 2017).

Jahn-Teller-distorted CuII usually favors the coordination of
four strongly associated ligands in a square planar geometry,
with two additional ligands more loosely bound in axial positions
(Halcrow, 2012). After proving a 1:1 complex for htelLB

2L
I
4 and

CuII, the question was if all six ligands are participating in metal
coordination or if only LI is involved. Therefore, a new sequence
htelLI

4Bwas synthesized where LB was replaced with thymidines.
Addition of CuII led to a thermal stabilization of1Tm =+ 20◦C,
much lower compared to htelLB

2L
I
4 (1Tm =+ 34◦C). However,

when looking at the absolute melting temperature Tm in presence
of CuII, one notices that they are the same for both sequences
(htelLB

2L
I
4 Tm = 60◦C, htelLI

4B Tm = 60◦C). This could mean
that CuII coordination by htelLB

2L
I
4 simply compensates the

destabilizing effect of LB and no benzoate ligand was involved in
CuII coordination. Further studies are required to shed light on
this question.

Besides CuII, the addition of ZnII and NiII to htelLB
2L

I
4

and htelLB
3L

I
3 led to thermal stabilizations. These results

were highly intriguing for two reasons. Quadruplex htelLB
2L

I
4

was significantly more stabilized with NiII (1Tm = + 22◦C)
compared to ZnII (1Tm = + 6◦C). However, in htelLB

3L
I
3, the

opposite effect was observed, showing a higher stabilization after
ZnII addition (1Tm = + 5◦C), while for NiII no complexation
was observed. This adds to the established variation of ligand
number and position a third layer to our system to fine-tune
metal affinities by the introduction of heteroleptic systems. As
last question, we were interested whether ZnII in htelLB

3L
I
3

is coordinated by one or more benzoates. Interestingly, other
sequences shown to complex ZnII (htelLI

4A 1Tm = + 3◦C,
htelLI

6 1Tm = + 8◦C) always contain at least four counts of LI.
Since in htelLB

3L
I
3 only three L

I were available, we conclude that
an involvement of LB in coordination to the ZnII cation is likely.

CONCLUSION

A new benzoate-based ligandoside LB was established in
tetramolecular and unimolecular G-quadruplex structures.
Homoleptic G-quadruplex (LBG4)4 was found to form a clear
parallel topology. Its thermal stability indicated a strongly
destabilizing effect of LB compared to LI which was attributed
to an accumulation of negative charges. Also, no interactions
between a series of transition metal cations and (LBG4)4 were
found. Similarly, for the unimolecular G-quadruplex htelLB

4,
a destabilizing effect of LB and no interactions with transition
metal cations were observed. The successive replacement of LB

with LI in htelLB
3L

I, htelLB
2L

I
2, htelL

BLI
3, and htelLI

4 resulted
in a linear increase of the thermal stability. In addition, for
htelLBLI

3, a weak thermal stabilization after addition of 1 equiv.
CuII indicated specific binding.

When moving to systems with six incorporated ligands,
a tremendously high thermal stabilization was observed after
addition of CuII to htelLB

2L
I
4 (1Tm =+ 34◦C). In comparison,

for htelLI
4B, addition of CuII resulted in a stabilization of only

1Tm =+ 20◦C. However, the absolute melting temperatures Tm

of htelLB
2L

I
4 (Tm = 60◦C) and htelLI

4B (Tm = 60◦C) are the
same, indicating that CuII complexation is rather compensating
the destabilizing effect of LB. More interesting were the results
for htelLB

2L
I
4 and htelLB

3L
I
3 after addition of ZnII and NiII,

respectively. HtelLB
2L

I
4 was significantly more stabilized by NiII

(1Tm = + 22◦C) compared to ZnII (1Tm = + 6◦C). However,
in htelLB

3L
I
3, the opposite effect was observed, showing a higher

stabilization after ZnII addition (1Tm = + 5◦C) while for
NiII no complexation was found. This expands our toolbox
to design tailored binding sites for various transition metal
cations. Previously, we had shown to fine-tune coordination
environments by varying position and number of ligands. Here,
we expand this approach by combining two ligandosides, LB

and LI, which we regard as an important step for the design of
metal-selective G-quadruplexes with application in diagnostics,
selective catalysis, and DNA nanotechnology.
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