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In general, for chemical reactions occurring in systems, where fluctuations are not

negligibly small, it is necessary to introduce a master equation for distribution of

probability of fluctuations. It has been established that the monomolecular reactions

of a type as A ↔ X are described by the master equation, which leads to a Poisson

distribution with the variance equal to the average value N0. However, the consideration

of the Löwdin mechanism as autocatalytic non-linear chemical reactions such as A +

X ↔ 2X and the corresponding master equation lead to a non-Poissonian probability

distribution of fluctuations. In the presented work, first-order autocatalysis has been

applied to the Löwdin’s mechanism of spontaneous mutations in DNA. Describing

double proton transfers between complimentary nucleotide bases along the chain by

first-order autocatalytic reactions, the corresponding master equation for protons in

tautomeric states becomes non-linear, and at non-equilibrium conditions this leads to

the non-Poissonian distribution of spontaneous mutations in DNA. It is also suggested

that the accumulation of large fluctuations of successive cooperative concerted protons

along the chain may produce higher non-linearities which could have a significant impact

on some biochemical processes, occurring in DNA.

Keywords: Löwdin’s mechanism, spontaneous mutation, non-poissonian distribution function, double proton

transfer, autocatalytic reaction

INTRODUCTION

The role of mutations in DNA is crucial for human aging, metabolic and degenerative disorders
and cancer, as well as for biological evolution of living systems (Löwdin, 1966; Friedberg et al.,
2006). The point mutations caused by the substitution of one nucleotide base for anothermay occur
during DNA replication by DNA polymerases, the performance of which is very important for
genome integrity and transmission of genetic information in all living organisms. Although DNA
replicates with high fidelity, DNA polymerase can make mistakes with the average frequency in the
range of (10−7–10−9) per base pair per cell division (Drake et al., 1998). Spontaneous mutations
are point mutations caused by the substitution of one nucleotide base of DNA for another
one occurring due to endogenous factors during normal cell metabolism. The rare tautomeric
hypothesis (Watson and Crick, 1953a,b; Topal and Fresco, 1976; Bebenek et al., 2011; Wang et al.,
2011) originally proposed by J. Watson and F. Crick (Watson and Crick, 1953a,b) is considered as
a possible mechanism of formation of spontaneous mutations suggesting the existence of different
chemical forms of nucleotide bases, so called tautomers, in which the protons occupy in one of its
tautomeric forms. The origination of mutagenic tautomers has not been completely established,
although three possible mechanisms are discussed: (1) intramolecular single proton transfer in
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FIGURE 1 | G-C → G*− C*: DPT in the double potential wells.

DNA bases (Basu et al., 2005; Gorb et al., 2005; Zhao et al.,
2006; Brovarets and Hovorun, 2010, 2011; Brovarets et al.,
2012); (2) proton transfer in a single base assisted by water
molecules (Gorb and Leszczynski, 1998a,b; Kim et al., 2007;
Fogarasi, 2008; Michalkova et al., 2008; Furmanchuk et al., 2011;
Markova et al., 2017); (3) Löwdin’s mechanism of double proton
tunneling (DPT) between complimentary bases (Löwdin, 1963,
1966) (Figure 1).

Based on the rare tautomeric hypothesis by Watson-Crick,
Löwdin (Löwdin, 1963, 1966) suggested that spontaneous
mutations in DNA occur due to double proton transfer between
two complementary bases along intermolecular H-bonds by
quantum tunneling. Thus, each proton in the connecting
hydrogen bonds can be in one of two quantum states, in deep
or shallow potential wells. Following the pioneering works of
Löwdin, the tautomeric base pairs (A∗-T∗, G∗-C∗) have been
extensively studied in terms of their lifetime, the probability
of occurrence and the energy by using different theoretical
approaches (Florian et al., 1995; Florian and Leszczynski, 1996;
Gorb et al., 2004; Villani, 2005, 2010; Ceron-Carrasco et al.,
2009a,b; Brovarets et al., 2012), including DFT calculations, ab
initio MP2, quantum mechanics. All these calculated findings
substantially support the Watson-Crick’s tautomeric hypothesis
of the origin of spontaneous point mutations, constrained
by thermodynamic and kinetic criteria (Florian et al., 1994;
Dabkowska et al., 2005; Brovarets et al., 2012) to be relevant
to spontaneous mutations. Based on the Löwdin’s mechanism,
the probability of formation of spontaneous mutations was
calculated from the kinetics of double proton transfer during
DNA replication by taking into account 2D Marcus theory of
double proton transfer (DPT) (Turaeva and Brown-Kennerly,
2015). The model allows to establish the spontaneous mutation
probability as a function of temperature, replication rate and
solvent. It was also established that there are different factors
impacting on DNA mutations, including external electric fields
(Ceron-Carrasco et al., 2014), metallic cations (Ceron-Carrasco
et al., 2012), even the genetic sequence (Ceron-Carrasco and
Jacquemin, 2015) through the hydrogen transfers between the
complimentary nucleotide bases in DNA. In the framework of
Lowdin’s mechanism of spontaneous mutation formation, we
can suppose that those factors directly or indirectly change the

potential barrier relief for proton transfers, leading to the change
of the mutation rate and the distribution of mutations along
the chain.

In the present work, we will show that the Löwdin’s
mechanism of spontaneous mutations results in a non-
Poissonian distribution function of mutagenic tautomeric forms
of DNA by using first-order autocatalysis. It is well-known
that the first- and higher order autocatalysis was applied to
different biological processes, including reproduction (Eigen,
1971; Biebricher et al., 1983; Schuster, 2018), cooperation (Higgs
and Lehman, 2015; Schuster, 2018), chirality of biological
molecules (Frank, 1953). The autocatalytic reaction of first
order was applied to reproduction of RNA and DNA molecules
(Biebricher et al., 1983), giving rise to their exponential growth
with different reproducing variants leading to natural selection.
The correct and error-prone RNA replication leading to point
mutations was also described by the autocatalytic reaction of first
order by introducing the mutation matrix with the assumption
of uniform error rate (Eigen, 1971). Catalyzed replication
leading to cooperation among replicators was described by the
autocatalytic reaction of second order (Higgs and Lehman, 2015).
In general, according to the evolution model (Schuster, 2018),
the characteristic features of the first order autocatalysis include
selection and optimization, while the second order autocatalysis
covers oscillations, deterministic chaos, spontaneous pattern
formation and high sensitivity to stochastic phenomena caused
by small particle numbers. So, competitive reproduction gives
rise to selection, but catalyzed reproduction is needed for
cooperation of competitors.

In our model, the autocatalytic reaction of first order is
applied to the process of double proton transfer in DNA,
which gives a non-Poissonian distribution of tautomeric states of
hydrogens along the chain which as a result of replication leads
to spontaneous mutations.

The search of experiments on the distribution function of
spontaneous mutations to verify our model leads to the Luria-
Delbruck’s experiments and distribution of mutants (Luria and
Delbrück, 1943), that gives a non-Poissonian relationship for
the distribution of mutant bacteria colonies consistent with
the experimentally obtained values, in which the variance was
considerably greater than the mean. We suppose that the non-
Poissonian character of the distribution function of tautomeric
forms of nucleotide bases can be counted toward the Löwdin’s
mechanism of origin of spontaneous mutations formation,
since the intramolecular single proton transfer in DNA bases
describing by the monomolecular reactions of a type as A ⇐⇒ X
is described by the master equation, leading to the Poissonian
distribution, where the variance is equal to the average value N0.

STOCHASTIC MODEL OF SPONTANEOUS
MUTATION FORMATION

In general case, for chemical reactions occurring in systems,
where fluctuations are not considered negligible small, it
is necessary to introduce a master-equation for distribution
of probability (Gardiner, 1983; Haken, 1983). Analyzing a
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FIGURE 2 | The double-well potential for a single proton tunneling.

monomolecular reaction of a type as A ⇐⇒ X on the base of the
master equation the Poisson distribution function with average
value of N0 can be derived. It is well-known that at considering
the reactions of A + X ⇐⇒ 2X the corresponding kinetic
equations for markovian processes become non-linear and this
peculiarity leads to the non-Poissonian distribution functions.
This result was proved by Nicolis and Prigogine (Nicolis and
Prigogine, 1977) and caused a great scientific interest. The
process of generation of spontaneous mutations in DNA through
double proton transition during the replication can be treated
as first-order autocatalytic chemical reactions, described by the
following reaction scheme:

A

k1
⇐⇒

k−1

X (1)

A+ X

k2
⇐⇒

k−2

2X (2)

Here A denotes protons along the DNA strand which are in their
regular stable position, X is the protons in the tautomeric state
(Figure 2), k and k− are the rate constants of forward and reverse
chemical reactions, respectively. The first reaction corresponds to
the processes of the transfer of a proton from the regular position
into the tautomeric state and vice versa, while the second reaction
corresponds to the generation of tautomeric forms of nucleotide
bases due to the interaction of the single proton in the tautomeric
state with the regular proton and its relaxation into the single
proton tautomeric state.

Denoting the number of protons in the tautomeric state by
N, we can establish a master-equation for the distribution of
fluctuations P(N, t) in the following general form:

Ṗ (N, t) = w (N,N − 1)P (N − 1, t)

+ w (N,N + 1)P (N + 1, t) − {w (N + 1,N)

+ w (N − 1,N)} P (N, t) . (3)

Here w is the transition probability per unit time. The crux of
the master equation is to determine the transition rates explicitly
for each chemical reaction. We investigate all transitions leading
to N or going away from it. For spontaneous mutations in
DNAwe consider two types of transition—the tautomeric proton
generation (N → N + 1,N – 1→ N) and the tautomeric proton
annihilation (N+1→ N, N→ N−1) for both chemical reactions.
We will show in detail the derivation of total transition rate for
the first reaction (1).

1. In the direction k1 (“birth” of a tautomeric proton X).
The number of the transitions per second is equal to the
occupational probability, P(N, t), multiplied by the transition
probability per second, ω (N + 1,N), which is the product of
the linear density of regular protons NA along the DNA strand
and the reaction rate k1. So, for transition → N + 1, we have
w (N + 1,N) = k1NAL. Here L is the length of DNA. In the same
way the transition rate is calculated for transition N − 1 → N:
w (N,N − 1) = k1NAL.

For this reaction the total transition rate is received in the
following form:

k1NALP (N − 1, t) − k1NALP (N, t) . (4)

2. In a similar way, we can find the reverse process of the first
reaction. Here the number of tautomeric protons is decreased
by 1 (“death” of a metastable proton X). Considering the “death”
process for transitionsN+1 → N andN → N−1, in the reverse
k−1 direction (“death” of X) the total transition rate is equal to:

k−1
(N + 1)

L
LP (N + 1, t) − k−1

N

L
LP (N, t) . (5)

3. For the reaction (2), in the k2 direction (“birth” of a
tautomeric proton X), the total transition rate can be written:

k2NA
N − 1

L
LP (N − 1, t) − k2NA

N

L
LP (N, t) . (6)

4. For the reaction (2) in the k−2 direction (“death” of a
tautomeric proton X), the total transition rate can be written:

k−2
(N + 1)N

L2
LP (N + 1, t) − k−2

N (N − 1)

L2
LP (N, t) . (7)

Thus, by taking into account (Equations 4–7) the transition rates
for the reactions (1) and (2) are given:

ω (N,N − 1) = k1NAL+ k2NA
N − 1

L
L; (8)

ω (N,N + 1) = k−1
(N + 1)

L
L+ k−2

(N + 1)N

L2
L; (9)

ω (N + 1,N) = k1NAL+ k2NA
N

L
L; (10)

ω (N − 1,N) = k−1
N

L
L+ k−2

N(N − 1)

L2
L. (11)
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The stationary solution of the master equation (3) is determined
as Eigen (1971):

P (N) = P (0)

N−1
∏

n=0

ω(n+ 1, n)

ω(n, n+ 1)

= P(0)

N−1
∏

n=0

k1NAL
2 + k2NAnL

k−1 (n+ 1) L+ k−2(n+ 1)n
. (12)

Let us denote the probabilities of two transitions by the
following expressions:

{

ω (N,N − 1) = ω+ (N)

ω (N,N + 1) = ω− (N) .
(13)

The condition of extremes of stationary P (N) is Haken (1983):

ω+ (N0 + 1)

ω−(N0)
= 1. (14)

We can find the extreme solutionsN0 of P (N) from the following
expression which is received by rewriting (Equation 14) by taking
into account Equations (13), (8), and (9):

k1NAL
2 + k2NAN0L

k−1 (N0 + 1) L+ k−2(N0 + 1)N0
= 1. (15)

The solution of Equation (15) for N0 can be received:

N1,2
0 =

−
(

k−2 + k−1L− k2NAL
)

±

√

(

k−2 + k−1L− k2NAL
)2

− 4k−2

(

k−1L− k1NAL2
)

2k−2
. (16)

The positive value of N0 can be obtained if k−2+ k−1L < k2NAL.
The plot of the probability P (N) represents the curve with two
maxima. By assuming that the transfer of the second proton
takes place almost instantaneously compared to its reverse
process, which corresponds to the large ratio of k2/k−2, we
can receive the probability distribution function with one
maximum (Figure 3):

N0 =
k−1 − k1NAL

k2NA − k−1
. (17)

It is seen from Equation (17) that No is positive when the transfer
of proton from the regular position into the tautomeric state
proceeds slower than its reverse reaction (1), while the second
proton is transferred almost instantaneously (2) compared to the
reverse process of the first reaction (1).

If the principle of detailed balance is satisfied for both
chemical reactions (1) and (2), then the Poisson distribution
function for fluctuations can be deduced (Haken, 1983).Wemust
write the detailed balance equations then for both reactions (1)
and (2):

ω1 (N,N − 1)P (N − 1) = ω1 (N − 1,N)P (N) ; (18)

ω2 (N,N − 1)P (N − 1) = ω2 (N − 1,N)P (N) . (19)

FIGURE 3 | Non-poissonian distribution function P(N) of spontaneous

mutations in DNA by Löwdin’s mechanism.

Dividing Equation (18) by Equation (19) and using
the explicit expressions (Equations 8 and 11), we find
the relation:

k1NA

k−1N/L
=

k2NA

k−2N/L
≡

µ

N
. (20)

Here µ is a constant. By using Equation (20) we can rewrite the
detailed balance equation:

ω (N,N − 1) =
µ

N
ω (N − 1,N) . (21)

By inserting Equation (21) into Equation (12) at normalization
condition of P (0) we find the Poisson distribution:

P (N) =
µN

N!
e−µ. (22)

In general, however, for non-equilibrium processes, where
the detailed balance principle is not valid, the character of
distribution function P (N) (Equation 12) is non-Poissonian
(Gardiner, 1983; Haken, 1983). Since double proton transfers
during the DNA replication are far from equilibrium, a non-
Poissonian distribution for tautomeric forms should be well
founded. These results can be used to support the mechanism of
the origin of spontaneous mutations in DNA based on concerted
double proton transfers between complimentary nucleotide bases
during the DNA replication instead of single proton transfers in
a single base.

CONCLUSION

In this work, we applied first-order autocatalysis to the
Löwdin’s mechanism of spontaneous mutation formation, in
which concerted double proton transfers in DNA lead to the
formation of tautomeric forms nucleotide bases during the
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DNA replication. The stochastic model results in a master-
equation for the distribution function of tautomeric nucleotide
bases, the stationary solution of which is a non-Poissonian
function with the assumption that the processes of double
proton transfers duringDNA replication are far from equilibrium
conditions. We suppose that these peculiarities of Löwdin’s
mechanism of spontaneous mutation formation should be taken
into account in the discussion of the origin of spontaneous
mutation formation. It is interesting to note the possibility
of accumulation of point mutations locally on DNA due to
the cooperation effect between tautomeric hydrogens. The
cooperation effect should increase the order of autocatalytic
reactions. Such fluctuations can be possible due to the U-
negative effect (Anderson, 1975), which can lead to the
formation of a solitary wave or a soliton on the chain at a
certain distance between metastable proton pairs (Golo et al.,
2001). The soliton can move along the chain and impacts on
different biochemical processes, occurring in DNA, including

its replication, proofreading and so on. At realization of such
effect, the rate constants of the reactions (1) and (2) become
the function of distance between the point mutations along the
chain. This perspective of fluctuations will be considered in our
future research.
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