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Speeding up the drug discovery process is of great significance. To achieve that,

high-efficiency methods should be exploited. The conventional wet-bench methods

hardly meet the high-speed demand due to time-consuming experiments. Conversely,

in silico approaches are much more efficient for drug discovery and design. However,

in silico approaches usually serve as a supportive role in research processes. To fully

exert the strength of computational methods, we propose a protocol which integrates

various in silico approaches, from de novo protein structure prediction to ligand-protein

interaction simulation. As a proof of concept, human SK2/calmodulin complex was used

as a target for validation. First, we obtained a predicted structure of SK2/calmodulin

and predicted binding sites which were consistent with the literature data. Then we

investigated the ligand-protein interaction via virtual mutagenesis, flexible docking, and

binding affinity calculation. As a result, the binding energies of mutants have similar trends

compared with the EC50 values (R= 0.6 for NS309 in V481mutants). The results indicate

that our protocol can be applied to the drug design of structure unknown proteins. Our

study also demonstrates that the integration of in silico approaches is feasible and it

facilitates the acceleration of new drug discovery.

Keywords: ligand-protein docking, molecular dynamics simulation, computational drug discovery, SK2, structural

prediction, binding site prediction, virtual mutation, pharmaceutical industry

1. INTRODUCTION

To discover a new drug is an urgent but time-consuming process (Zhou et al., 2016; Gómez-
Bombarelli et al., 2018). In the process of new drug development, in silico approaches have been
successfully exploited to perform multiple simulations, such as selecting drug candidates from
a database via high throughput virtual screening (Aparna et al., 2014; de Ruyck et al., 2016;
Vilar et al., 2016; Imam and Gilani, 2017). The application of in silico approaches not only
speeds up new drug discovery, but also collects related information, reveals the mechanisms and
proposes new hypotheses. Compared to bench research, computational experiments perform high-
efficiency simulations which considerably reduce the research time and the cost of experiments
(Abel et al., 2017). However, in most cases, in silico approaches played an assisting role in the
process. In this study, we propose an all-computational protocol integrating multiple in silico
approaches to simulate the entire drug discovery process from de novo protein structure prediction
to drug-protein interaction disclosure.
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Up to now, reliable in silico approaches, such as molecular
dynamics simulation (MD simulation) and machine learning
(Durrant and McCammon, 2011; Lavecchia, 2015; Mortier
et al., 2015), have been increasingly developed and applied
in finding new drugs and optimizing them for treatment of
diseases. However, most research projects only use one single in
silico approach. For instance, the homology models of CIB2, a
calcium- and integrin- binding protein, were constructed based
on CIB1 structures using SWISS-MODEL server (Waterhouse
et al., 2018). Based on the models, the way how the point
mutations affect the affinities of calcium- and integrin-binding
were predicted and then validated by in vitro experiments
(Riazuddin et al., 2012). Besides, the results of ligand-protein
docking were used to test the substrate specificity of OCT-1
and OCT-2 (organic cation transporter) to guide the following
in vivo experimental validation (Papaluca and Ramotar, 2016).
These works simply employed the in silico approaches as
supportive methods, which did not sufficiently leverage the high-
speed advantages of computational methods. Integrating the
established in silico researches into an all-computation pipeline
and producing validated good results is a milestone in the
“omics” era.

Human small conductance calcium-activated (SK2) ion
channels, consisted of SK2 subunits and calmodulin molecule,
have been proved to be therapeutic targets for treatment of
neuronal diseases, such as Parkinson’s and amyotrophic lateral
sclerosis (ALS) (Bond et al., 2005; Lu et al., 2009). The crystalized
structures of human SK2 bound with Riluzole, an approved drug
for ALS (Romano et al., 2015), and an analog [pdb (Berman
et al., 2003) ligand ID: 658] of the SK2 activator CyPPA, an anti-
ataxic agent (Herrik et al., 2012), have been released recently. It
was also reported that ligands of two different chemical classes,
Riluzole and its analog NS309, and CyPPA and its analogs, all
bind to the same binding site where the interface of SK2 and
calmodulin is. In addition, two key residues in the binding
site were mutated to investigate how different mutations affect
the potency of two ligands (Cho et al., 2018). As a proof of
concept, we chose SK2 as the target to examine the protocol
we proposed. Hence, in this study, we basically repeated the
entire procedure of the previous study of Cho et al. (2018)
with consecutive in silico approaches and compared our results
with those of the bench experiments. We first constructed the
human SK2/calmodulin model (PSK2) using SWISS-MODEL
server and docked the ligands Riluzole and CyPPA analog 1 (PDB
ligand ID: 658, see section 2.1), onto the predicted binding site.
The predicted site is consistent with the reported results (Cho
et al., 2018). Then the residues V481 and A477 in the binding
pocket were virtually mutated and the mutation effects were
assessed via binding energies (MM-GBSA 1GBind) calculation.
The results show that the binding energies of mutants have
similar trends compared with the EC50 (the concentration of a
drug that gives half-maximal response) values (R= 0.6 for NS309
in V481 mutants). Overall, our results suggest that this protocol
of in silico approach can provide a systematic prediction on the
unknown structures of proteins and potential drugs, and they
also demonstrate the ability of in silico approaches to speed up
the new drug design process.

2. MATERIALS AND METHODS

2.1. Protein Structure Preparation
Having a determined or predicted structure of the drug target
protein is the first prerequisite of structure-based drug design.
To prove the all-computational protocol is valid, we started our
process from structure prediction. To predict the structure of
SK2 and calmodulin fromHomo sapiens, its amino acid sequence
was obtained from the UniProt website (uniprot ID: Q9H2S1).
Then we uploaded the sequence onto the SWISS-MODEL server,
the most widely-used and reliable structure prediction server, to
build a structure model (Bienert et al., 2016; Waterhouse et al.,
2018) and selected the 3-D complex structure ofRattus norvegicus
SK2 ion channels with NS309 (PDB ID: 4J9Z) (Zhang et al., 2013)
as the template of structure prediction. 4J9Z was downloaded
from RCSB’s Protein Data Bank (Berman et al., 2003), and the
predicted structure of SK2 and calmodulin were combined in
Maestro (11.5 version, Schrodinger). To test the accuracy of
modeling, we uploaded the predicted protein structure and the
crystalized complex structure of human SK2 and calmodulin
with Riluzole (PDB ID: 5V02) onto Zhang’s web server (Zhang
and Skolnick, 2005) to calculate the TM-align score. 5V02 was
downloaded from RCSB’s Protein Data Bank. In addition, site-
directed mutants were constructed using the Mutate Residue
function of Maestro.

A PDB structure of the target protein cannot be directly
used in molecular docking without preprocessing. In most
of the cases, a PDB file does not include the information
of hydrogens, the (potential) charges of atoms, or the bond
orders between any two atoms. In addition, the protein
structures may be determined with a missing fragment(s), a
low resolution or alternate positions, or under an unnatural
condition, for example, low or high pH values. To make sure
molecular docking can simulate the binding between ligands
and the target protein correctly and precisely, the protein and
ligand preparation is necessary. The wild-type and mutant
(predicted) protein structures to be used for docking were
processed by protein preparation wizard in Maestro (Sastry
et al., 2013). The workflow of protein preparation contains
three steps as follows: (1) Preprocess: assigning bond orders,
adding hydrogens, creating zero-order bonds to metals, creating
disulfide, filling in missing side chains using Prime, deleting
waters beyond 5.00 Å from het groups (to keep the water
molecules which may form hydrogen-bond bridges between
the protein and the ligand and remove those cannot form
hydrogen-bond bridges) and generating het states using Epik
(pH = 7.0± 2.0) (Shelley et al., 2007); (2) Optimization: setting
pH = 7.0 and performing optimization; (3) Minimization: this
step was performed using the OPLS3 force field (Harder et al.,
2015). The converge heavy atoms to root-mean-square deviation
(RMSD) is 0.30 Å.

2.2. Ligand Preparation
The 3-D molecular structures of Riluzole and NS309 were
obtained from the PubChem database (Kim et al., 2018). The
3-D molecular structures of CyPPA analog 1 ((4-chloro-phenyl)-
[2-(3,5-dimethyl-pyrazol-1-yl)-pyrimidin-4-yl]-amine) and
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analog 2 (4-chloro-phenyl)-[2-(3,5-dimethyl-pyrazol-1-yl)-6-
methyl-pyrimidin-4-yl]-amine) were built in Maestro (11.5
version, Schrodinger) based on a previous study (Cho et al.,
2018). All the compounds were prepared using OPLS3 force
field in Ligprep panel in Maestro (Sastry et al., 2013; Harder
et al., 2015). The preparation process included converting 2D
structures to 3D ones, adding hydrogens, computing correct
partial charges, and optimizing the structures.

2.3. Binding Site Prediction
Knowing the potential ligand binding site(s) is also an important
prerequisite prior to molecular docking. There are many well-
developed binding site prediction methods and servers (Xie and
Hwang, 2015); however, the predictions produced by different
methods may disagree with each other. Therefore, researchers
usually compare the prediction results produced by different
methods to find the consensus among all predictions. In our
study, binding site prediction process was completed using the
LISE web server (http://lise.ibms.sinica.edu.tw/applet/) (Xie and
Hwang, 2012), which is reported to have the highest accuracy
(80–90% for a soluble protein), and the binding site prediction
tool, Sitemap, in Maestro, which we used in the docking
procedure after this step. The SK2 predicted structure was
uploaded onto the LISE web server for binding site prediction.
The top three predictions from LISE were then downloaded
and imported into Maestro. Meanwhile, in Maestro, SiteMap
(Halgren, 2007, 2009) predicted five ligand binding sites. After
comparing the results obtained using two predictionmethods, we
used the consensus region to define the docking grid box.

2.4. Ligand-Protein Docking
In order to predict the details of the interaction between ligands
and the target protein and to estimate their binding affinities (see
section 2.5), ligand docking was conducted the extra-precision
(XP) mode in Maestro. Maestro has three precision options for
docking including high throughput virtual screening (HTVS),
standard precision (SP), and extra precision (XP). Users can
choose an option based on their need or the computational
load. After the ligands and the target proteins were processed
using Ligprep and protein preparation, respectively, a receptor
grid box was generated according to the results of binding site
prediction. The size of the receptor grid box was set as default.
To investigate the interaction of the protein and ligands, Induced
Fit Docking (IFD) (Farid et al., 2006; Sherman et al., 2006a,b;
Clark et al., 2016) was performed in Maestro. Using the IFD, the
Ligprep outputs were imported and docked to the target protein.
The standard protocol was applied to generate up to 20 poses.
The force field was OPLS3. Under the prime refinement tab, the
conformations of binding site residues within 5 Å (default value)
of the ligand were refined. In the Glide redocking process, the
energy of each protein/ligand complex structure and the number
of top structures were set as the default settings. The XP mode
was used for all IFD process.

2.5. MM-GBSA Calculation
The binding energy (1GBind) between a protein and a ligand
reflects how stable they bind to each other and how a point

mutation affects the ligand binding. Therefore, we examined if
our model can correctly predict the trend of binding affinity
changes of the mutations on the target protein. In this study,
1GBind were estimated using the Prime MM-GBSA module in
Maestro (Greenidge et al., 2012). In MM-GBSA panel, the pose
viewer files of docked complex were uploaded. The solvation
model was VSGB and the force field was OPLS3 (Li et al., 2011).
Prime MM-GBSA 1GBind was calculated using this equation:

1GBind = Ecomplex(minimized)− [Eligand(minimized)

+ Ereceptor(minimized)] (1)

Where 1GBind is binding free energy and Ecomplex(minimized),
Eligand(minimized), and Ereceptor(minimized) are minimized
energies of receptor-ligand complex, ligand and
receptor, respectively.

2.6. Virtual Mutation
Based on the literature, valine 481 (V481) of SK2 is a crucial
residue which forms the hydrophobic core between SK2 and
calmodulin (Cho et al., 2018). To investigate the impacts of
V481 mutations in the binding pocket using in silico approaches,
we first implemented the site-directed mutagenesis in Maestro.
The V481 was virtually mutated to alanine, serine, threonine,
aspartate, or phenylalanine. Then NS309 and CyPPA analog 2
were docked onto the mutated binding site of PSK2 using IFD
and the binding free energies were calculated using MM-GBSA
to reveal the effects of mutated residues.

Alanine 477 (A477) is another vital residue in the binding
pocket (Cho et al., 2018). We exploited the same method
mentioned above to virtually mutate A477 to isoleucine, leucine,
valine, serine, threonine, arginine, and aspartate, docked NS309
and CyPPA analog 2 onto the mutated binding site of PSK2 and
calculated the binding free energies using MM-GBSA.

2.7. Molecular Dynamics Simulation
The molecular dynamics (MD) simulations were performed
using GROMACS version 2018.1 and CHARMM36 all-atom
force field (March 2019) (Vanommeslaeghe et al., 2010, 2012;
Vanommeslaeghe and MacKerell, 2012; Yu et al., 2012; Gutiérrez
et al., 2016). The starting coordinates of each protein-ligand
complex were obtained from docking experiments. Then we
defined a dodecahedral unit cell and filled it with watermolecules.
After adding ions, the complex was minimized for 50,000
steps of steepest descent minimization. Next, the complex was
equilibrated using an NVT ensemble (constant Number of
particles, Volume, and Temperature) and NPT ensemble (the
Number of particles, Pressure, and Temperature). The target
temperature for equilibration was 300 K. At last, the simulations
were performed for 30 ns. After the MD simulations, we
calculated the RMSD of the residues which were mentioned in
the previous research in four trajectories (Cho et al., 2018). Then,
we selected four time points of two residues: I100 on protein-
NS309 complex (15,000, 18,000, 24,000, and 30,000 ps) and D64
on protein-CyPPA analog 1 (2,610, 6,000, 15,000, and 21,000 ps).
Finally, four conformations of both residues were converted into
PDB files and were superposed using PyMol.
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3. RESULTS

3.1. Structure Prediction of Human
SK2/Calmodulin Complex
The structure of human SK2/calmodulin was generated using
template-based modeling on the SWISS-MODEL server
(Figure 1A). Based on the structure of SK2/calmodulin from
Rattus norvegicus (PDB ID: 4J9Z), the structure models were
predicted using the amino acid sequences of human SK2 and
calmodulin. Additionally, the loop (residue A403 to residue
D413, the “intrinsically disordered fragment”—IDF), which had
not been determined in structure of human SK2/calmodulin
complex (PDB: 5V02), was obtained in the predicted model
(Figure 1A). It suggests that the predicted structure can be used
to supplement the crystallized structure.

To test the accuracy of the predicted model, we used TM-
align server to calculate the TM-align score (Zhang and Skolnick,
2005). The predicted models were aligned with 5V02, and
the TM-align scores of SK2 and calmodulin are 0.99124 and
0.89215. These TM-align scores show that the structure of human
SK2/calmodulin complex has been accurately predicted.

3.2. Binding Site Prediction
To determine the binding pocket in SK2/calmodulin complex,
the Sitemap and LISE were exploited to predict binding sites
(Halgren, 2007, 2009; Xie and Hwang, 2012). The top three
predicted results from LISE were overlapped with the results of

FIGURE 1 | Overlapped structures of the predicted model of human SK2 ion

channels and 5V02. (A) The predicted structure of human SK2 ion channels

(PSK2) in blue overlapped with its crystallized structure (5V02) in red. The

structure of a missing loop (IDF) near the ligand binding pocket in 5V02/5V03

has also been predicted. The green compound was Riluzole, which was the

ligand in 5V02. (B) The predicted binding sites (Blue dots represent the results

from Sitemap; red dots represent the results from LISE) overlapped with the

Riluzole binding site in 5V02.

Sitemap. After the comparison, we found that there was only
one consensus. Then we selected this binding site to generate
receptor grid for docking. To verify the accuracy of binding site
prediction, we also overlapped the predicted binding site with
that of 5V02 (Figure 1B). Notably, the predicted binding site is
the same binding site of Riluzole in 5V02, which suggests that
this binding site is the potential binding site for the ligands.
Hence, the in silico approaches successfully predict the accurate
binding site.

3.3. Molecular Docking
Based on the previous study (Cho et al., 2018), the interface
of SK2 and calmodulin can be bound by Riluzole, NS309,
CyPPA analog 1, and analog 2. To investigate whether we can
obtain the same results using in silico approaches, we first
docked Riluzole and CyPPA analog 1 onto the predicted model
(PSK2) via IFD (Induced Fit Docking) in Maestro, and redocked
these ligands onto the determined structures (5V02 and 5V03)
and calculated the binding energies as the control. Then we
calculated the binding energies using MM-GBSA to estimate
the binding affinities (Greenidge et al., 2012). As a result, the
MM-GBSA 1GBind of PSK2 with Riluzole and CyPPA analog
1 are −40.19 and −56.11 kcal/mol, respectively. As indicated
in Table 1, those results of PSK2 are compatible to the results
of 5V02 and 5V03, which demonstrate that accurate results
can be obtained using in silico approaches. Additionally, the
docking pose of PSK2 with Riluzole is almost identical with that
in 5V02 (Figure 2A, the RMSD between the ligand of crystal
structure and docking poses on 5V02 or PSK2 is 0.43 or 0.72 Å),
which indicates that the simulated result from IFD can obtain
accurate data in comparison with the results of crystallization.
In Figure 2B, the coordinates of docked and native ligands are
almost the same even though the poses of two ligands are
not completely overlapped (the RMSD between the ligand of
crystal structure and docking poses on 5V03 or PSK2 is 1.59
or 0.87 Å). Analyzing the docking results, Riluzole and CyPPA
analog 1 interact with residues in both SK2 and calmodulin
(Figure 3). The interacting residues in the binding site are mostly
hydrophobic residues. As CyPPA analogs are larger molecules,
they interact with more residues. Compared the list of interacting
residues (Table S1), our results are almost identical to those of
the previous study (Cho et al., 2018). The discrepancy may be
because Maestro analyzes the interactions between ligands and
the protein based on the interaction energy and the previous

TABLE 1 | MM-GBSA 1GBind of ligands bound to crystallized structures and

predicted structures.

Protein Ligand MM-GBSA 1GBind (kcal/mol)

5V02 Riluzole −40.83

5V03 CyPPA analog 1 −62.72

PSK2 Riluzole −40.19

PSK2 NS309 −49.97

PSK2 CyPPA analog 1 −56.11

PSK2 CyPPA analog 2 −64.84
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FIGURE 2 | Comparison of the docked poses and the native structures.

(A) Comparison of the docking results on the PSK2 in blue color, the docking

results on 5V02 in green color, and determined structures 5V02 in red color;

The blue-colored Riluzole is the docked pose on the PSK2, the green-colored

Riluzole is the docked pose on 5V02, and the red-colored Riluzole is the

determined structure in 5V02; (B) Comparison of the docking results on the

PSK2 in blue color, the docking results on 5V03 in green color, and determined

structure 5V03 in red color; The blue-colored CyPPA analog 1 is the docked

pose on the PSK2, the green-colored CyPPA analog 1 is the docked pose on

5V03 and the red-colored CyPPA analog 1 is the determined structure in 5v03.

study (Cho et al., 2018) simply lists the residues within 5 Å of
either ligand. According to the docking results of PSK2 with
Riluzole and CyPPA analog 1, we docked NS309 and CyPPA
analog 2 on the same binding site using the same methods
mentioned above (Figure 4 and Figure S1). The binding affinities
MM-GBSA 1GBind are showed in Table 1. The MM-GBSA
1GBind values of CyPPA analog 1 and CyPPA analog 2 on the
PSK2 are more negative than those of the other ligands, which
suggests that CyPPA analog 1 and CyPPA analog 2 are promising
drug candidates.

To verify the ligand-induced perturbations, NMR spectrum
was used to identify residues with significant chemical shifts in
previous experiments (Cho et al., 2018). With computational
approaches, we ran MD simulations for each protein-ligand
complex to simulate the conformational changes after the
binding of ligands. A previous research reports that the residues
on EF hands of calmodulin had conformational changes due to
the ligand binding (Cho et al., 2018). Therefore, we calculated

FIGURE 3 | 2D ligand-protein interaction of Riluzole (A) and CyPPA analog 1

(B) at PSK2 binding site. The pink arrow is referred to hydrogen bond. The red

line is referred to Pi-cation interaction.

Frontiers in Chemistry | www.frontiersin.org 5 February 2020 | Volume 8 | Article 81

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Wu et al. All-Computational Drug Design Protocol

FIGURE 4 | Docking poses of SK2 predicted structure with NS309 (A) and

CyPPA analog 2 (B).

RMSD for those residues. According to the results of RMSD, we
compared four trajectories of each residue and superposed their
different poses at different time points. As a result, we found I100,
on the complex of NS309, had obvious perturbations on four
time points (Figure 5 and Figure S2). In addition, D64 which was
a critical residue for calcium sensing, also showed dramatically
conformational changing on the complex structure of PSK2 and
CyPPA analog 1 (Figure 6 and Figure S3). Hence, the different
poses of those residues demonstrated that the ligand could induce
the perturbations of the calmodulin, which was consistent with
the conclusion in the previous research (Cho et al., 2018).

3.4. Virtual Mutations at V481 and A477 in
the Binding Pocket
The results of a previous study (Cho et al., 2018) show that
the site-directed mutations on the key residues V481 and A477
in the binding site result in changes in the binding affinities.
To validate that the in silico approach can simulate and predict
the impacts of these mutations, we performed the virtual
mutation experiments, docked the ligands on all mutants, and
calculated the corresponding binding energies of each mutant.
The MM-GBSA 1GBind of V481 mutants are shown in Table 2.
To verify the accuracy of in silico approaches, the Pearson’s

correlation coefficients between MM-GBSA 1GBind and EC50

were calculated (R = 0.6 for NS309 in V481 mutants). Table 2
indicates that substitutions with small side chains (V481S) or a
charged amino acid (V481D) significantly decrease the binding
affinities of NS309. Conversely, the binding affinity of NS309 in
PSK2 V481F is close to that in wild-type. The results above are
consistent with the conclusion in literature, that is, this position
requires a non-charged residue with a bigger side chain (Cho
et al., 2018).

Similarly, we find that CyPPA analog 2 in PSK2 V481Fmutant
with large aromatic side chains also shows a close binding affinity
compared to that in PSK2 WT (Table 2), which demonstrates
a good correlation between calculated binding affinities and
EC50. The mutants with small side chains (V481A and V481S)
or a charged amino acid (V481D) also shows the relatively
lower binding affinities of CyPPA analog 2. Those results
demonstrate that the simulation results are compatible with the
data from biological experiments. The consistent conclusion has
successfully proved that the all-computational protocol can be
widely applied in future biomedical research.

In Table 3, all PSK2 A477 mutants have slightly lower NS309
potency than that of PSK2 WT and the predicted binding
affinities MM-GBSA 1GBind have similar results. According to
the results in literature (Cho et al., 2018), CyPPA analog 2
should exhibit shifted potencies at PSK2 A477L, PSK2 A477V,
PSK2 A477S, PSK2 A477T, PSK2 A477R, and PSK2 A477D,
but not at PSK2 A477I. However, in Table 3, the MM-GBSA
1GBind of PSK2 A477I is not different from those of other
mutants. As an isoleucine has a long side chain, different
rotamers may largely change the estimated binding affinities.
Performing an MD simulation may be a good solution to
optimize the structures of mutants and improve the docked poses
and estimated binding energies.

4. DISCUSSION

In the field of new drug discovery, research efficiency is
particularly essential. On one hand, the speed of new drug
development is of great importance to patients, especially the
ones with fatal diseases such as cancers or acute infectious
diseases (Shi et al., 2015). Statistics show that there will be
around 1.7 million new cancer cases and 600 thousands cancer
deaths in the United States in 2019 (Siegel et al., 2019).
This race against time has always been a huge challenge for
the researchers in this field. On the other hand, to bring a new
drug to the market from compound identification to final FDA
approval usually costs up to billions of dollars (Cleary et al.,
2018). Therefore, the time and cost-efficient virtual process of
drug development will benefit many pharmaceutical companies
and our society. In silico approaches which can save considerable
amount of research time and cost should be applied to drug
design. With the rapid development of computer science and
engineering, the availability and accuracy of in silico approaches
have been constantly improving. Although many progresses
have been made in utilizing in silico approaches to simulate
certain biological experiments, the whole experimental processes
completed in the virtual way from protein structure simulation
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FIGURE 5 | Superposition of four conformations of I100 at four time points on the simulation trajectory of the complex of PSK2 and NS309.

FIGURE 6 | Superposition of four conformations of D64 at four time points on the simulation trajectory of the complex of PSK2 and CyPPA analog 1.

TABLE 2 | EC50 and MM-GBSA 1GBind of NS309 and CyPPA analog 2 bound to

the V481 mutants.

Protein

NS309 CyPPA analog 2

EC50 (µM) MM-GBSA

1GBind

(kcal/mol)

EC50 (µM) MM-GBSA

1GBind

(kcal/mol)

WT 1.1 −49.97 2.5 −64.84

V481A 4.3 −54.28 >250 −29.05

V481S 5.1 −32.65 >250 −49.94

V481T 1.2 −32.77 46.6 −49.97

V481D 7.4 −25.97 >250 −46.75

V481F 0.8 −57.77 3.3 −64.09

to protein-drug interaction characterization has never been
achieved before.

In this study, we proposed a protocol of integration of in
silico approaches to simulate the process from protein structure

TABLE 3 | EC50 and MM-GBSA 1GBind of NS309 and CyPPA analog 2 bound to

the A477 mutants.

Protein

NS309 CyPPA analog 2

EC50 (µM) MM-GBSA

1GBind

(kcal/mol)

EC50 (µM) MM-GBSA

1GBind

(kcal/mol)

WT 1.1 −49.97 2.5 −67.14

A477I 2.0 −37.26 2.0 −47.89

A477L 1.7 −24.71 99.0 −37.60

A477V 2.0 −39.67 >250 −45.63

A477S 3.0 −36.65 >250 −46.05

A477T 2.0 −23.36 >250 −51.04

A477R 2.1 −31.24 >250 −51.50

A477D 3.9 −30.94 >250 −49.71

determination to key residues mutagenesis and characterization.
To validate this strategy, we selected the human SK2 ion channels
as our target protein. With successful prediction, we obtained
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accurate protein structures (TM-align score >0.5) and the same
binding site as the crystallized structure. Furthermore, the
docking poses of Riluzole and CyPPA analog 1 are consistent with
the ligand bound conformations in the crystallized structures.
We also successfully reproduced similar effects of site-directed
mutagenesis on the ligand binding, which demonstrated great
potential of the integration of in silico approaches. However,
the purpose of integrating in silico approaches is not to
completely replace biological experiments but to speed up the
drug discovery process with the continuous and automatic
computational process.

A possible reason why an all-computation protocol of drug
design has not been proposed and implemented is the inaccuracy
or uncertainty of prediction results might accumulate in the
sequential computational pipeline. However, the state-of-the-art
bioinformatics algorithms, software or servers have been highly
accurate in many cases so that it is time to integrate them
into a fully computational process or even a fully automatic
process. This is the first study to demonstrate the feasibility of
an all-computational protocol in drug design. To achieve the
ultimate goal of “automatic” drug discovery, more online servers
or computational algorithms like PROCHECK (Laskowski et al.,
1993), which can be used to assess or estimate the reliability of
prediction results generated by each in silico approach, need to
be developed. Despite its innovative approach, there are a few
limitations of this study. First, the accuracy of protein structure
prediction relies on the methods and/or templates. In our
research, we selected the SK2/calmodulin from Rattus norvegicus
(PDB ID: 4J9Z) as the template to build protein structure on
SWISS MODEL, whose results are more accurate than the results
from other webservers (data not shown). Hence, a reliable tool or
method is critical to the accuracy of the final simulated results.
Second, the binding affinity changes are hard to be precisely
reproduced, especially those of the mutants, because considering
possible conformational changes on target proteins is still the
biggest challenge of docking. This suggests that MD simulation
which can simulate the conformational changes should be used
to further improve the precision of the predictions.

In conclusion, this work established and demonstrated
an integrated protocol of in silico approaches for the first

time. Its applicability can be potentially extended beyond the
characterizing of SK2 ion channels to investigating other proteins
with unknown structures, such as the Alzheimer’s disease related
proteins (Fitzpatrick et al., 2017; Hatami et al., 2017), which are
also treatment targets of neural degenerative diseases. Although
there are challenges to the in silico approaches, our work still
paves a new way toward an automatic procedure of drug design.
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