
ORIGINAL RESEARCH
published: 31 March 2020

doi: 10.3389/fchem.2020.00162

Frontiers in Chemistry | www.frontiersin.org 1 March 2020 | Volume 8 | Article 162

Edited by:

Yong Wang,

Ningbo University, China

Reviewed by:

Tong Zhu,

East China Normal University, China

Chaoyuan Zhu,

National Chiao Tung University, Taiwan

*Correspondence:

Li-Hua Bie

biebie@mail.hzau.edu.cn

Jun Gao

gaojun@mail.hzau.edu.cn

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Theoretical and Computational

Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 27 January 2020

Accepted: 24 February 2020

Published: 31 March 2020

Citation:

Zhao W, Li Q, Huang X-H, Bie L-H

and Gao J (2020) Toward the

Prediction of Multi-Spin State Charges

of a Heme Model by Random Forest

Regression. Front. Chem. 8:162.

doi: 10.3389/fchem.2020.00162

Toward the Prediction of Multi-Spin
State Charges of a Heme Model by
Random Forest Regression

Wei Zhao †, Qing Li †, Xian-Hui Huang, Li-Hua Bie* and Jun Gao*

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China

The random forest regression (RFR) model was introduced to predict the multiple spin

state charges of a heme model, which is important for the molecular dynamic simulation

of the spin crossover phenomenon. In this work, a multiple spin state structure data

set with 39,368 structures of the simplified heme–oxygen binding model was built from

the non-adiabatic dynamic simulation trajectories. The ESP charges of each atom were

calculated and used as the real-valued response. The conformational adapted charge

model (CAC) of three spin states was constructed by an RFR model using symmetry

functions. The results show that our RFR model can effectively predict the on the

fly atomic charges with the varying conformations as well as the atomic charge of

different spin states in the same conformation, thus achieving the balance of accuracy

and efficiency. The average mean absolute error of the predicted charges of each spin

state is <0.02 e. The comparison studies on descriptors showed a maximum 0.06 e

improvement in prediction of the charge of Fe2+ by using 11 manually selected structural

parameters. We hope that this model can not only provide variable parameters for

developing the force field of the multi-spin state but also facilitate automation, thus

enabling large-scale simulations of atomistic systems.

Keywords: spin crossover, heme model, force field, machine learning, ESP charge

1. INTRODUCTION

Coordinated compounds of transition metal ions can exhibit a switching phenomenon under
certain conditions related to changes in temperature, pressure, light, or magnetic field; the central
metal ion changes the spin states (the so-called high-spin, HS, and low-spin, LS, configurations),
which is the spin transition (ST) or spin crossover (SCO) (Bousseksou et al., 2011; Gutlich et al.,
2013). Since Cambi et al. first reported the thermally induced change of spin states in 1931,
(Cambi and Szegö, 1931) many more SCO complexes have been synthesized thereafter and have
been applied to various domains, including molecular switches, memory elements (Jureschi et al.,
2014; Shao et al., 2015), temperature sensors (Gütlich and Goodwin, 2004; Doukov et al., 2011),
nanomaterials (Nagl et al., 2008; Hauser, 2013), and so on (Bousseksou et al., 2011; Cong et al.,
2018; Yuan et al., 2018; Meyer et al., 2019).

In the switching phenomenon, the change of spin state is accompanied by a switch of electron
configurations of the central ions, which often leads tomarked changes in the physical and chemical
properties of the entire complex (Gütlich and Goodwin, 2004; Habenicht and Prezhdo, 2012;
Gutlich et al., 2013). Meanwhile, the reorganization of electrons among atoms and the formation
of molecules are complex and multifaceted processes, and their full description is only possible
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within the boundaries of quantum mechanics (QM) (Bristow
et al., 2014; Sanvito, 2019). Density functional theory (DFT) is
the most common choice for routine ground-state calculations;
however, the number of valence electrons scaled cubically,
increasing the computational costs significantly (Engler et al.,
2019). It will therefore not be suitable, especially when one needs
to sample extended size and time scales.

Molecular dynamics (MD) simulation can handle system
sizes of typically 107 atoms and above, and this has been used
for decades to explore chemical and biochemical problems at
an atomic level (Liu et al., 2017; Riniker, 2018). The classical
MD predominantly uses simplified atomistic models called
force fields (FFs) to describe the exact ground-state potential
energy surface (PES) of a system. The bonded parameters
are represented in terms of equilibrium bond distances, bond
and dihedral angles, force constants, and rotation barriers;
the non-bonded interactions are typically described by atom-
centered point charges and Lennard-Jones potential (Ivanov
et al., 2015) while disregarding the explicit treatment of electronic
polarizability (De et al., 2018; Sahoo and Nair, 2018; Heid et al.,
2019). It is not capable of capturing a restricted but essential
number of chemical features, including spin crossover, wherein
the molecular system is required to “hop” from one PES of the
initial spin state onto another of the product state.

In order to better understand the effect of molecular
properties on their electronic ground or excited states, the
potential parameter set needs to be extended by a multi-spin
state in which at least two issues should be taken into account.
Firstly, the geometric configuration at energy minima of the
excited state is different from that of the ground state in most
cases. This issue can be fixed by adjust the parameters in
bonding terms. For example, Meyer’s Group has modified force
constants for bond stretching and bending terms according to
DFT calculation for atomistic molecular dynamics simulations of
the HS and LS states of the Fe2+ containing model (Meyer et al.,
2019). Secondly, it is well-known that the charge distribution
in the excited state is different from the ground state, and it
will change with molecular structures; it is important for the
force field to provide the charges of two spin states. In this
regard, an increasing number of schemes have been proposed in
addition to the polarized force field, such as the SSAPs method
(Xu et al., 2018).

In recent years, many efforts have been directed to the efficient
improvement of force fields. In particular, machine learning
combined with molecular simulation has been verified by many
groups to be effective to develop force field including inferring
charges based on a set of reference molecules (Botu et al., 2016;
Chen et al., 2018; Inokuchi et al., 2018; Engler et al., 2019; Hu
et al., 2019; Roman et al., 2019; Sanvito, 2019; Unke and Meuwly,
2019; Ye et al., 2019). Among these, the random forest regression
(RFR) method has been proven to be feasible for the prediction
of atomic charge without expending much effort on parameter
tuning or descriptor selection. As a classification and regression
tool, the Random Forest algorithm was first introduced by
Breiman (2001), inspired by the earlier work of Amit and Geman
(1997). It uses bootstrap samples of the training data and random
feature selection in tree induction. Each tree in the ensemble

produces an output according to the molecular descriptors or
properties, and outputs from all trees are aggregated to produce
the final prediction by average (Breiman, 2001; Cutler et al.,
2011). This procedure can reduce overfitting and offer some
unique features, including built-in performance assessment and
measures of variable importance (Svetnik, 2003; Klusowski,
2018), which make it suitable for quantitative structure-activity
relationship (QSAR) tasks (Svetnik, 2003; D Richard et al., 2007;
Statnikov et al., 2008; Genuer et al., 2010). For instance, Rai
and Bakken (2013) combined random forest regression with ESP
charges from high-level QM calculations to predict the partial
atomic charge of H, C, N, O, F, S, and Cl. Building on their
work, Bleiziffer et al. (2018) further presented a conformational
robust charge extraction scheme DDEC to predict partial charges
and achieved accuracy beyond a HF/6-31G* setup. Our group
developed a conformational adaptive charges (CAC)model based
on atom type symmetry function (ATSF), which was, in turn,
based on the RFRmethod (Wang and Gao, 2020). These machine
learning approaches in tandem with quantum mechanics have
many merits in developing flexible and adaptive force fields,
including low cost, accuracy, and versatility. Yet, they are mainly
used to predict charges on the single potential energy surface of
the equilibrium configuration of the molecule. The performances
of these method on multi-spin state charges remains unreported.

In our previous work (Liu et al., 2017; Du et al., 2018),
the spin-forbidden dioxygen binding dynamics in a simplified
heme model were investigated by the non-adiabatic trajectory
surface-hopping dynamics, and this involved the coupled singlet,
triplet, and quintuplet states. The results revealed that there
existed dominant long-lived, kinetically meta-stable states during
the dynamics trajectories, and each meta-stable pattern showed
a distinct partial charge population. Based on this geometric
dependence of the partial charge population on the excited state,
we proposed to extend the conformation adapted charge (CAC)
model and RFR method to the multi-spin state charges of the
heme model. The fixed-point charge in the traditional force field
can be modified according to the conformation on the fly, and
thus the key to themulti-spin state is transformed into the change
of charge in the multi-spin state. We hope that this model can
not only provide variable parameters for constructing the force
field of the multi-spin state but also facilitate automation, thus
enabling large-scale simulations of atomistic systems.

2. MATERIALS AND METHODS

In this work, we targeted the simplified heme model (see
Figure 1), introduced a random forest regression (RFR)
algorithm using Behler-Parrinello symmetry functions as
descriptors (Behler et al., 2007; Hagai et al., 2010; Behler,
2011a), performed model training by fitting ESP charges of
different spin states, and achieved high-quality predictions.
The key steps of the workflow are shown in Figure 2. The
samples sufficient molecular conformations were obtained
from ab initio dynamic trajectories of previous work (Du et al.,
2018), which covered a wide range of conformations related to
the spin crossover. Different descriptors were then extracted,
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FIGURE 1 | The molecular model of this work. The simplified heme model

Fe2+(C3N2)2NH3 complex with O2 binding was adopted.

FIGURE 2 | The work flow of construction data set and prediction process of

the RFR model.

and the ESP charges of three spin states of each atom in each
conformation were calculated using the density function theory
method, and together these constitute the initial dataset. After
this preprocessing was completed, half of the data were selected
randomly as the training set to build the RFR model, and the
remaining half of the data were used to test the model’s ability to
reproduce the atomic partial charge under different spin states
and thereby to analyze and assess the performance of the model.

2.1. Data Set Preparing
A total of 33 stable trajectories of open-shell singlet state
were selected from a non-adiabatic trajectory surface-hopping
dynamics simulation from our previous work. The B3LYP/6-
31G* level of the method (Reiher et al., 2001; Salomon et al.,
2002) was used to calculate the ESP atomic charge of each
structure in the singlet, triplet, and quintuplet state. We finally
achieved 39,368 converged structures owing to the convergence
of the calculation. The data preparation was time consuming.

By and large, it took 2 weeks to complete all the calculations
of the 39,368 structures for each spin state with four computer
nodes; each node had dual Intel 2683v3 CPUs. All the electronic
structure calculations were implemented with a Gaussian 16
package (Frisch et al., 2016), and the detail charge distribution
of each atom in the different spin states were analyzed and shown
in the section 3.

2.2. Random Forest Regression Model
Training
The raw dataset was preprocessed firstly to extract appropriate
features, such as the descriptors of structures and input of model.
Specifically, each RFR model was constructed separately under
certain spin states for each atom according to the flow shown
in Figure 2. Since there were 14 atoms in the simplified heme
model, 14 independent RFRmodels were constructed by training
for each spin state. There were 42 models in total.

Let D = {(x1, y1), · · · · · · , (xN , yN)} denote the training data,

with N = 39368/2, xi =
(

xi,1, · · · · · · xi,p
)T
representing the

information relative to atom i in each structure described with
p features, and yi denoting the ESP charge. During the training
process, for each decision tree in the forest, a bootstrap sample
Dj from the training data of N molecules was drawn first.
Starting with all observations (x1, y1) · · · · · · (xN , yN), of Dj at
each node, m predictors were selected at random from the p
predictors (m<p), and the node was split into two descendant
nodes using the best split among the remaining predictors.
This process was repeated until no further splits ere possible
to grow a tree, and the steps were repeated again until all the
trees were grown.

Although Random Forests can obtain good results using the
default parameters in most cases, appropriate parameters can
further improve the accuracy for particular situations. There
is only one parameter to which random forests is somewhat
sensitive—m. This denotes the number of randomly selected
predictor variables at each node. The default value of m is
often set by p/3. In the RFR model, combined with symmetry
functions, different values of m were tested, and, finally, m = 5
was determined by comparing the Pearson correlation coefficient
(r) between the predicted charges and the ESP charges of Fe2+.
Another parameter, B, which represents the number of trees in
the forest, can be chosen to be as large as desired; Breiman (2001)
showed the generalization error for random forests converges
almost surely to a limit as B increases. Here, B was set as 200.

When the training is completed, the prediction charge of a
given atom i in a new geometry structure will be given by the
average prediction of all individual trees. Thus, the predicted
charge is assigned as Equation (1):

q̄i =
∑B

j=1 Tj(xi)

B
(1)

The standard deviation of the predicted charge for atom i by the
tree T is defined as Equation 2:

σi =

√

∑B
j

(

qi
(

Tj

)

− q̄i
)2

B
(2)
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where qi
(

Tj

)

is the partial charge predicted by tree Tj. The
RFR algorithm was implemented using the scikit-learn module
in Python.

2.3. Descriptor Selection
To encode the physical features and themandatory symmetries of
the problem, many descriptors have been introduced (Imbalzano
et al., 2018). For example, Huan et al. (2017) utilized a d-
dimensional vector Vi,α , representing the atomic environment
of atom i viewed along the Cartesian α direction (Huan et al.,
2017). Heid et al. (2019) used the type of each atom and its
connectivity as the input for the neural network. Schutt et al.
(2017) introduced a vector of nuclear charges and a matrix
of atomic distances to describe the molecular structures. In
addition, molecules can be represented as Coulomb matrices
(Rupp et al., 2012; Lilienfeld, 2015), scattering transforms
(Hansen et al., 2015), bags of bonds (Bartók et al., 2010; Bartók
et al., 2013), and so on. Among these various descriptors, atomic-
based symmetric function, which was first proposed by Behler
et al. (2007), has been widely used in machine learning (Behler
et al., 2007; Behler, 2011a,b). Here, we adopted this method to
describe the molecular structure.

Atom-based symmetric functions describe the chemical
environment of atom i in terms of radial and angular terms.
Therefore, each atom’s Cartesian coordinate Ri =

(

xi, yi, zi
)

needs to be converted into the so-called symmetric function form
of Equation (3):

Ri = {Gangular
i ,Gradial

i }

=
{

Gradial
i, E1 , · · · , Gradial

i,En ,G
angular
i,E1 ,E1 , · · · ,

G
angular
i,E1 ,En ,G

angular
i,E2 ,E2 · · · ,Gangular

i,E2 ,En , · · · ,G
angular
i,En ,En

}

(3)

where Gradial
i, E1 represents the total contribution of the distance

between all the surrounding atoms, and atom i, and G
angular
i,Ei ,Ej

represents the angular relationship between any two surrounding
atoms and itself. All atoms are distinguished according to their
element Ei, and the set of symmetric functions of two atoms
belonging to the same element are thus the same.

In this study, Equation (4) was used to describe the distance
component of each atom, where Rij represents the distance
between atom i and j. The cutoff function fc

(

Rij
)

was introduced
in Equation 5 because the atoms in the molecular dynamic
simulation may enter or leave the cutoff distance, which can lead
to the number of neighbor atoms to be variable. Here, Rc was
thus set to 99 Å to include all the atoms, and Rs and η were both
set to 1.0.

Gradial
i,J =

j in J
∑

j 6=i

e−η(Rij−Rs)
2
fc

(

Rij
)

(4)

fc
(

Rij
)

=

{

0.5×
[

cos
(

πRij
Rc

)

+ 1
]

for Rij ≤ Rc

0 for Rij ≥ Rc
(5)

Equation (6) is the angular component, which defines the angular
distribution centered on each reference atom; here, λ = 1.0,
ζ = 1.0.

G
angular

i,j,k = 21−ζ

j∈J&k∈K
∑

j,k 6=i

(

1+ λcoaθ ijk
)ζ

× e
−η

(

R2ij+R2
ik
+R2

jk

)

fc
(

Rij
)

fc (Rik) fc
(

Rjk
)

(6)

Therefore, through coordinate transformation, the symmetric
functions for each atom can be obtained and combined with the
ESP charge to finally form the training set as the input of model.

Meanwhile, in order to compare the effect of descriptor
selection on prediction performance, 11 structural parameters
were manually selected and used as descriptors to train the
model. Specifically, the 11 parameters included eight distance
values (Fe-N1, Fe-N2, Fe-N3, Fe-N4, Fe-N11, Fe-O12, Fe-
O13, and O12-O13), one angle value (Fe-O12-O13), and two
dihedral angles (N2-Fe-N1-C10 and N1-Fe-N2-C5). According
to our chemical perception, these 11 parameters reflect the
features of molecule structure, so they can well-describe
different conformations.

3. RESULTS AND DISCUSSION

3.1. Charge Distribution of Multi-Spin State
in the Initial Data Set
It can be seen in Figure 3 that most variations range from 0.5
to 0.7e; the fluctuation of Fe2+ was the most significant, as it
was close to 2e. The variation of O12 was larger than that of
O13. It can also be found that there was a slight tendency for the
mean value of N to decrease and the mean value of C to increase.
For Fe and the coordinating O12 and O13, the difference among
the mean values under different spin states was relatively more
significant. Specifically, the atomic charge of Fe2+ in the singlet
state was distributed around 1.2 and 1.5e in quintuplet. Further
analysis of the charge distribution of different spin states showed
that the triplet charge of Fe2+ in most structures was greater than
the singlet charge (131 > 0, see Figure 4), with the difference
being at the highest probability concentrated at 0.1e, while, for
the quintuplet and triplet spin state, the difference reached 0.2e.
The results confirmed that different spin states in the same
structure had distinct charge distributions.

Additionally, it should be noted that the atomic charge of
each atom fluctuated within a certain range, among which Fe2+

fluctuated the most. Just taking the singlet state as an example,
the variation ranged from 0.3 to 2.2e, which implied that the
charge distribution of a certain atom in a specific spin state was
conformation dependent.

3.2. Charge Prediction of RFR Model With
Symmetric Functions
In order to better distinguish between different molecular
structures, the atom-based symmetry functions were used to
convert atomic coordinates into a series of function values,
which embed the atoms in their neighborhood depending on
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FIGURE 3 | Charge distribution of multi-spin state for 14 atoms of the model in the data set. (A) Is boxplot representation of charge distribution of 14 atoms in the

heme system in different spin states. (B) Is probability density of charge distribution of Fe2+. (C) Is the probability density of the charge distribution of the O12 atom.

FIGURE 4 | Histogram of charge differences between two spin states of selected atoms. (A) Is O12 atom and (B) is Fe2+. The black color code is the charge

difference of singlet and triplet and gray color code is charge difference of quintuplet and triplet state.
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the element type (Schutt et al., 2017). It is an efficient way to
consider the chemical environments that the invariances, such
as translation, rotation, and permutation, can be guaranteed to
be exploited by. By doing so, the RFR model combined with
symmetry functions and ESP charge was constructed.

As mentioned above, although complex parameter tuning
is not required in the RFR model, it is sensitive to the
number of descriptors. To this end, we tested and compared
the predicted charge of Fe2+ at different values of m (i.e.,
the number of features selected from p descriptors at random;
here p = 19) and then calculated the correlation between
the predictions and the ESP charges. The results are shown in
Table 1. It can be seen from Table 1 that, when m = 5, the
correlation between the predicted value and the fitted value is
the largest (0.9784), which indicated that prediction gave the best
performance. The parametermwas consequently set to five in the
subsequent analysis.

To assess the prediction performance of the charge models,
the mean absolute error (MAE) was calculated for each atom in
the three spin states, and the standard deviation of the error was
given as well (Table 2). According to Table 2, the MAEs of the
predicted charges in three spin states are all within 0.015e for

TABLE 1 | Tests on the number of features selected in the RFR model.

m Pearson correlation coefficient

5 0.9784

0.2 0.9750

log2 0.9771
√
p 0.9771

19 0.8729

When using the symmetric function method, each molecular structure is described by 19

features (p = 19), and m is the max features randomly selected from it to fit a tree.

all the spin states. There was no obvious difference between two
states. For each state, most of the MAEs of the atoms were within
0.02e as well, except for Fe2+, which reached a maximum of
0.047e. Moreover, the Pearson correlation coefficient (r) between
the predicted charges and the ESP charges of the RFR model in
all three states was above 0.96. These data demonstrated that
the model had high prediction accuracy, especially for N1 and
N2. At the same time, the MAE and error standard deviation
were close in the three states, indicating that our RFR model had
good stability.

For clarity, we further selected three atoms—Fe2+, N11,
and O12—to plot their charge distributions for comparison
(Figure 5). As shown in Figure 5, the predicted charges of
the RFR model are basically gathered around the straight
line y = x; they were very close to the high-precision
charges calculated by DFT, indicating that our model achieved
satisfactory accuracy.

By carefully comparing the distribution of each atom in
different spin states, it can be found that the predicted values
of Fe2+ have a good aggregation and few scattered points.
However, the predictions are larger when the corresponding
ESP charges are <1.5e and smaller when they are above 1.5e.
The aggregation centers in the three states were different
but essentially distributed in 0.5–2.25e, which is consistent
with the analysis in Figure 5. For N11 atom, the predictions
were more concentrated in the singlet and triplet, as there
existed a few scattered points in the quintuplet. For O12
atoms, the correlation coefficients in all three spin states
exceeded 0.98, and although there were some scattered points,
the distribution was uniform. Finally, by comparing the
distribution of different atoms in the same spin state, it
can be found that the predictions in the triplet state were
more concentrated overall. In summary, it was demonstrated
that our model can predict the atomic charge of most
structures well.

TABLE 2 | The performance of prediction using RFR model with symmetric functions for three spin states.

Atoms
Predicted values (e) MAE Error std. Pearson coefficient

Singlet Triplet Quintuplet Singlet Triplet Quintuplet Singlet Triplet Quintuplet Singlet Triplet Quintuplet

Fe2+ 1.390 1.382 1.459 0.048 0.046 0.047 0.051 0.049 0.050 0.978 0.980 0.982

N1 −0.390 −0.382 −0.390 0.013 0.014 0.013 0.014 0.014 0.014 0.991 0.991 0.991

N2 −0.387 −0.378 −0.385 0.014 0.014 0.014 0.014 0.014 0.014 0.991 0.990 0.991

N3 −0.457 −0.449 −0.458 0.013 0.013 0.012 0.014 0.014 0.014 0.988 0.988 0.989

N4 −0.451 −0.443 −0.452 0.014 0.014 0.014 0.015 0.015 0.015 0.986 0.986 0.986

C5 0.350 0.357 0.374 0.015 0.015 0.015 0.016 0.016 0.016 0.985 0.984 0.984

C6 −0.369 −0.371 −0.377 0.018 0.018 0.018 0.019 0.019 0.019 0.973 0.972 0.972

C7 0.363 0.368 0.384 0.016 0.016 0.016 0.017 0.018 0.017 0.978 0.977 0.977

C8 0.371 0.375 0.390 0.015 0.016 0.015 0.016 0.017 0.016 0.978 0.977 0.978

C9 −0.372 −0.373 −0.378 0.018 0.018 0.019 0.019 0.019 0.020 0.971 0.970 0.967

C10 0.348 0.354 0.370 0.016 0.016 0.015 0.017 0.017 0.016 0.983 0.983 0.984

N11 0.052 0.051 0.007 0.004 0.005 0.006 0.005 0.005 0.008 0.988 0.985 0.971

O12 −0.217 −0.266 −0.306 0.005 0.007 0.008 0.006 0.009 0.012 0.990 0.987 0.987

O13 −0.229 −0.224 −0.238 0.002 0.003 0.004 0.004 0.006 0.006 0.987 0.970 0.978

Mean 0.015 0.015 0.015 0.016 0.017 0.017 0.983 0.981 0.981
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FIGURE 5 | Distribution of predicted charge of atoms Fe2+, N11, and O12 in three spin states. The illustration use (A–C) for Fe2+; (D–F) for N11; (G–I). The color

codes are Black for singlet state, Blue for triplet state, and Red for quintuplet state.

3.3. Charge Prediction of RFR Model With
Manually Selected Structural Parameters
To compare the performance of the RFR models with different
descriptors, we manually screened 11 parameters to describe the
molecular structure, including eight bond lengths (Fe-N1,Fe-
N2, Fe-N3, Fe-N4, Fe-N11, Fe-O12, Fe-O13, and O12-O13), one
bond angle (Fe-O12-O13), and two dihedrals angles (N2-Fe-N1-
C10 andN1-Fe-N2-C5). The same process andmethodwere used
for RFR model training and prediction. A comparison of the
prediction performance of selected atoms (Fe2+, N11, and O12)
is shown in Figure 6, and, for comparison, the root mean square
error RMSE of the prediction of each atom in different spin states
was further calculated and is shown in Figure 7.

It can be seen clearly from Figure 6 that both models have
good prediction performances, and the same model has a
similar RMSE of predictions for different spin states. When
11 structural parameters were used as descriptors, however,
the prediction values were more concentrated, and the model

prediction performance was better than with in the case of
symmetry functions. The average RMSE and the RMSE of each
atom were reduced. Among these, the RMSE of Fe2+ reduced
from 0.07 to 0.0035e, which is a maximum 0.06e improvement.
We think that this is partially due to the use of a dihedral angle as
the descriptor, which is a four-body term and is not included in
the symmetry function.

In conclusion, choosing different descriptors will affect the
prediction performance of the RFR model; the 11 manually
selected parameters can better describe the molecular structure
and thus achieved better results. At the same time, however, it
should be noted that the difference between the two cases is not
significant. As shown in Figure 7, the RMSE of Fe2+ is relatively
larger, but its fluctuations are still below 0.04e, and the variations
of RMSE for other atoms are all below 0.02e. This indicates that,
even if there is no empirical experience involved, the RFR model
with symmetry functions can achieve satisfactory predictions,
and the advantage is that it can be automatized.
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FIGURE 6 | Comparison on the performance of two descriptors of RFR predictions in three spins states. The illustration use (A–C) for Fe2+; (D–F) for N11; (G–I).

Cyan corresponds to the RFR with a symmetric function, and magenta represents the RFR with 11 structural parameters.

FIGURE 7 | Comparison of the root mean square error(RMSE) using different RFR models. (A–C) Represent the RMSE of each atom in singlet, triplet, and quintuplet

state, respectively. The black bar is the RFR model using symmetric functions, and the gray bar is the RFR model with 11 manual selected structural parameters.

4. CONCLUSIONS

This study aimed at exploring the spin crossover phenomenon
in the model heme system according to the characteristics
of atomic charge distribution in different spin states with
conformation. The random forest method was introduced to

construct a predictionmodel of multi-spin variable charge, which
can provide a separate prediction for a single atom.

In this model, symmetry functions were used as descriptors
to describe the atomic chemical environment. The model
was trained in conjunction with the ESP charges to predict
the atomic charge in different spin states. Meanwhile, in
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order to compare the prediction performance, 11 artificially
selected structural parameters were also used as the input
of RFR model. The results showed that, when the 11
selected parameters were adopted, the prediction was more
accurate, but it was not suitable for automation considering
the involvement of human experience. In contrast, the RFR
model using symmetry functions can achieve a good trade-
off between calculation accuracy and efficiency, realize
automatic processing, and provide separate prediction for
a single atom. It should be noted that, in this method, the
transformation of coordinates is a time-consuming pre-
processing process, but it avoids the problem of inconsistent
calculation of energy or force in Cartesian coordinates. When
the number of descriptors is large enough, the random forest
algorithm is very effective. This study is only a preliminary
exploration of the heme force field, and there are still many
deficiencies. In future work, we will further improve the
calculation method of the multi-spin state variable charge force
field parameters.
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