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Frustrated Magnetism in Triangular
Lattice TlYbS2 Crystals Grown via
Molten Flux
Timothy Ferreira*, Jie Xing, Liurukara D. Sanjeewa and Athena S. Sefat

Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States

The triangular lattice compound TlYbS2 was prepared as large single crystals via a
molten flux growth technique using sodium chloride. Anisotropic magnetic susceptibility
measurements down to 0.4K indicate a complete absence of long-rangemagnetic order.
Despite this lack of long-range order, short-range antiferromagnetic interactions are
evidenced through broad transitions, suggesting frustrated behavior. Variable magnetic
field measurements reveal metamagnetic behavior at temperatures ≤2K. Complex low
temperature field-tunable magnetic behavior, in addition to no observable long-range
order down to 0.4K, suggest that TlYbS2 is a frustrated magnet and a possible quantum
spin liquid candidate.
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INTRODUCTION

The variety of basic and applied properties arising from geometrically frustrated magnets continue
to motivate the study of structures with two-dimensionally layered triangular lattices prone to
antiferromagnetic interactions (Chubokov and Golosov, 1991; Lee et al., 2006; Shen et al., 2016;
Li et al., 2017a; Zhu et al., 2018; Bordelon et al., 2019; Ranjith et al., 2019). Such triangular lattices
restrict the number of available spin degrees of freedom, resulting in quantum fluctuations that
can produce degenerate ground states (Savary and Balents, 2016). Frustrated antiferromagnets
with degenerate ground states have garnered significant interest for their potential as quantum
spin liquid (QSL) candidates, a state characterized by dynamic entangled spins, exhibiting no
long-range magnetic order, even at 0 K (Anderson, 1973; Balents, 2010; Hu et al., 2015; Starykh,
2015; Yamamoto et al., 2015; Dun et al., 2016; Savary and Balents, 2016; Shen et al., 2016; Xu et al.,
2016; Li et al., 2017b; Paddison et al., 2017; Baenitz et al., 2018). While QSL candidates with 3d
ions exhibit weak spin-orbit coupling (SOC) (Lee and Lee, 2005; Helton et al., 2007; Yoshida et al.,
2009; Yamashita et al., 2010; Zhou et al., 2011; Shirata et al., 2012), the presence of stronger SOC in
5d/4f ions, on par with the energy scale of crystal electric field effects and the coulomb interaction
U, further enhances the frustration via entangled spin and orbital degrees of freedom, and has thus
shifted the search for new QSL materials to contain these heavier lanthanides (Ln) (Okamoto et al.,
2007; Curnoe, 2008; Gardner et al., 2010; Onoda and Tanaka, 2010; Applegate et al., 2012; Hu et al.,
2015; Li et al., 2016; Lu et al., 2017; Laconis et al., 2018; Liu et al., 2018).

Recently, Yb(III) containing compounds such as NaYbO2 (Bordelon et al., 2019; Ranjith et al.,
2019), NaYbS2 (Baenitz et al., 2018), and YbMgGaO4 (Li et al., 2015, 2017a,b; Xu et al., 2016;
Paddison et al., 2017) have been presented as QSL candidates, all crystallizing in a layered triangular
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lattice of trigonal space group R3m. Due to the odd number of
4f electrons and strong SOC, these materials behave as effective
spin Jeff = ½. A similar family of 4f -containing delafossites,
of the general formula A(I)Ln(III)Ch(II) [A = Na, Rb, K; Ch
= O, S, Se, Te] (Liu et al., 2018), has also been proposed
as a promising candidate. Delafossites are often free from
crystallographic site-mixing, unlike the more commonly studied
YbMgGaO4 that can mimic QSL behavior by eliminating long-
range order through disorder (Li et al., 2017b; Zhu et al., 2017).
Additionally, the modular nature of delafossite structures allows
for the possibility of differences in crystal structure as a function
of the ratio of ionic radii; this has been reported to result
in changes in triangular lattice layer stacking, such as ABAB
stacking in the hexagonal P63/mmc or ABCABC layer stacking
in the trigonal R3m. Reports of possible inter-layer interactions
on the highly sensitive magnetic ground state of such systems
makes the delafossite structure advantageous to study, as such
subtle interactions can be probed as a function of selective ion
control (Yamamoto et al., 2015).

Despite the structural modularity and promise of
QSL candidacy in such delafossite structures, the limited
availability of large single crystals to study electronic
and magnetic anisotropy serves as motivation for this
work. Herein we discuss the flux crystal growth, structure
determination, and magnetic property measurements
of TlYbS2, which crystallizes in the hexagonal space
group P63/mmc. This study allows for proper structure
elucidation of TlYbS2 single crystals, contrary to the results
of polycrystalline powders (Duczmal and Pawlak, 1994),
in addition to reporting novel anisotropic magnetization
results that were inaccessible on polycrystalline samples
(Duczmal and Pawlak, 1994).

FIGURE 1 | (A) Experimental setup consists of an alumina crucible housing the starting materials with a loose-fitting frit and a second inverted alumina crucible,
shown in the inset, both held within a sealed evacuated quartz tube. (B) Optical image of a typical crystal of TlYbS2, showing its red color. The c axis is out of the
plane of the crystal.

EXPERIMENTAL

Synthesis
The TlYbS2 compound was synthesized using a two-step method
comprised of (1) producing the powder form via traditional
solid-state synthesis, followed by (2) crystallizing the precursor
powder using molten flux growth via sodium chloride. Solid
pieces of Yb metal (REacton, 99.99%), S (Puratronic, 99.9995%),
and Tl (REacton, 99.99%) were all stored in a glove box. Sodium
chloride (Alfa Aesar, 99.999%) was dried in an oven overnight at
300◦C and stored in a desiccator prior to use.

For the solid-state synthesis, 2.0 mmol of Tl and Yb were
added to 4.0 mmol of S in an alumina crucible with a loose-
fitting alumina frit and a second, inverted, alumina crucible on
top. This second crucible was used to assist in catching any trace
amounts of volatilized Tl or S. This setup of alumina crucibles
was loaded and sealed inside an evacuated silica tube, with a small
amount of quartz wool at the bottom to prevent cracking due to
differences in thermal expansion (Figure 1A). The sealed silica
tube was heated to 300◦C at a rate of 10◦C/h, dwelled for 24 h,
ramped to 800◦C at a rate of 10◦C/h, dwelled at 72 h, and then
the reaction was allowed to cool by shutting off the furnace.

Single crystals were produced by loading 0.87 mmol of
polycrystalline TlYbS2 and a ten-fold excess (by mass) of NaCl
(40.47 mmol) into sealed evacuated silica tubing. The reaction
was heated to 850◦C at a rate of 60◦C/h, dwelled at 504 h (i.e. 3
weeks), and then cooled by shutting off the furnace. The resulting
red crystals were mechanically separated from the remaining
TlYbS2 powder and vacuum filtered using ethanol to remove
any surface impurities (Figure 1B). The crystallographic c-axis is
out of the plane of the paper. The purity of the polycrystalline
powder (first step) and resulting crystals (second step) were
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both determined by powder X-ray diffraction (PXRD) using
a PANalytical X’Pert Pro MPD diffractometer with Cu Kα1
radiation (λ = 1.5418 Å), shown in Figure 2.

Structure
The structure determination of the single crystals of TlYbS2
was performed on a Bruker Quest D8 single crystal X-ray
diffractometer (SXRD). Single crystals were first sonicated in
acetone to remove any surface impurities. The data were

FIGURE 2 | Powder X-ray diffraction pattern of solid-state produced
polycrystalline TlYbS2, shown in blue, overlaid with a diffraction pattern of
ground single crystals of TlYbS2, shown in green.

TABLE 1 | Crystallographic data for TlYbS2 determined by single crystal X-ray
diffraction.

Empirical formula TlYbS2

Formula weight (g/mol) 441.53

T, K 273

Crystal habitat Red plates

Crystal dimensions, mm 0.060 × 0.020 × 0.020

Crystal system Hexagonal

Space group P63/mmc (No. 194)

a, Å 3.9454(8)

c, Å 15.277(7)

Volume, Å3 205.94(12)

Z 2

D (calc), g/cm3) 7.120

µ (Mo Kα), mm−1 62.409

F (000) 366

Tmax, Tmin 0.2092–1.0000

θ range 2.67–30.63

Reflections collected 1,816

Data/restraints/parameters 102/0/9

Final R [I> 2σ(I)] R1, Rw2 0.0366/0.0797

Final R (all data) R1, Rw2 0.0402/0.0825

GoF 1.069

Largest diff. peak/hole, e/Å3 1.831/−1.820

collected at room temperature utilizing a Mo Kα radiation (λ
= 0.71073 Å). The crystal diffraction images were collected
using 8 and ω-scans. The diffractometer was equipped with
an Incoatec IµS source using the APEX III software suite
for data setup, collection, and processing (Bruker, 2015). The
structure was resolved using intrinsic phasing and full-matrix
least square methods with refinement on F2 using the SHELXTL
software suite (Sheldrick, 2008). All atoms were first refined
with isotropic thermal displacement parameters and then refined
anisotropically. Crystallographic information can be found in
Tables 1–3.

Energy dispersive spectroscopy (EDS) was performed using
a Hitachi S-3400 scanning electron microscope equipped with
an OXFORD EDX microprobe to confirm the elemental
composition in the single crystal sample. The presence of Tl,
Yb and S were verified, and the absence of extraneous elements
such as Na and Cl were confirmed. EDS data can be found
in Table 4.

Magnetic Susceptibility
Physical properties were measured using the Quantum Design
Superconducting quantum interference device (SQUID)
Magnetic Properties Measurement System (MPMS). Two
thin plates of crystals were stacked with a total mass of
0.36mg using vacuum grease, for each measurement above
2K. The magnetization measurements made below 2K were
measured using the Quantum Design iHe3 option on four
stacked single crystals (0.5mg total) using vacuum grease.
The crystals were aligned in two separate orientations: one
set of measurements aligned the crystals such that the applied

TABLE 2 | Atomic coordinates and equivalent isotropic displacement parameters
(Å2) for TlYbS2.

Atom Wyckoff x y z Ueq (Å2)

Tl 2c 0.33333 0.66667 0.25000 0.0471 (10)

Yb 2b 0 0 0 0.0268 (8)

S 4f 0.33333 0.66667 0.5965 (6) 0.0278 (19)

TABLE 3 | Bond distances (Å) and angles (◦) for TlYbS2.

Bond distances (Å) Bond Angles (◦)

Yb–S (6x) 2.713 (5) Yb–S–Yb 93.3 (2)

Yb–Yb 3.9454 (8) Yb–Yb–Yb 60.0

TABLE 4 | Energy dispersive spectroscopy data.

Element Atomic %

Tl 25.99

Yb 25.10

S 48.91
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magnetic field was perpendicular to the c-axis, and second set
where the applied field was parallel with c. The thermometer
calibration was done in zero field when the applied field was
parallel with c.

DISCUSSION

Synthesis
The scarcity of known single crystal growth methods
for lanthanide containing delafossites, particularly those
employing the use of salt flux, has made the optimization and
characterization of large single crystals of the titled composition
challenging (Stowe, 1997). Fortunately, there is significant
literature evidence demonstrating that the use of molten flux
as a growth medium is a robust method, potentially capable of
crystallizing nearly every element combination on the periodic
table (Bugaris and zur Loye, 2012). The selection of an alkali
halide flux was guided in part by recent reports of similar
fluxes crystallizing compositions containing lanthanides and/or

chalcogenides (Klepov and zur Loye, 2018; Tsujimoto et al., 2018;
Usman et al., 2019a,b). Additionally, amongst the few delafossite-
type structures reported as single crystals, synthesis typically
involves the use of reactive alkali fluxes, such that the alkali metal
in the flux incorporates into the final product, such as the use of
KCl for KErSe2 (Xing et al., 2019a) or NaCl for NaYbS2 (Baenitz
et al., 2018). For producing TlYbS2 crystals, the use of TlCl as a
flux medium was ruled out due to the low solubility prohibiting
ease of crystal separation upon completion of the reaction. We
tried CaCl2 as a flux, and although single crystals were produced,
they were of poor quality. Attempts to improve the quality of
the crystals by introducing cooling rates also failed: a variety of
polycrystalline powders and no crystals were present, indicating
TlYbS2 may be a metastable kinetic phase that is “trapped” via
quenching. Ultimately, the use of NaCl as a flux, in addition to
quenching the reaction upon the completion of the prolonged
dwelling period, resulted in high quality, large (1 mm+)
single crystals that were suitable for structural and anisotropic
magnetization studies.

FIGURE 3 | Polyhedral representation of the delafossite structure, with the hexagonal P63/mmc variant (shown left) and the trigonal R3m variant (shown right). The
hexagonal structure is built of three distinct triangular layers of edge-shared YbS6 octahedra (Yb shown in gray, S in red) that stack in an ABAB order, meanwhile the
trigonal structure is built from four distinct triangular layers of edge-shared YbS6 octahedra that stack in an ABCABC sequence. Non-magnetic TI atoms are shown as
blue spheres.

FIGURE 4 | Polyhedral representation of the edge-shared octahedral network of YbS6 extending in the ab plane for the composition TlYbS2. The planar triangular
lattice is an ideal host for geometric frustration for an antiparallel alignment of spins, as shown in the zoomed-in area. Yb atoms are shown in gray, and S atoms are
shown in red.
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Structure
The compound TlYbS2 was first reported as a polycrystalline
powder crystallizing in the trigonal space group R3m, commonly
referred to as the α-NaFeO2 structure, with lattice parameters a
= 3.935 Å and c= 22.47 Å (Duczmal and Pawlak, 1994). This two
dimensional layered structure is built from two distinct triangular
lattice layers that alternate along the c axis. The first layer is built
from a network of edge-shared octahedral YbS6 units that adopts
an ABCABC stacking pattern (Figure 3). A second non-magnetic
triangular lattice layer of edge-shared octahedral TlS6 units
resides between these layers. As a result of the availability of single
crystals of the titled composition, we thoroughly investigated
the nuclear structure. Careful analysis revealed that the grown
single crystals of TlYbS2 adopt the hexagonal P63/mmc β-RbScO2

structure type. In this hexagonal structure, Tl (Wyckoff 2c), Yb
(2b), and S (4f ) occupy the special positions with site symmetries
of −6m2, −3m, and 3m, respectively. This is in contrast to the
previously reported trigonal R3m structure for polycrystalline
powders of TlYbS2 where Tl (3b) and Yb (3a) are in the −3m
position, and S (6c) is in the 3m special position. The primary
difference between the two structures is best understood by the
number and stacking sequence of the triangular lattice layers.
In the hexagonal β-RbScO2 structure, one unit cell is built from
three YbS6 layers and two TlS6 layers, whereas the trigonal α-
NaFeO2 structure unit cell is built from four YbS6 layers and
three TlS6 layers. Additionally, the hexagonal β-RbScO2 structure
adopts a higher symmetry ABAB triangular lattice layer stacking,
in contrast to the ABCABC layer stacking in the trigonal α-
NaFeO2 type structure. This result is consistent with the trend
observed for smaller A-site ions in the delafossite structure
crystallizing in the trigonal system, such as NaYbS2 (Baenitz
et al., 2018) and larger A-site ions crystallizing in the hexagonal
system, such as CsYbSe2 (Xing et al., 2019b). Comparison
of powder X-ray diffraction patterns of solid-state produced
polycrystalline powder, and single crystals grown via molten
flux, of TlYbS2 overlay well (Figure 2) with slight differences
in peak intensity and crystallinity. Although polymorphism
between the polycrystals and single crystals should not be
completely ruled out, slight differences in peak intensity may
result from preferred orientation in such a highly anisotropic
nuclear structure.

The primary interest in studying this structure type is the
triangular lattice that extends along the ab plane, serving as an
ideal host for geometric frustration (Figure 4). The idealized
hexagonal network of Yb atoms does not allow for a purely
antiparallel configuration of spins, leading to enhanced quantum
fluctuations that are of interest to study. Careful attention was
taken to select Tl as the A site in the delafossite structure, since it
is larger than Yb, both to prevent crystallographic site-mixing,
and to maximize the interlayer distances, thereby minimizing
inter-layer interactions via the mediating cation. The reactive-
flux nature of NaCl in the growth of similar delafossite structures
also guided the selection of the large cation Tl, in hopes that
Na would be too small to occupy the same site. Additionally, a
non-magnetic A site was selected to further simplify study of any
resulting magnetic properties.

Magnetic Susceptibility
The temperature dependence of the magnetization perpendicular
to the applied field (in the ab plane) at 1 T indicates a broad
deviation fromCurie-Weiss behavior at 50K (Figure 5). A Curie-
Weiss fit of the high temperature section (200–350K) of the
inverse susceptibility taken at 1 T indicates a Weiss constant
of θCW = −101.3 K and an effective moment of 4.57 µB, in
good agreement with the expected J = 7/2 (4.54 µB) moment
(Hashimoto et al., 2003). The large negative Weiss temperature
indicates strong antiferromagnetic interactions. A fit of the low
temperature (2–50K) taken at 1 T indicates a smaller Weiss
constant of θCW = −19.5 K and an effective moment of 3.41
µB. To better understand the significant difference between high
temperature moment [J = 7/2 (4.54 µB)] and low temperature

FIGURE 5 | Temperature dependence of the magnetic susceptibility for single
crystals of TlYbS2, oriented H⊥c under an applied field of 1 T. Field cooled
data is shown in blue and inverse magnetic susceptibility data shown in red.
Solid black lines denote the high/low temperature fits of the inverse
susceptibility data.

FIGURE 6 | Field dependence of the magnetization for single crystals of
TlYbS2 oriented H⊥c over a range of 0 to 7 T at 0.42K.
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moment (3.41 µB, unknown J), a literature search for analogous
results was conducted. Similar measurements (also taken at
low temperature and field) on structurally related (α-NaFeO2-
type) single crystals of NaYbS2 made in-plane (ab plane) report
comparable values of θCW =−13.5 K and µeff = 3.2 µB (Baenitz
et al., 2018). The slight deviation in value between the two
structures may originate from differences between Na and Tl
ionic radii, [1.02 and 1.50 Å, respectively] causing the structural
shift from R3m (closer layers) to P63/mmc (greater inter-layer
distances). As a result of the larger non-magnetic cation (Tl)
further separating the triangular lattice layers, TlYbS2 more
closely resembles a pure two-dimensional structure, compared
to the Na analog. The report on NaYbS2 describes the effective
magnetic moment (µeff = 3.2 µB) to originate from strong SOC
and ab plane anisotropy, treating the studiedmaterial as a Jeff =½
system according to the two-dimensional spin½ triangular lattice
Heisenberg antiferromagnet model (Anderson, 1973; Huse and
Elser, 1988). This Heisenberg model has been used to understand
previously reported isostructural frustrated systems in which all
magnetic ions are 120◦ from one another, which is the case for
NaYbS2, and thus is reasonable as a starting hypothesis for a
possible magnetic model to explain the behavior of TlYbS2 (Liu
et al., 2018). To assess the Jeff = ½ magnetic model, describing
the proposed low temperature behavior for the Yb atoms in
NaYbS2, Baenitz et al. conducted electron-spin-resonance (ESR)
measurements on single crystals and found the g-factor to be
highly anisotropic along the two crystallographic directions (gab
= 3.19; gc = 0.57), an expected consequence of the triangular
lattice layer (Baenitz et al., 2018). Utilizing the experimentally
determined gab-factor, the Jeff = ½ magnetic model hypothesis,
and considering Equation (1), an expected moment (µeff) was
calculated and found to be close to their experimentally observed
moment of 3.2 µB, suggesting that NaYbS2 behaves as Jeff = ½
triangular lattice Heisenberg antiferromagnet.

µeff = g
√

J (J + 1) (1)

Based on the success of the analysis used for NaYbS2, a
similar method was employed for TlYbS2 to understand the
low temperature magnetic moment. Within the triangular
lattice Heisenberg AFM model, the magnetization should
plateau at ∼1/3 the expected saturation magnetization,
according to Equation (2). In this equation, the
saturation magnetization

ms = J · g (2)

(ms) is equal to the product of the g-factor and the total angular
momentum (J). By analyzing TlYbS2 in the same way NaYbS2
was treated using Equation (1), an anisotropic g-factor of gab
= 3.94 for TlYbS2 is obtained. This can be used in Equation
(2) to obtain a saturation magnetization saturation (1.97 µB).
Taking the ratio of the moment (0.74 µB) corresponding to
the inflection point observed in field dependent magnetization
measurements taken at 0.42K (Figure 6) with the ms discussed
above yields a value of 0.37, in good agreement with the expected
0.33. It should be noted that in the absence of a sufficiently strong
magnetic field, a full plateau is not observed, but the inflection
point is the onset of such a plateau. Considering the triangular
lattice orientation of the Yb atoms in the ab plane, as shown
in Figure 4, and the good agreement of 0.37 to the expected
0.33 as per the triangular lattice Heisenberg AFM model, it
is reasonable to propose a magnetic model in which TlYbS2
behaves as a Jeff =½ system in the low temperature (below 50K)
regime. This finding is further supported by previous reports
of subtle changes in slope for inverse magnetic susceptibility
plots, such as that observed in Figure 5, as being attributed to
gradual transitions toward an isolated Kramers doublet ground
state (Ranjith et al., 2019).

The broad deviation from Curie-Weiss behavior at 50K
was investigated further by measuring inverse temperature
dependent susceptibility perpendicular to the field at low
temperatures (2–50K) at fields from 0.1 to 5 T (Figure 7A).

FIGURE 7 | (A) Temperature dependence (2–8K) of inverse magnetic susceptibility for single crystals of TlYbS2 oriented H⊥c under applied fields ranging from 0.1 to
5 T. A wider temperature range (2–50K) of the sample plot is shown in the inset. (B) Temperature dependence (0.4–1.8K) of susceptibility under applied fields from
0.2 to 7 T.
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FIGURE 8 | Temperature dependence (0.4–1.4K) of magnetic susceptibility
for single crystals of TlYbS2 oriented H||c under applied fields from 0.5 to 3 T.

A clear deviation from linearity can be seen in the 3 T
data at 4 K, with a more pronounced deviation at the same
temperature for the 5 T data. Supplementary temperature
dependent susceptibility measurements (Figure 7B) taken at low
temperatures (0.4–2K) and variable fields (0.2–7 T) reveal a
gradual inversion of slope, with the 7 T data appearing as a
nearly flat line. The absence of saturation in the field dependence
magnetization measurements made in Figure 6 at 7 T suggests
the nearly linear susceptibility at 7 T in Figure 7 does not
correspond to true saturation.

Similar, albeit more subtle, features were observed in
low temperature (0.4–1.4 K) susceptibility measurements
(Figure 8) at variable fields (0.5–3 T), along the c axis. The
presence of such very subtle transitions and an even weaker
magnetic susceptibility perpendicular to c are unsurprising,
as magnetic interactions are expected to reside primarily
within the triangular lattice ab plane. The large size of
non-magnetic Tl atoms that separate the triangular lattices
reasonably limit inter-layer magnetic interaction pathways.
Although a complete description of this complex behavior
is not possible with the current data, similar behavior
has been recently reported in Os0.55Cl2 (McGuire et al.,
2019) and MErSe2 (M = Na, K) (Xing et al., 2019a). In
both reports, no long-range ordering and a spin-liquid-like
behavior is observed in triangular lattice frameworks similar
to TlYbS2, suggesting that it may also be a candidate for this
exotic behavior.

CONCLUSIONS

In summary, for the first time large single crystals of TlYbS2
were prepared from a molten flux growth technique, and
a reinvestigation of the nuclear structure was conducted.
The single crystal structure was determined to crystallize
in the hexagonal P63/mmc β-RbScO2 type structure, in
contrast to the previously reported trigonal R3m α-NaFeO2

structure for polycrystalline samples. Anisotropic measurements
along the ab plane and along c ranging from 0.42–350K
and 0.1–7 T displayed clear short-range magnetism and
metamagnetic behavior. The complete absence of long-range
order and consistency of TlYbS2 magnetic behavior to the two-
dimensional triangular lattice Heisenberg antiferromagnet
model indicates its possible candidacy as a quantum
spin liquid.
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