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The role of bio- and chemo-catalytic aerobic oxidations in the production of commodity

chemicals in a bio-refinery is reviewed. The situation is fundamentally different to that in

a petrochemicals refinery where the feedstocks are gaseous or liquid hydrocarbons that

are oxidized at elevated temperatures in the vapor or liquid phase under solvent-free

conditions. In contrast, the feedstocks in a biorefinery are carbohydrates that are

water soluble solids and their conversion will largely involve aerobic oxidations of

hydroxyl functional groups in water as the solvent under relatively mild conditions of

temperature and pressure. This will require the development and use of cost-effective

and environmentally attractive processes using both chemo- and biocatalytic methods

for alcohols and polyols.

Keywords: bio-based economy, biomass, biocatalysis, catalytic oxidation, alcohol oxidases, carbohydrates, waste

valorization

INTRODUCTION

One of the grand challenges of the twenty-first century is the implementation of the transition from
an unsustainable economy based on fossil resources–oil, coal, and natural gas—to a sustainable,
carbon-neutral economy based on the use of renewable biomass. This switch to a so-called
bio-based economy is urgently required in order to mitigate global warming caused by increasing
carbon dioxide emissions to the atmosphere. First generation (1G) renewable raw materials,
exemplified by corn starch, sugar cane, and sugar beet, are not perceived as sustainable options
in the long term as their utilization involves, directly, or indirectly, competition with food
production. In contrast, the use of second generation (2G) renewable biomass, in the form of
waste polysaccharides, such as lignocellulose (Liguori and Faraco, 2016; Zhang et al., 2017) and
pectin, from agricultural and forestry residues and food supply chain waste (Dahiya et al., 2018),
is perceived as a sustainable long term option for producing biofuels and commodity chemicals
(Sheldon, 2014, 2016, 2018; Horváth et al., 2017). Looking further afield, third generation (3G)
aquatic biomass, such as micro- and macro-algae and cyanobacteria, has additional advantages
(John et al., 2011; Al Abdallah et al., 2016; Shuba and Kifle, 2018). For example, there is no
requirement for arable land and fresh water for their production and they havemuch higher growth
rates than terrestrial plants. On the other hand, there are substantial technical problems associated
with their production and conversion which, in the short term, represent a significant hurdle to be
overcome for commercial viability.
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FIGURE 1 | Conversion of polysaccharides to biofuels and commodity chemicals in a biorefinery.

CARBOHYDRATES TO COMMODITY
CHEMICALS IN A BIOREFINERY

In a petrochemical refinery the basic chemicals are lower
olefins (ethylene, propylene, and butenes) and aromatics (BTX:
benzene, toluene, and xylenes), together with carbon monoxide
and hydrogen (syn gas). The hydrocarbons are gases or
hydrophobic liquids. They are converted with petrochemical
catalytic technologies, particularly catalytic oxidation with
dioxygen, to a variety of commodity chemicals, usually in
solvent-free systems. In contrast, the basic chemicals in a bio-
refinery will be C6 and C5 sugars produced by hydrolysis of
polysaccharide feedstocks, and/or syn gas produced by their
gasification. The carbohydrates are hydrophilic, water soluble
solids. Several scenarios can be envisaged for further conversion
to commodity chemicals (Figure 1):

(i) Syn gas could be converted to commodity chemicals
by applying existing catalytic technologies used in
petrochemical refineries or by fermentation (Phillips et al.,
2017; Asimakopoulos et al., 2018).

(ii) Monosaccharides such as glucose could be converted to
a variety of lower alcohols, diols, carboxylic acids, and
dicarboxylic acids by fermentation. Indeed, fermentation is
already the commercially most viable route to many of these
products with lactic acid, 1,3-propane diol and 1,4-butane
diol as prominent examples.

(iii) Bioethanol, produced as a carbon neutral fuel, could be
converted to ethylene and a variety of other products using

established technologies (see Figure 1), including catalytic
aerobic oxidations.

(iv) Chemo- or bio-catalytic conversion of monosaccharides,
such as glucose, to commodity chemicals will require in
many cases removal of oxygen, by hydrogenolysis and/or
dehydration. Catalytic oxidations in a biorefinery involve
oxidation of alcoholic OH groups in monosaccharides, or
even the polysaccharide precursors, or their downstream
products and further oxidation of the resulting
carbonyl compounds.

CATALYTIC OXIDATIONS

A key reaction in organic synthesis is the oxidation of primary
and secondary alcohols to give the corresponding aldehydes or
carboxylic acids and ketones, respectively. Traditionally these
transformations were performed with stoichiometric quantities
of inorganic oxidants, notably chromium (VI) compounds such
as the Jones reagent (CrO3 and sulfuric acid). However, such
procedures are not atom efficient and lead to the formation
of copious amounts of toxic, chromium-containing waste,
i.e., high E factors and problematic waste disposal issues.
Consequently, in the last two decades such methods have been
increasingly replaced by atom efficient catalytic alternatives
involving dioxygen or hydrogen peroxide as the terminal oxidant.

Interestingly, the history of catalytic oxidations of
carbohydrates (Arts et al., 1997) predates the oxidations
of lower olefins and aromatics that form the basis of the
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FIGURE 2 | Aerobic oxidation of primary alcohols catalyzed by Cu/TEMPO.

petrochemical industry. The aerobic oxidation of mannose
over a platinum black catalyst, for example, dates from 1861
(von Gorup-Besanez, 1861) and many supported noble metal
catalyzed aerobic oxidations of carbohydrates were developed in
the first half of the last century. At the turn of the century, we
developed an aqueous biphasic system for the aerobic oxidation
of primary and secondary alcohols to the corresponding
aldehydes and ketones, respectively, in a solvent free system
using a water-soluble palladium complex of bathophenanthroline
(ten Brink et al., 2000). This system could also be effective in
the aerobic oxidation of water soluble alcohols, including
carbohydrates. Indeed, there are many examples of the aerobic
oxidation of alcohols catalyzed by precious metals such as
palladium, platinum and gold (Stahl, 2004; Parmaggiani and
Cardona, 2012). However, in the context of the conversion of
carbohydrates to large volume, low-priced commodity chemicals,
precious metals such as palladium have the disadvantage that
the future availability of these scarce, “endangered elements” at
cost-effective prices is rather unpredictable. Indeed, in contrast
to most materials, their price tends to increase with increasing
usage. Another disadvantage of noble metal catalyzed oxidations
is their functional group intolerance. First row, more earth
abundant metals tend to be more functional group tolerant.

Consequently, alternative methods have been developed that
use “earth abundant” metals, such as copper and iron, as
catalysts. One method with broad applications in the selective
oxidation of primary alcohols to aldehydes, even in the presence
of secondary alcohols, involves the combination of a Cu(II)-
bipyridine (Cu-bpy) complex with a base, such as potassium
hydroxide, a stable nitroxyl radical, exemplified by 2,2,6,6-
tetramethyl-1-piperidine-N-oxyl (TEMPO) and its derivatives, at
ambient temperature with air in aqueous acetonitrile (Figure 2;
Gamez et al., 2003; Sheldon and Arends, 2004;Marais and Swarts,
2019). The generally accepted mechanism involves as the key,
rate determining step, abstraction of a hydrogen atom from
an alkoxide ligand by a coordinated nitroxyl radical analogous

to that involved in the aerobic oxidation of primary alcohols
catalyzed by the copper-dependent oxidase, galactose oxidase
(Dijksman et al., 2003). An improved procedure, using Cu(I) salts
with TEMPO and bipy in combination with N-methylimidazole
as a base in acetonitrile as solvent was subsequently described
by Stahl and coworkers (Hoover and Stahl, 2011). Furthermore,
extensive mechanistic studies confirmed the copper-centered
galactose oxidase-like mechanism for these systems (Geiβlmeir
et al., 2005; Hoover et al., 2013).

The lack of reactivity of secondary alcohols was attributed
to steric hindrance in the abstraction of an α-hydrogen atom
from a coordinated alkoxide by a coordinated TEMPO ligand.
Consequently, the use of sterically less hindered nitroxyl radicals
such as AZADO and ABNO, respectively, in combination with
Cu(I) complexes, were developed by the groups of Iwabuchi
(Shibuya et al., 2006, 2011; Iwabuchi, 2013) and Stahl (Steves
and Stahl, 2013), for the aerobic oxidation of secondary alcohols
(Figure 3), including sterically demanding alcohols such as
menthol and a variety of unprotected amino alcohols (Sasano
et al., 2014).

More recently, Ma and coworkers reported the use of an
Fe(III)/4-hydroxyTEMPO/NaCl combination as a catalyst for the
aerobic oxidation of both primary and secondary alcohols (Jiang
et al., 2016, 2019). Other metals, including manganese, cobalt
and vanadium, have also been used in combination with nitroxyl
radicals (Cao et al., 2014) Transition metal free nitroxyl systems
have also been described, usually involving nitrogen dioxide as
the active co-catalyst. The commercially most attractive source
of the NO2 cocatalyst is nitric acid (Kuang et al., 2010). For
example, nitric acid or NaNO2 or a mixture of both was used,
in combination with ABNO or keto-ABNO, for the selective
aerobic oxidation of secondary alcohols (Figure 4; Lauber and
Stahl, 2013). Interestingly, the combination of nitric acid and
NaNO2 catalyzes the aerobic oxidation of alcohols even in the
absence of a stable nitroxyl radical. The reaction involves an
alkyl nitrite intermediate which decomposes to the carbonyl
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FIGURE 3 | Catalytic aerobic oxidation of secondary alcohols with Cu (I)/nitroxyl catalysts.

FIGURE 4 | Nitric acid catalyzed aerobic oxidation of alcohols.

compound and HNO which is reoxidized by dioxygen (Aellig
et al., 2011). Unfortunately, the greenhouse gas, nitrous oxide
(N2O), can be irreversibly formed as a byproduct.

CATALYTIC OXIDATIONS IN A BIO-BASED
ECONOMY

Although these various nitroxyl radical-based catalysts have
been widely used in the aerobic oxidations of alcohols they

have generally involved relatively simple primary and secondary
alcohols in organic solvents, sometimes mixed with water. This
was done with the development of green syntheses of, for
example, active pharmaceutical ingredients (APIs) and flavors
and fragrances, in mind. However, in a bio-based economy it is
of interest to use these methodologies in the selective oxidation
of renewable carbohydrates or key alcohols, diols, and polyols
derived from them, and this involves in many cases aqueous
solutions of solid substrates.
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FIGURE 5 | Aerobic oxidation of isosorbide to the corresponding diketone. (A) AA-TEMPO/HNO3 in HOAc. (B) Laccase/Tempo in HOAc.

FIGURE 6 | Isosorbide as a platform chemical.

Frontiers in Chemistry | www.frontiersin.org 5 February 2020 | Volume 8 | Article 132

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Sheldon Catalytic Oxidations Bio-Based Economy

Water has both advantages and limitations as a solvent for
aerobic oxidations. For example, oxidations with oxygen are
much safer as there is no formation of explosive mixtures of
oxygen with volatile organic solvents in the gas phase. In a
typical process oxygen is supplied by bubbling air through the
solution. However, the transfer of oxygen from the gas to the
liquid phase is notoriously slow owing to its low solubility in
water under typical operating conditions (0.268mM at 25◦C and
1 bar air) which limits the maximum space time yield to 200
mmol/L/h (Pedersen et al., 2015). This problem was alleviated
in the Cu/TEMPO system by using air-microbubble techniques
to facilitate gas absorption into the liquid phase (Mase et al.,
2011). Alternatively, the rates of enzymatic aerobic oxidations
were increased by a factor of 100 in continuous flow operation
compared to the conventional batch operation (Chapman et al.,
2018; Hone and Kappe, 2019). Another disadvantage of water as
a solvent is that its relatively high heat capacity, compared to
volatile organic solvents, translates to high energy costs for its
removal by distillation.

A pertinent example, from the viewpoint of the bio-
based economy, is the use of acetylamino-TEMPO (AA-
TEMPO) together with nitric acid as the cocatalyst for the
aerobic oxidation of primary and secondary alcohols to the
corresponding aldehydes and ketones, respectively, in acetic acid
or water as the solvent (Dingerdissen et al., 2011). The method
was particularly useful for the oxidation of the key biomass-
derived diol, isosorbide, to the corresponding diketone (Figure 5;
Klasovsky et al., 2015). This is particularly surprising because of
the low reactivity of the shielded endo OH group in isosorbide.

Isosorbide is a commercially interesting platform chemical
produced by hydrogenation of glucose to sorbitol followed by
dehydration (Figure 6). It has interesting features as an industrial

monomer based on its rigidity, chirality, and non-toxicity
(Fenouillot et al., 2010). For example, reaction with dicarboxylic
acids (or esters) affords polyesters. Alternatively, oxidation to
the corresponding diketones, followed by reductive amination,
affords the corresponding bis-primary amine (Figure 5) which
can be converted to polyamides by reaction with dicarboxylic
acids (esters).

BIOCATALYSIS IN AQUA: THE NATURAL
SOLUTION

As was noted elsewhere, biocatalysis is green and sustainable
(Hollmann et al., 2011; Sheldon andWoodley, 2018), conforming
to 10 of the 12 principles of green chemistry, and the catalyst
is non-toxic, biocompatible and biodegradable. Moreover,
enzymatic reactions are generally performed in water, a
particularly suitable medium for conversions of polysaccharides
in a bio-based economy. Furthermore, carbohydrates tend to
be ideal substrates and generally have a stabilizing effect on
enzymes. In contrast with precious metal catalysts, the long
term availability and price stability of enzymes is assured since
they are produced from inexpensive, readily available biomass.
Moreover, industrial scale oxidations employing precious metal
catalysts often involve a costly purification step to remove traces
of the metal in the product. In contrast, no costly removal of
trace amounts of enzymes are needed in enzymatic oxidations
and any enzyme ending up in aqueous effluent undergoes
facile biodegradation.

Laccase/Nitroxyl Radical Combinations
Laccases (EC 1.10. 3.2) are a diverse group of extracellular,
copper-dependent oxidases. They are produced, for example,

FIGURE 7 | Laccase/TEMPO catalyzed oxidation of diols and polyols.
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by white rot fungi, and play a key role in the delignification
of lignocellulose in vivo (Rochefort et al., 2004). There is
considerable commercial interest in the use of laccases in the pulp
and paper industry and in waste water remediation in general
(Gasser et al., 2014; Singh et al., 2018; Unuofin et al., 2019). They
have broad substrate specificity and use dioxygen to oxidize a
wide variety of, inter alia, phenols and aromatic amines in vivo. In
combination with so-called mediators, notably TEMPO, they are
able oxidize alcohols as was first shown by Fabbrini et al. (2001).
These reactions involve one-electron oxidation of the TEMPO by
the laccase to give the oxoammonium cation which is the active
oxidant (Arends et al., 2006a). The reduced form of laccase is then
reoxidized by dioxygen.

The laccase/TEMPO system was shown to catalyze the aerobic
oxidation of primary and secondary aliphatic alcohols and 10
mol% was sufficient to give good conversions and excellent
selectivities (Arends et al., 2006b). Interestingly, Ying and
coworkers (Zhu et al., 2014) obtained superior results with 5
mol% laccase/AZADO, especially in the aerobic oxidation of
complex and highly functionalized alcohols. Suicide inactivation
is a problem with laccases since at high substrate conversions
the oxoammonium cation can oxidize reactive groups in the
protein or in the associated glycosyl moieties on the periphery

of the enzyme (laccases are glycosylated enzymes). The stability
of laccases under the reaction conditions can be significantly
increased by immobilization as cross-linked enzyme aggregates
(CLEAs) (Matijosyte et al., 2010).

The laccase/TEMPO system also catalyzed the aerobic
oxidation of the renewable diol, isosorbide to the corresponding
diketone (see section Catalytic Oxidations and Figure 5B) in
>99% yield (Gross et al., 2014). Similarly, 1,4 and 1,5-diols
were oxidized to the corresponding lactones (Figure 7, Diaz-
Rodriguez et al., 2012) and immobilization of the laccase as cross-
linked enzyme aggregates (CLEAs) enabled multiple recycling
(Sheldon et al., 2013).

Copper and Flavin Dependent Alcohol
Oxidases
As shown in Figure 8, there are two types of alcohol oxidases:
Cu-dependent and flavin adenine dinucleotide (FAD). Both
generate an equivalent of hydrogen peroxide as the coproduct
and catalase is added to decompose it back to oxygen and water.
Alternatively, catalase can be used to generate oxygen in situ.
A major shortcoming of wild-type oxidases is their substrate
specificity. For example, galactose oxidase (GOase) and glucose

FIGURE 8 | Types of alcohol oxidases.
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FIGURE 9 | Biocatalytic aerobic oxidation of (A) 1-phenylethanol, (B) an amino alcohol, (C) lactose, and (D) ammoxidation of a primary alcohol.

oxidase (GOX) and are very specific for galactose and glucose,
respectively. Indeed, these enzymes have evolved in vivo to be
very efficient in converting their natural substrate. However, in
order to be useful in organic synthesis they need to be active and
selective with a variety of alcohol substrates, particularly highly
functionalized alcohols. Fortunately, this can be achieved with
protein engineering using in vitro evolution.

For example, Turner and coworkers used directed evolution
techniques to produce GOase variants that catalyze the oxidation
of secondary alcohols (Figure 9A; Escaletters and Turner, 2008)
and amino alcohols (Herter et al., 2015; Figure 9B). Similarly,
a GOase variant catalyzed the aerobic oxidation of lactose,
a disaccharide formed as a waste stream (whey) in cheese
manufacture, to form the dialdehyde (Figure 9C; Cosgrove et al.,
2019). The latter is of interest as a raw material for polymers.
Interestingly, a GOase variant was also shown to catalyze
the synthesis of nitriles by ammoxidation of primary alcohols
(Figure 9D; Vilim et al., 2018).

Structure directed evolution was also used to develop
variants of the FAD-dependent choline oxidase that catalyze
the aerobic oxidation of a broad range of primary alcohols to
the corresponding aldehydes (Figure 10; Heath et al., 2019).
Similarly, FAD-dependent HMF oxidase was engineered to

effectively catalyze all three oxidation steps in the conversion of
HMF to FDCA (see later).

Another reaction of industrial interest is the aerobic oxidation
of glucose to glucaric acid. A hypothetical process involving
two steps with a mixture of GOX and a GOase variant
which is able to accept gluconolactone as a substrate is shown
in Figure 11. Alternatively, it can be produced by aerobic
oxidation of glucuronic acid, a building block derived from
(waste) pectin (see section Acid-Catalyzed Dehydration of
Carbohydrates to Furan Derivatives). Glucaric acid is of interest
as an industrial monomer in itself (Wu et al., 2019) and
can also be hydrogenated to adipic acid, the raw material for
Nylon 6.

Alcohol Dehydrogenases
Alcohol dehydrogenases (ADHs) catalyze the oxidation of
alcohols by utilizing a nicotinamide cofactor which has to be
regenerated in situ using an excess of a co-substrate (Kroutil et al.,
2004a; Weckbecker et al., 2010). Alternatively, NAD(P)H oxidase
(NOx) can be employed to catalyze reoxidation of the cofactor
by oxygen (Kroutil et al., 2004b; Zhang et al., 2016). Yet another
possibility is to couple the oxidation step with a reduction step,
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FIGURE 10 | Aerobic oxidations catalyzed by FAD-dependent alcohol oxidase variants.

FIGURE 11 | Hypothetical biocatalytic oxidation of glucose to glucaric acid.

to afford an overall redox neutral process by employing so-
called hydrogen borrowing, a concept which itself was borrowed
from chemocatalysis literature (Hamid et al., 2007). For example,
combination of an ADH with an amine dehydrogenase (AmDH)
affords a redox-neutral conversion of a racemic alcohol to a
single enantiomer of the corresponding amine (Figure 12; Mutti
et al., 2015). Ironically, it requires the use of an aselective ADH
(Thompson and Turner, 2017) because it has to catalyze the
oxidation of both alcohol enantiomers, which is not a simple task
as most ADHs are highly enantioselective. The overall efficiency
of the process, which constitutes a conversion of an OH to an
NH2 group, was improved by co-immobilization of the ADH and
AmDH (Böhmer et al., 2018). When the alcohol, or polyol, is
readily available this would be an industrially attractive way to

produce the corresponding (poly)amine. A pertinent example is
the conversion of isosorbide to the diamine discussed in section
Catalytic Oxidations.

Direct Oxidation of Polysaccharides
It is also of commercial interest to oxidize polysaccharides, e.g.,
starch and cellulose, directly to the corresponding polycarboxylic
acids. Carboxystarch, for example, has potential applications as
a biodegradable water super absorbent. Polysaccharides can be
readily oxidized using NaOCl as the stoichiometric oxidant and
TEMPO or derivatives as the catalyst (Ponedel’kina et al., 2010).
However, for a commercially and environmentally attractive
process it should preferably use oxygen as the stoichiometric
oxidant. The laccase/TEMPO system (see above) catalyzes the
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FIGURE 12 | Enzymatic conversion of an alcohol to an amine.

FIGURE 13 | Acid catalyzed dehydration of xylose and glucose.

aerobic oxidation of the primary alcohol moieties in starch
affording carboxystarch (Viikari et al., 1999) but the relatively
high enzyme costs, owing to its instability under the oxidizing
reaction conditions, form an obstacle to commercialization.
The stability was improved by immobilization as a cross-linked
enzyme aggregate (CLEA) (Matijosyte et al., 2010).

ACID-CATALYZED DEHYDRATION OF
CARBOHYDRATES TO FURAN
DERIVATIVES

Acid catalyzed dehydration of pentoses and hexoses produces
furfural and 5-hydroxymethylfurfural (HMF) (Tong et al., 2010),

respectively. Furfural is an important commodity chemical
(Lange et al., 2012) and HMF has the potential to become
one (van Putten et al., 2013; Kucherov et al., 2018). Initial
isomerization of D-glucose to D-fructose is followed by acid
catalyzed dehydration (Figure 13) but in yields that are not
conducive to commercial viability owing to the limited stability
of HMF in the acidic reaction medium (Wang et al., 2017).
However, according to a recent report HMF can be obtained
in 95% yield by conducting the reaction with D-fructose under
continuous flow conditions (Galaverna et al., 2018).

Polyethylene furandicarboxylate (PEF), which was developed
by Avantium1 is produced from furan-2,5-dicarboxylic acid

1https://www.avantium.com/blog/pef-the-polymer-for-the-future/
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FIGURE 14 | Catalytic aerobic oxidation of HMF to FDCA.

FIGURE 15 | Alternative routes to FDCA.

(FDCA) and ethylene glycol It is seen as a renewable alternative
for fossil-based polyethylene terephthalate (PET). In addition to
reducing CO2 emissions, PEF has superior mechanical, thermal,
and gas barrier properties to PET. The key raw material, FDCA,
can be produced in excellent yields by aerobic oxidation of HMF
using supported precious metal catalysts (Liu et al., 2015; Zhang
and Deng, 2015; Zheng et al., 2017; Motagamwala et al., 2018)
or an engineered flavin-dependent alcohol oxidase (Dijkman
et al., 2015) or whole cell biocatalysts (Koopman et al., 2010) in
aqueous media (Figure 14).

FDCA can also be produced from uronic acids present in
various agricultural residues. D-galacturonic acid, for example,
is available in large quantities from the pectin in sugar beet
pulp (Leijdeckers et al., 2013) and D-glucuronic acid is one of
the main constituents of pectin in certain soft- and hardwoods.
Aerobic oxidation of uronic acids over gold catalysts (van Es
et al., 2013) affords the corresponding aldaric acids that can
subsequently be dehydrated to FDCA (Figure 15; Miller et al.,
2017). Alternatively, uronic acids can be isomerized to the
corresponding 5-keto aldonic acids which can be converted to
FDCA dimethyl ester by acid catalyzed cyclodehydration to the
methyl ester of 5-formyl-2-furoic acid in methanol followed by
Au/C catalyzed aerobic oxidation (van der Klis et al., 2017).

Finally, we note that this review is focused on the conversion
of the carbohydrate fractions of feedstocks to commodity
chemicals in a biorefinery. In practice, for commercial viability
both the carbohydrate and the lignin fractions will be converted
to both commodity chemicals and biofuels and this will involve
both chemo- and biocatalytic methods in water (Rinaldi et al.,
2016; Bugg et al., 2019).

CONCLUSIONS AND PROSPECTS

Remarkable progress has beenmade in the last two decades in the
development of green and sustainable catalytic methodologies
for the aerobic oxidations of primary and secondary alcohols
to aldehydes and ketones, respectively. However, a cursory
perusal of the literature reveals that we have hardly scratched
the surface with regard to the application of such catalytic
methodologies to the valorization of bio-based feedstocks and
key platform chemicals in biorefineries. Recent developments in
the engineering of oxidative enzymes, such as copper- and flavin-
dependent alcohol oxidases, using directed evolution techniques,
strongly suggest that industrially viable methods for catalytic
oxidations relevant to a bio-based economy will be forthcoming
in the near future.
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One could say that glucose is the new ethylene, and possibly
propylene and butenes all rolled into one. In the words of Primo
Levi: “It is the destiny of wine to be drunk and it is the destiny of
glucose to be oxidized.”
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